GNU bug report logs - #17811
RFE: build against multiple python stacks

Please note: This is a static page, with minimal formatting, updated once a day.
Click here to see this page with the latest information and nicer formatting.

Package: automake; Reported by: Pavel Raiskup <praiskup@HIDDEN>; dated Thu, 19 Jun 2014 12:39:02 UTC; Maintainer for automake is bug-automake@HIDDEN.

Message received at submit <at> debbugs.gnu.org:


Received: (at submit) by debbugs.gnu.org; 19 Jun 2014 12:38:24 +0000
From debbugs-submit-bounces <at> debbugs.gnu.org Thu Jun 19 08:38:24 2014
Received: from localhost ([127.0.0.1]:52539 helo=debbugs.gnu.org)
	by debbugs.gnu.org with esmtp (Exim 4.80)
	(envelope-from <debbugs-submit-bounces <at> debbugs.gnu.org>)
	id 1Wxbbh-00063Y-Du
	for submit <at> debbugs.gnu.org; Thu, 19 Jun 2014 08:38:24 -0400
Received: from eggs.gnu.org ([208.118.235.92]:52153)
 by debbugs.gnu.org with esmtp (Exim 4.80)
 (envelope-from <praiskup@HIDDEN>) id 1Wxbba-00063B-E2
 for submit <at> debbugs.gnu.org; Thu, 19 Jun 2014 08:38:17 -0400
Received: from Debian-exim by eggs.gnu.org with spam-scanned (Exim 4.71)
 (envelope-from <praiskup@HIDDEN>) id 1WxbbR-0007he-4C
 for submit <at> debbugs.gnu.org; Thu, 19 Jun 2014 08:38:09 -0400
X-Spam-Checker-Version: SpamAssassin 3.3.2 (2011-06-06) on eggs.gnu.org
X-Spam-Level: 
X-Spam-Status: No, score=0.8 required=5.0 tests=BAYES_50 autolearn=disabled
 version=3.3.2
Received: from lists.gnu.org ([2001:4830:134:3::11]:46663)
 by eggs.gnu.org with esmtp (Exim 4.71)
 (envelope-from <praiskup@HIDDEN>) id 1WxbbR-0007hY-1B
 for submit <at> debbugs.gnu.org; Thu, 19 Jun 2014 08:38:05 -0400
Received: from eggs.gnu.org ([2001:4830:134:3::10]:53865)
 by lists.gnu.org with esmtp (Exim 4.71)
 (envelope-from <praiskup@HIDDEN>) id 1WxbbN-0001OM-0l
 for bug-automake@HIDDEN; Thu, 19 Jun 2014 08:38:04 -0400
Received: from Debian-exim by eggs.gnu.org with spam-scanned (Exim 4.71)
 (envelope-from <praiskup@HIDDEN>) id 1WxbbI-0007gL-HY
 for bug-automake@HIDDEN; Thu, 19 Jun 2014 08:38:00 -0400
Received: from mx1.redhat.com ([209.132.183.28]:63568)
 by eggs.gnu.org with esmtp (Exim 4.71)
 (envelope-from <praiskup@HIDDEN>) id 1WxbbH-0007g8-WA
 for bug-automake@HIDDEN; Thu, 19 Jun 2014 08:37:56 -0400
Received: from int-mx10.intmail.prod.int.phx2.redhat.com
 (int-mx10.intmail.prod.int.phx2.redhat.com [10.5.11.23])
 by mx1.redhat.com (8.14.4/8.14.4) with ESMTP id s5JCbst5002784
 (version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-GCM-SHA384 bits=256 verify=OK)
 for <bug-automake@HIDDEN>; Thu, 19 Jun 2014 08:37:54 -0400
Received: from nb.usersys.redhat.com (unused-4-200.brq.redhat.com
 [10.34.4.200])
 by int-mx10.intmail.prod.int.phx2.redhat.com (8.14.4/8.14.4) with ESMTP id
 s5JCbq7R001173
 for <bug-automake@HIDDEN>; Thu, 19 Jun 2014 08:37:53 -0400
From: Pavel Raiskup <praiskup@HIDDEN>
To: Automake Bugs <bug-automake@HIDDEN>
Subject: RFE: build against multiple python stacks
Date: Thu, 19 Jun 2014 14:37:52 +0200
Message-ID: <1418345.G04AnGCbNd@HIDDEN>
Organization: Red Hat
User-Agent: KMail/4.12.5 (Linux/3.14.5-200.fc20.x86_64; KDE/4.12.5; x86_64; ; )
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="nextPart2316939.Dv9FyvaXUK"
Content-Transfer-Encoding: 7Bit
X-Scanned-By: MIMEDefang 2.68 on 10.5.11.23
X-detected-operating-system: by eggs.gnu.org: GNU/Linux 3.x
X-detected-operating-system: by eggs.gnu.org: Error: Malformed IPv6 address
 (bad octet value).
X-Received-From: 2001:4830:134:3::11
X-Spam-Score: -5.0 (-----)
X-Debbugs-Envelope-To: submit
X-BeenThere: debbugs-submit <at> debbugs.gnu.org
X-Mailman-Version: 2.1.15
Precedence: list
List-Id: <debbugs-submit.debbugs.gnu.org>
List-Unsubscribe: <http://debbugs.gnu.org/cgi-bin/mailman/options/debbugs-submit>, 
 <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=unsubscribe>
List-Archive: <http://debbugs.gnu.org/cgi-bin/mailman/private/debbugs-submit/>
List-Post: <mailto:debbugs-submit <at> debbugs.gnu.org>
List-Help: <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=help>
List-Subscribe: <http://debbugs.gnu.org/cgi-bin/mailman/listinfo/debbugs-submit>, 
 <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=subscribe>
Errors-To: debbugs-submit-bounces <at> debbugs.gnu.org
Sender: "Debbugs-submit" <debbugs-submit-bounces <at> debbugs.gnu.org>
X-Spam-Score: -5.0 (-----)

This is a multi-part message in MIME format.

--nextPart2316939.Dv9FyvaXUK
Content-Transfer-Encoding: 7Bit
Content-Type: text/plain; charset="us-ascii"

Hello,

I have been playing a little with Python dual-stack build (as a PoC for
long-term filed issue against RH Bugzilla [1]).

Non-tl;dr version of task regarding this RFE:

  There is need to build python plugins against both python2 & python3
  with autotools easily.

Current status:

  Automake supports python_PYTHON/pkgpython_PYTHON variable definition
  which uses variables PYTHON/pythondir/pkgpythondir, etc.  It caches the
  results among multiple AM_PYTHON_PATH calls, etc.  Works as expected in
  usual cases.

  To workaround problems with ${task}, e.g. abrt package handles this its
  own way, see [2].

Proposed solution:

  Make the _PYTHON primary support namespaces.  PoC patch attached.  This
  allows us to work with python like:

  configure.ac:
    AM_PATH_PYTHON([2.7])
    AM_PATH_PYTHON([3.3],,,3)

  Makefile.am:
    both_versions = main.py
    python_PYTHON = $(both_versions)
    python3_PYTHON = $(both_versions) python3_stuff.py

  ./configure | grep PYTHON
    PYTHON      the Python interpreter
    PYTHON3     the Python3 interpreter

  The fourth parameter of AM_PATH_PYTHON is not arbitrarily limited to
  numbers or something like that (so we may use more than two python
  stacks).  The result of this macro is:

  $ cat src/Makefile | grep -i ^python
  PYTHON = /usr/bin/python
  PYTHON3 = /usr/bin/python3
  PYTHON3_EXEC_PREFIX = ${exec_prefix}
  PYTHON3_PLATFORM = linux
  PYTHON3_PREFIX = ${prefix}
  ...
  python_PYTHON = main.py
  python3_PYTHON = main2.py

What do you think about that?  Could this be way to go?  AM_PATH_PYTHON
would stay backward compatible, current testsuite is OK (log attached).

If that was OK, I would prepare more clean patch (not so much $4s in
python.m4 probably) with testsuite & documenation fixes.

[1] https://bugzilla.redhat.com/533920
[2] https://github.com/abrt/abrt/blob/master/configure.ac#L59

Pavel

--nextPart2316939.Dv9FyvaXUK
Content-Disposition: attachment; filename="multi-python.patch"
Content-Transfer-Encoding: 7Bit
Content-Type: text/x-patch; charset="UTF-8"; name="multi-python.patch"

diff --git a/lib/am/python.am b/lib/am/python.am
index 5c36a2c..036a68a 100644
--- a/lib/am/python.am
+++ b/lib/am/python.am
@@ -18,7 +18,7 @@ if %?INSTALL%
 include inst-vars.am
 endif %?INSTALL%
 
-?FIRST?am__py_compile = PYTHON=$(PYTHON) $(SHELL) $(py_compile)
+?FIRST?am__py_compile = $(SHELL) $(py_compile)
 
 ## ------------ ##
 ## Installing.  ##
@@ -57,7 +57,7 @@ if %?BASE%
 ## Byte-compile must be done at install time, since file times are
 ## encoded in the actual files.
 	if test -n "$$dlist"; then \
-	  $(am__py_compile) --destdir "$(DESTDIR)" \
+	  PYTHON=$(%NDIR%_exec) $(am__py_compile) --destdir "$(DESTDIR)" \
 	                    --basedir "$(%NDIR%dir)" $$dlist; \
 	else :; fi
 else !%?BASE%
@@ -83,7 +83,7 @@ else !%?BASE%
 ## Byte-compile must be done at install time, since file times are
 ## encoded in the actual files.
 	if test -n "$$dlist"; then \
-	  $(am__py_compile) --destdir "$(DESTDIR)" \
+	  PYTHON=$(%NDIR%_exec) $(am__py_compile) --destdir "$(DESTDIR)" \
 	                    --basedir "$(%NDIR%dir)" $$dlist; \
 	else :; fi; }
 endif !%?BASE%
diff --git a/m4/python.m4 b/m4/python.m4
index 5b2c695..0d97637 100644
--- a/m4/python.m4
+++ b/m4/python.m4
@@ -10,7 +10,8 @@
 # with or without modifications, as long as this notice is preserved.
 
 
-# AM_PATH_PYTHON([MINIMUM-VERSION], [ACTION-IF-FOUND], [ACTION-IF-NOT-FOUND])
+# AM_PATH_PYTHON([MINIMUM-VERSION], [ACTION-IF-FOUND], [ACTION-IF-NOT-FOUND],
+#                [VSUFFIX])
 # ---------------------------------------------------------------------------
 # Adds support for distributing Python modules and packages.  To
 # install modules, copy them to $(pythondir), using the python_PYTHON
@@ -32,6 +33,15 @@
 # cause an error if the version of python installed on the system
 # doesn't meet the requirement.  MINIMUM-VERSION should consist of
 # numbers and dots only.
+#
+# When the string VSUFFIX (version suffix) is non-empty, it is used for
+# diverging subsequent variable generation among multiple calls to
+# AM_PATH_PYTHON.  This is to allow us defining multiple python
+# variable "name-spaces" for multiple python stacks installed on one
+# system and to build against.  E.g., when VSUFFIX == 3, PYTHON3,
+# python3dir, pkgpython3dir and pyexec3dir are generated & used.  As a
+# result to this, users will use {,pkg}python3_PYTHON variable definition
+# in Makefile.am.
 AC_DEFUN([AM_PATH_PYTHON],
  [
   dnl Find a Python interpreter.  Python versions prior to 2.0 are not
@@ -40,71 +50,76 @@ AC_DEFUN([AM_PATH_PYTHON],
 [python python2 python3 python3.3 python3.2 python3.1 python3.0 python2.7 dnl
  python2.6 python2.5 python2.4 python2.3 python2.2 python2.1 python2.0])
 
-  AC_ARG_VAR([PYTHON], [the Python interpreter])
+  AC_ARG_VAR([PYTHON$4], [the Python$4 interpreter])
 
   m4_if([$1],[],[
     dnl No version check is needed.
     # Find any Python interpreter.
-    if test -z "$PYTHON"; then
-      AC_PATH_PROGS([PYTHON], _AM_PYTHON_INTERPRETER_LIST, :)
+    if test -z "$PYTHON$4"; then
+      AC_PATH_PROGS([PYTHON$4], _AM_PYTHON_INTERPRETER_LIST, :)
     fi
     am_display_PYTHON=python
   ], [
     dnl A version check is needed.
-    if test -n "$PYTHON"; then
-      # If the user set $PYTHON, use it and don't search something else.
-      AC_MSG_CHECKING([whether $PYTHON version is >= $1])
-      AM_PYTHON_CHECK_VERSION([$PYTHON], [$1],
+    if test -n "$PYTHON$4"; then
+      # If the user set $PYTHON$4, use it and don't search something else.
+      AC_MSG_CHECKING([whether $PYTHON$4 version is >= $1])
+      AM_PYTHON_CHECK_VERSION([$PYTHON$4], [$1],
 			      [AC_MSG_RESULT([yes])],
 			      [AC_MSG_RESULT([no])
-			       AC_MSG_ERROR([Python interpreter is too old])])
-      am_display_PYTHON=$PYTHON
+			       AC_MSG_ERROR([Python$4 interpreter is too old])])
+      am_display_PYTHON=$PYTHON$4
     else
       # Otherwise, try each interpreter until we find one that satisfies
       # VERSION.
-      AC_CACHE_CHECK([for a Python interpreter with version >= $1],
-	[am_cv_pathless_PYTHON],[
-	for am_cv_pathless_PYTHON in _AM_PYTHON_INTERPRETER_LIST none; do
-	  test "$am_cv_pathless_PYTHON" = none && break
-	  AM_PYTHON_CHECK_VERSION([$am_cv_pathless_PYTHON], [$1], [break])
+      AC_CACHE_CHECK([for a Python$4 interpreter with version >= $1],
+	[am_cv_pathless_PYTHON$4],[
+	for am_cv_pathless_PYTHON$4 in _AM_PYTHON_INTERPRETER_LIST none; do
+	  test "$am_cv_pathless_PYTHON$4" = none && break
+	  AM_PYTHON_CHECK_VERSION([$am_cv_pathless_PYTHON$4], [$1], [break])
 	done])
-      # Set $PYTHON to the absolute path of $am_cv_pathless_PYTHON.
-      if test "$am_cv_pathless_PYTHON" = none; then
-	PYTHON=:
+      # Set $PYTHON$4 to the absolute path of $am_cv_pathless_PYTHON$4.
+      if test "$am_cv_pathless_PYTHON$4" = none; then
+	PYTHON$4=:
       else
-        AC_PATH_PROG([PYTHON], [$am_cv_pathless_PYTHON])
+        AC_PATH_PROG([PYTHON$4], [$am_cv_pathless_PYTHON$4])
       fi
-      am_display_PYTHON=$am_cv_pathless_PYTHON
+      am_display_PYTHON=$am_cv_pathless_PYTHON$4
     fi
   ])
 
-  if test "$PYTHON" = :; then
+  if test "$PYTHON$4" = :; then
   dnl Run any user-specified action, or abort.
-    m4_default([$3], [AC_MSG_ERROR([no suitable Python interpreter found])])
+    m4_default([$3], [AC_MSG_ERROR([no suitable Python$4 interpreter found])])
   else
 
+  AC_SUBST([python$4_exec], ['${PYTHON$4}'])
+
+  dnl The first PYTHON$4 wins here
+  test x$4 != x && test -z "$PYTHON" && AC_SUBST([PYTHON], ['${PYTHON$4}'])
+
   dnl Query Python for its version number.  Getting [:3] seems to be
   dnl the best way to do this; it's what "site.py" does in the standard
   dnl library.
 
-  AC_CACHE_CHECK([for $am_display_PYTHON version], [am_cv_python_version],
-    [am_cv_python_version=`$PYTHON -c "import sys; sys.stdout.write(sys.version[[:3]])"`])
-  AC_SUBST([PYTHON_VERSION], [$am_cv_python_version])
+  AC_CACHE_CHECK([for $am_display_PYTHON version], [am_cv_python$4_version],
+    [am_cv_python$4_version=`$PYTHON$4 -c "import sys; sys.stdout.write(sys.version[[:3]])"`])
+  AC_SUBST([PYTHON$4_VERSION], [$am_cv_python$4_version])
 
   dnl Use the values of $prefix and $exec_prefix for the corresponding
   dnl values of PYTHON_PREFIX and PYTHON_EXEC_PREFIX.  These are made
   dnl distinct variables so they can be overridden if need be.  However,
   dnl general consensus is that you shouldn't need this ability.
 
-  AC_SUBST([PYTHON_PREFIX], ['${prefix}'])
-  AC_SUBST([PYTHON_EXEC_PREFIX], ['${exec_prefix}'])
+  AC_SUBST([PYTHON$4_PREFIX], ['${prefix}'])
+  AC_SUBST([PYTHON$4_EXEC_PREFIX], ['${exec_prefix}'])
 
   dnl At times (like when building shared libraries) you may want
   dnl to know which OS platform Python thinks this is.
 
-  AC_CACHE_CHECK([for $am_display_PYTHON platform], [am_cv_python_platform],
-    [am_cv_python_platform=`$PYTHON -c "import sys; sys.stdout.write(sys.platform)"`])
-  AC_SUBST([PYTHON_PLATFORM], [$am_cv_python_platform])
+  AC_CACHE_CHECK([for $am_display_PYTHON platform], [am_cv_python$4_platform],
+    [am_cv_python$4_platform=`$PYTHON$4 -c "import sys; sys.stdout.write(sys.platform)"`])
+  AC_SUBST([PYTHON$4_PLATFORM], [$am_cv_python$4_platform])
 
   # Just factor out some code duplication.
   am_python_setup_sysconfig="\
@@ -128,20 +143,20 @@ except ImportError:
 
   dnl Set up 4 directories:
 
-  dnl pythondir -- where to install python scripts.  This is the
+  dnl python$4dir -- where to install python scripts.  This is the
   dnl   site-packages directory, not the python standard library
   dnl   directory like in previous automake betas.  This behavior
   dnl   is more consistent with lispdir.m4 for example.
   dnl Query distutils for this directory.
   AC_CACHE_CHECK([for $am_display_PYTHON script directory],
-    [am_cv_python_pythondir],
+    [am_cv_python$4_pythondir],
     [if test "x$prefix" = xNONE
      then
        am_py_prefix=$ac_default_prefix
      else
        am_py_prefix=$prefix
      fi
-     am_cv_python_pythondir=`$PYTHON -c "
+     am_cv_python$4_pythondir=`$PYTHON$4 -c "
 $am_python_setup_sysconfig
 if can_use_sysconfig:
     sitedir = sysconfig.get_path('purelib', vars={'base':'$am_py_prefix'})
@@ -149,41 +164,41 @@ else:
     from distutils import sysconfig
     sitedir = sysconfig.get_python_lib(0, 0, prefix='$am_py_prefix')
 sys.stdout.write(sitedir)"`
-     case $am_cv_python_pythondir in
+     case $am_cv_python$4_pythondir in
      $am_py_prefix*)
        am__strip_prefix=`echo "$am_py_prefix" | sed 's|.|.|g'`
-       am_cv_python_pythondir=`echo "$am_cv_python_pythondir" | sed "s,^$am__strip_prefix,$PYTHON_PREFIX,"`
+       am_cv_python$4_pythondir=`echo "$am_cv_python$4_pythondir" | sed "s,^$am__strip_prefix,$PYTHON$4_PREFIX,"`
        ;;
      *)
        case $am_py_prefix in
          /usr|/System*) ;;
          *)
-	  am_cv_python_pythondir=$PYTHON_PREFIX/lib/python$PYTHON_VERSION/site-packages
+	  am_cv_python$4_pythondir=$PYTHON$4_PREFIX/lib/python$PYTHON$4_VERSION/site-packages
 	  ;;
        esac
        ;;
      esac
     ])
-  AC_SUBST([pythondir], [$am_cv_python_pythondir])
+  AC_SUBST([python$4dir], [$am_cv_python$4_pythondir])
 
-  dnl pkgpythondir -- $PACKAGE directory under pythondir.  Was
+  dnl pkgpython$4dir -- $PACKAGE directory under pythondir.  Was
   dnl   PYTHON_SITE_PACKAGE in previous betas, but this naming is
   dnl   more consistent with the rest of automake.
 
-  AC_SUBST([pkgpythondir], [\${pythondir}/$PACKAGE])
+  AC_SUBST([pkgpython$4dir], [\${python$4dir}/$PACKAGE])
 
   dnl pyexecdir -- directory for installing python extension modules
   dnl   (shared libraries)
   dnl Query distutils for this directory.
   AC_CACHE_CHECK([for $am_display_PYTHON extension module directory],
-    [am_cv_python_pyexecdir],
+    [am_cv_python$4_pyexecdir],
     [if test "x$exec_prefix" = xNONE
      then
        am_py_exec_prefix=$am_py_prefix
      else
        am_py_exec_prefix=$exec_prefix
      fi
-     am_cv_python_pyexecdir=`$PYTHON -c "
+     am_cv_python$4_pyexecdir=`$PYTHON$4 -c "
 $am_python_setup_sysconfig
 if can_use_sysconfig:
     sitedir = sysconfig.get_path('platlib', vars={'platbase':'$am_py_prefix'})
@@ -191,31 +206,30 @@ else:
     from distutils import sysconfig
     sitedir = sysconfig.get_python_lib(1, 0, prefix='$am_py_prefix')
 sys.stdout.write(sitedir)"`
-     case $am_cv_python_pyexecdir in
+     case $am_cv_python$4_pyexecdir in
      $am_py_exec_prefix*)
        am__strip_prefix=`echo "$am_py_exec_prefix" | sed 's|.|.|g'`
-       am_cv_python_pyexecdir=`echo "$am_cv_python_pyexecdir" | sed "s,^$am__strip_prefix,$PYTHON_EXEC_PREFIX,"`
+       am_cv_python$4_pyexecdir=`echo "$am_cv_python$4_pyexecdir" | sed "s,^$am__strip_prefix,$PYTHON_EXEC_PREFIX,"`
        ;;
      *)
        case $am_py_exec_prefix in
          /usr|/System*) ;;
          *)
-	   am_cv_python_pyexecdir=$PYTHON_EXEC_PREFIX/lib/python$PYTHON_VERSION/site-packages
+	   am_cv_python$4_pyexecdir=$PYTHON_EXEC_PREFIX/lib/python$PYTHON_VERSION/site-packages
 	   ;;
        esac
        ;;
      esac
     ])
-  AC_SUBST([pyexecdir], [$am_cv_python_pyexecdir])
+  AC_SUBST([pyexec$4dir], [$am_cv_python$4_pyexecdir])
 
   dnl pkgpyexecdir -- $(pyexecdir)/$(PACKAGE)
 
-  AC_SUBST([pkgpyexecdir], [\${pyexecdir}/$PACKAGE])
+  AC_SUBST([pkgpyexec$4dir], [\${pyexec$4dir}/$PACKAGE])
 
   dnl Run any user-specified action.
   $2
   fi
-
 ])
 
 

--nextPart2316939.Dv9FyvaXUK
Content-Disposition: attachment; filename="test-suite.log.xz"
Content-Transfer-Encoding: base64
Content-Type: application/x-xz; name="test-suite.log.xz"

/Td6WFoAAATm1rRGAgAhARYAAAB0L+Wj7CWynm1dAB7uKgoQ6nC0252En82VXDas/rGjNU86qWAd
GgLw8acYjj43ISRbDaLoxVccweBM75HHiUU+xTOFAksbt0qsNUEtAkyssaMVyjQlvNcZoxGB2Een
xi8N63h56sagsNwDU2uHCdXdGHbqRR9tbytkS0jZJhmZc0BhjFFbi9rAnUrU49pnf2W7w8E4BD7l
3xKkh1UGpPrFuN8nDds+TcdUe/U43N2XeJQqhQhEgztMWWunFSd3cxdBDMsprqEdo5i5tLTGagQ8
zffEH80rzPMOs6Yp22DnB5ZfCH6hJyKICe6FYuA6ZrEj4USO1NRuVUEhjIOke0pAdu71ELtuJBY/
DzGwbJ2QE6nvHA9F7J0tbQuytQP/gzUhf7z+8OA52x+Iyq20deTugnmuEsFL8/WK7IStFwi8W48R
VN4QcnmQijCE9Pa7On3HUiYYtt5iYuqhIaTdXNT0/9cxvz2pMBs3NuJxn5KtH5n4GSoTWQKoiJDD
31RGucemAJbMMxcYZwhOYRXsKLbIwb8H37m5nDIOmc4gUtT1sxQpqWjywaVhh/NxdotfNtdjX884
eVUDXtalbEWoxrp071rdRaUl6nXJwTrIwvYmUPbed4+M3tso3TOM5ilMgEcnGr0fD612Z54TDDeK
Lp7L/VL9seuBszJYwOrmE6aWonPxxUaIf3ip/cazNLaXQhVdJxdOwk9AoS3OjTyL7kL71TxFr78d
aRRRuJ2Y79M5q3vKjwuRj+Eov9Hh2BjNgAWbTmnv5tH8Nao2d27QLwz8ghyoWpyg9ogNGZ4ciIsY
gE47TcIV5mbJjlOJb8zke7/E4mz38BxMPCj+7mzID5lksHk4QXmszfeR1N/K3NBDdYWrBjSnNjpU
2VtIbK18EoB2I2am3SIEoSZpvCJYWcWgC/wnDY+FUMKJfOldT8edG1LLvKEYAghhOA0BfhK4RoE3
vmkAYXsqtnvRDOHPd1I5oZunXSHtQytCv2aVNvN95k35s93BJsYo3zjjOZXQ7FcP88ijrZnk0X15
0TdvKOZbs/Glzj+dYAdIoA7lE5pz5wodee3ocMRHr0yKNBMUkErbOnu3MxovoOrYfYQ8JKh5b2YN
YQOifPAqNIZe18NxCrJWkugBiXKQj9XnEepBTDGJvUfKx2L7VC6IHLlpgUgZdqTkRBWrEKDKl6AD
mpvIuDaMrxkXb43Prwx1N4NrQ06/KiY1RUEb3foQOmYTL3JkZsQOyAeOwvlBCyb6A5vClmgTpHmv
vYjq53EGy/cFx9cK6Lc6OD6claSlsRvvkVqZQmZPVywyldUNAPhXg5IxxaVEnMT65KhsUqDsB3C+
BoVQK5D8zCQtQdzo8pBgNRaH6+no/hsVDKUKU4V82zNP6o0ILLSsPyKw2KaVltET55wqPl0wxgzZ
bC2qkTMaxLdR4PmNORBUs4WUAS7Oon7V2er5aTJFsLM1TgnM5YmMHL67FxrcqvHEcIjZoCSnKZSM
MNae7WxHDIzX5R0C1K6Zg6C+Gtf4geDIz8qXhmmZjoIid6Lqg7hI7Dq5PFHETmiTkG/a+EiTvmGV
T7NWo4dNpfziwFIsvP7VttMbPQ963W2JB63vPnO3J03t0CItB4q8bSkowEL/arIK8z2c/WSbPPmX
qLYd/qrZqvLIhrGz7gvm7mMLjypMkuPCJm6M2JvvroKnyjYixKjAJnWV72EtXQM0hxzn4K9vXcCb
xUwV6idNku7710zjw9Kij7Wb4Q5unQgKAMnlbtTnM86dQc3dT2TZ5WRNXPSg2x9TGaNktTTyNUCf
HgytgTsKe39FbmX4QVlnOKB2Yeqn2XVNv+EImCGMLyjx000bm6gy43zjj254GVM615DSW6TSfiqH
3/yGxjlgHQS63fLxar7M41b1GUAVC1+gEl5rlZewzReqLUNmJCp1+H+CfAXFThMpqKBVnW8/E3qz
d3yQFl3H7/bis4SSozf/w9xBvMfy0aJwCgh9bMOiVwR19nSa73cpKuRCi3Ism1H10TmjYEntCycr
RGCArKCxDbdT4UjfET+plqy4ikyd8160hE+xsjsW4vZiWb1son6LPgz5gXbcqnDd2u2GoF1sOMKN
DQrKUF8Ra10YJBbUjy1wbsZAEl7s/Pb8v9ZKckaNT4LPp+f7OG3OSHokq4J/nlSfB8chIFovJxr/
HbmGfSw3VQOvLQuYw68L7joZZAthvmDBTsl7TP/JRrrWqtDiLNdVgZ9lDTz7CBtehi6Pfpo3h4/P
z+GVHzH1ILYvAGtCfvI12NL0ihlPOqjxvNfBXrk6Y3m1wFkSZiuFcCVuOZJlRhRekJf+Ml9f/Aek
TZusg4vfH53zweDqOWmIWPOVzIzMcKX7w2yND4CVQWwirSFeEPI/7MEzQCzPVc0nrbrJtu4nVQXo
9HKzB1ar6cwOkVgDQAkPIoZTpfqDCzJpWl9AriP1d6JBJ4u0vFn92ANg82Z2Mbf+PR62dzm28BYl
2ujyLFJ4tielmTZBuwty1Xd3Muo5VRuADZphl5ANHarMFAs+GfPWg3AQrEgaL+So3KyWr/huY94J
M7G3PdW4cJT4bxoFyJDNk8SB0MavL+fqeKT8eCPMJsnck33P/NorkZ4EewIVLo44F4HKWRlrfXRn
1bHvDsd50t7BKF1OlJKZG9MASgN7wGaHj27zFkGuQLFyRLytpxqBWiNuClqLkMrm87MbRiAV3iLO
AyaZbRAtVzKzRYwu9yNfJI3RBTpDLTmt+S13DYShdB9mJqJa27eXLVHEqF78bt334Syhske0cVyw
Jz9QtnBIQli4SuUyK2xycZ2fwTlvMhSxM6la17yaafEs695eYTNMgEA6xFMsSNcJO+pfyalmSxdX
31YqTDAjG1arEcIxsZQvlsvfhIuynefeQ6raYjz8O0/zE9T/fXSJI9LgNm2zAE4WGzrfls2twDSI
3dph5ODkWucBy1oiY79kQKN7KuaAqWyTe5/YEVDUltfaBEpG2pMBVXf+n+dAlcEObf2xaSs6jzXe
WmfunnEIOTSQsXsqdoO1X/emFUAw4AsuJI8AkfVSUa+OOgpF9GrACN03Rrxiq4v8pzy9UQnjQyJG
txHvKF7f94guQODPm/ZESPdj0idnOKuHArD5YQM4GH/RkozQENfJbD+eaKmwpsZ/4SIgYTsPz/oJ
fB7d664jfYr8t1UygGqcfT8lOQnLxXFMbLxRgJ+0DrWMljwqt0eb6i+tYTxaaIN5nFVimRWuxC2V
hOdsZ3aB1FQfm5IkxpU0WHypNRSFC0NKxuoDrT5PHJF0multNsBZcsIqso5zEnBSKZPAVnjE6VPm
kKnGcEmO0cBmBJ0rcdAdqeGM1OCpf9kRaFXGVuMtPrgeEg+c4fPPrwIFY0NPyVbGGszin1XC8QRV
KS86y88L5vBuntYSg7Yob5aUI8FNuG3p+1J1oswIGGChv89k+mKwFqNM24mAmvDYX+o8yOCsn38j
zhYphs/+8jUiK5s2hsI4bgDjJf+wRwPBXbbhxFmECPrejbrlq/Q+0kg4A5RL0CDI8SKQz0lkLXyX
ZHne3L64Gaoznx+3pbR8LEwucC2JYqeeqIV8KrMEtYIFOpQZiywO6uoT6YMvYryTzyVGDLnu3EfM
k3pF89XU1WpX+lxFSXAy8MMulJ/qAQOdizJXa/oCZimTPad+/XvWxBePVLN8FmoJ/hT/h7mHo9nH
kON5zEuPPBGr2LfzFM9ne/D9s58yTSTN8M4l6uD+sDb1RiO7do2b1eGBM6mkkdDUXvAoTJe0cXaj
BZU+6b5VK4KYygfh2DdnqqK4Zspq/ICVRlYh8XqCMHtBA9tHSzKUV+qLOtWlmwvcgA+B64pwZJEk
Pv6l7XaqRmgqbbVfuUQzdQQC3O9s1n62TCiJONLp8GfuyvaL0LJOhYpDTnLi2C83lNIgLT+2AFC1
p6U1GCsl/GqZcN5iXjsj1eKtavyrv+nM2hTFcAQR9CFINap6ANyBrw12h7ndsBNTPDMLXTUvYtVZ
UNTGLGKn+ic/lKEuNxmvcVxshpvkD8r5Pdd6TPzoaPn4eGv0Co9ZjC+uBI3VxyFROYqfRGVcauTW
+PmhD4jQXwFWLv4/CNpxNo/yvtqJPSRw0SoRlSlgAoe0utqZzrBl8EcaBzfHoUfRmWIXUud38HZ5
4XLddWMzPbmpw0jTUla0fh+LZPB8IhxqVwERoC5PrDrBdfYhZ92cMaxVKhK0M9C+s7r4Syiz58cI
AO+xbn3lUbwrQySe+WdBjbQPbm1aQgMoi9ZNcZreA7lF2wMLKKCj1tW2/mMoyyD72IsaRW/3xJnI
wG76S/74BjgP7yB7aM8JmLdQzytEoRe23PMZAV7znWDA2CP3ac9ORWVT4BNBFwJ59f7CDY0k0nlF
UsLJu55R0USljWyoE38w6AFv42Cl1yQPrwKUmATDaOFbsSU1GOdQAsUUgjXwO44bl+HOe5SAmur6
1P0nQwjRisDHiF2IuiUGpmlfTTSqNrZOsjbz6L2sUiK6kNx2SvXB77G9Dn53/7kP/TPbpVGeg+7L
7Xs9bq8GoQgPC75+/WXFcrar7ja4iVG25vvLBFMxHdboQozYd8VNhyEPgZjfvJ7Awkz8plM4BN+J
jZMTabpfYl9MRuG7fx50kv87IKpOxDAZ/oFNoiiEa5KAaQhPB+Wt31xPhPErPBKllnNobJMvg+pZ
FKsglX0dZeu0vL4SSkf7u86Rg0sc8dyihtyai8OoFQMgTms44JJJuOqKXi0/afyWu9BPP4rTwyo/
/+OQI92lSRg7voICDC+5NZaLoYK3kHYMU2jXY876pwXXscBZmvOKWfdPQiPhlvEwOTUpm8CBC9Oh
42iwcMoGi5Q8oECoTShwekZU2PWJYIQENA9yETcrNGaXfTo0LBeZr9ZVut7LiK5UlSd1AsZj0JgE
BTFvuRrquxznM1AYXqshFlh1J8Ncb6+9lzRDxzgLuWIZ0QdgYIA9VJvTtcyDlQ29DYz2Eu9sO8+x
/fNxjLfaHSb8RmLqmvba+9Nlg/DmmZa8mr7+i2W5F0XRyZOEU+FiCZoYfQ9bRoyXaPQ/sdMBliw1
klO0+c93m2CoCNHNP0ECs+TA0GjDc4Kk1aSVAXCzzl95AQaBRr+HBbv70ZO1GPsYv7WXPibq2KbO
FHxTz/ey47tRnWvo9DpifSqwSCHgbFBU4pW/9ZijyxTPipIc6CoMNFUSOmkTlpCv4GvsuR7XyAcP
xQ73/3Tn9n2E7FhiT/TvtjUOZ5+LVFKWFQLZkEK7hfjqtF6xJk33RU7AG9MrIv1Yb5rFxD17qy3e
/MSjp7XxIaTTL08cXK81vtni+1qxmHhwjHWZSt8hofBPa0/n2tWRIb8COPcnaLMNardfKcUMDfHo
zs1gcN3AcfWqbPPKJa5AVEgFy/F53TcV0pKkgcHga9AQHnsUsJEzOd0HNxAdmGouxU4uTACO3uaa
g8c8kPoERHkBz8Auhtgz1aRQ/ZNVTPs1L6H2sbv5mIlxk+k7qQibY+RpT+CpJnqm+Ra32z3fFFoR
pb4l6YyVFLOhMLF/0KCLio+4GlDo5vhdpg4DZWzy+oIXItYjNj2pCc1VXtFfm12QhYyqUH/xV2bS
durPivSHmqadnP0BDXW5MZVJzGCJfo1CSUKLYt315xJzokB4ZhqO+71cl934A4l8naZoGOv9E+BR
cA8DLCBXKC1Mr5elaN1Yei7RS0E1O2q4Ljt+H0AdM+G5H17QFon4QKwJv8IFNkA7kKd76y8mp2l+
dy5W3ryoRo+wXxuIqj0iGRUqKPMwGVIujWb8C3qskE+I57DOIs5kbbCCZ8M29FKj8HQUJyylR5up
bla+QWBi2NWqjkwT45sgFCdyYSA+p51q7UePnt6c7BlWpJ7c7sHOq5jrfHIbkTxzZI206ydqvR1Q
LybCCS3ZTkdIPLRubeKuW4e3xZuo11EdcCTepwZk06Uyz402wgcGqm2PQ1SyCDG+0jBRVcAX4+/w
hQGQHrhCGPvsEs+5/E00+0qlqUVhFF1Baua2cH+hOWz6/oS7LX8C8y5WEh//A+8BDkSwI7qJYUQJ
vmI2FR4MqpDEWlVnEeiPjHSFT1N5+WDSEQ6EZqnwcrdDuC9kuhnLvDsjtlk36RBXlNDHsSoY5U8F
o7+O3iq3JGJeGeJT95cHv8+JRF4Lp+sje1COSlCnGkQN+vblre+8Zgw5Ppb6wc2X2ec+DaZZjceL
Pk9Ib69F+h7PjcNvHIs5zfuoy7Vl2wk+q5MXWxz/dqhCrAaiHHKjdWpU+3X9Z0GvPqcGbjHxuEia
n8AJ593mpXXNbPXDOA0GCdchNdKUYxSKlIBKkUcFyUbQkf4dirKavPLhjDQoOLO+CV0b6BJJM3g0
EraHguCEEKpNFkjZn3F4urnzUzt0vzuak20TeAznP7JpUIVgrtYLR+g8XMOnWUObCrl2y6xIJL20
mUkJ+DIhGTmMn+CefuDFF2jx/DZxMqWiclsCquF8bz4gXnM4vR1cY0tfhOBHz15TbG4aCyjwhx/l
TrbuX09W5F3Wnryp9ZJCkqmGSq7vZDA1wyX5zUSP+gSeVRlRI4iPfWGjIcfTe7nhIFvYbVbG9P2m
T1/E0oAOSW96hTbrmtJtsuJhHAoS12SkeerXLhev3WC0NpNvyZHYOv1838qIodIl3kciiikdTdxn
+pHbsBHJT+UZcbvXSJJ/nhdNKznxpDqH4P17l01vqx14/pWrPc4W3zdNn2i78BnI50Xlc6QtBm2B
6nNgrFrtv2JvcQL3ISL+97d8PVYf2IYmudJr0vXL2VeL7+wG7Wj235+7wkQx1d9qFq3zaq9ZCWqL
RQIdC51cOhMPFaCp5YliiDBOL2UVqcz/YRKcu12Zc1ySHtF2DYKO/XZAdQBip1X4WbqnHrqtDj8H
XRtch2f0EdObW9IFymSBfDrU0KqssVDJYtY6iFRBoVBzhFDL8ZrOraWqF/XVIpIHOVqkHU1oVJL9
O/d17XhaUHvuCt8twHyWhKHGcjgVa9Juku9CcjjwWlYk0GEusAWHkfuu1iHQvwAgKyHmxxJoPmOA
JLlRfTzG5f/7AN5h7fqSpi0LpyuNz2hrr3gxX1G85mwDvIgVkIXsJo9z/ydkT43ZGwn0MbzHvPOr
TrKGxV2Yqi2cUcXqyXfHQrhDzv3OMjvFuIuWdKcGqgpE9RrQWoGoWwBtbh5mqIyGZ+i2Jtcho5HN
MkwIEBwHTRlobTCouRm6AahRO84p/OmKeqLACLXOf8iN37KyQkNHAjCPORhpw6vqhALkevfDKy98
jA0SR5FeOp1AEm7DpSMkbtvJ+PxewewXdvFalOkOFMDn6BDJOPPVYJbKRN/FOslO/OPN6x8QEHR5
aNZFDdsbNCyMwxTbbisiJh0ICU9GYY87z7cGgeR02j09AlMEnaj0VqkIRHrSZOxMEyQQKy1P23pr
pQzrvEQvYl/7mRCBiK0BDKQTPFA9s2tfraKRREjngnC8MfP4yBxdOZkP/pgGcQ/L/KQ9/Jg5hDbd
RMpT5x8B+fxsGHyZvXFHQ4+tvAGM7Y5vBosid81iC4xTgpojm+xB+jRZaD26xOKchcys34vEc5F0
sHBQkGmJdLTxdanYtPacsDfTZuvi8GudexPhnDSgU10E4meSwAX1NYzQY7+7Nuu+PveMvEshmWr/
WH/w607ZhHZ3AIBzQnoJhmrSAil4cx/AORR3UYsUYe42HEsxR0UcCWxKOOH32hqW90gQqqKteOuZ
866pvgtsM5CjlLPj5WGLAAYs/SY0pizGc5/fLJJB1741Lx6IJqia1tIfuNNAd3pXRSNdeFf6sMiL
vZWXSHtg5sxEJMcPRLI+OHWhTwn4ISPlWjINm6QDHA4QjR0CfpeMfjK02L2C7Skk0WjiX/1JpGEa
SSsu7OLtJhkTGp8PWbyt8rmLJx+Bl1P0/d/BsH3fcRbwKtu5VSOvYNdaicmKHvHQ6S1QOBlRTzN+
pdGG/DmzDVONVds+RMCnfFOfwIWk9anS1RxtmZ8M/kTVCO4OHd8FjSll3hAvpjN4DCJm6+GPAPkj
+cSeFHLI4YwdxyR4BeLfV3P0SMKWTtzOSSUTVvVOxi30cINrfXAp+K71QTharv7576Hrp+PA0Mxd
o7z7LAx/LzsfBvR/MhfddPmUiyHSkPri44lFzcfea94gkBuVQfSTXQpnDOdhuCoqSIhr5xFS86gK
F+qzc0nSQEvLGoCDUFZYVxp/tYDZdK+g8/MnDUqAg6WZbtr3MbrKWVLdaQIr2Mx7lmGLf40UEduI
85IpE/6CpmGRE21SXrEOWIIeDfNo5R2dyXnx47x6JH0WBd5FQ9+/qdpXMy7MV+echJcfcU4wc2u6
ixG9hglPwqfVgcXn0C5AVvpTFPVW/Dp2ekwNznnkVA4a63cXEu090a0LxkRwJBjFt8hNrpi5owjd
ZC+bNqY/uQ82PZzLoshjnGhASakvzTFrD15LOCQ97k+H/pfegRq+6f0rD9IAZnI0kAG/DPXKZAgt
4wVGNoLhLHmwCYqV9zcgTG+CeUbRv9Wegzx92FV9oVUe4VzOIJsx5bEEmJRES4OQcGdG9PZU9TK8
2dguwmxbhZobXLC4NTNfpo9j2Oj3q25vi6lOgQvy60PPnW1OPkPDlnTiD5AiJzPPwqa9IqTD9Qgh
fROonEU6SH6ZkyVi2HXn37j+Ti5pMk+v3ZjM4igaR/t2gXeipy0BnFS3fBhM6YrsOUNZWqGo0qza
NWpAfb4CaSyD0kZTJ5iz18UeCQLpMTrVUD/nVnHtw8cU1FocRVMojWyTn9ZhY7eJPm5TtZkFinHD
o4S35gnzzM/q4tAJ9ixBsktcJX6Q5kHfFF9BCaNVdJCxTjyCflOmj7No8MjHVPrtFTDHk88x6pAl
gJBs/egUp3ZKWt57eK7/UdMz/ibZApcU3cU55ewjsrs5veY9mcyoD69ZYOQ/9dg8rg0VReeVXKJ3
xkG7cwW86gnE2ZFHdVNP8jAXxQ0nWqi1jEaARM1gHdWHcW/i/Bt0fgJvyBCG8s1U6nJH93uSxi6+
ij3AjR6XQ+c7tZvzobbrM0sv989LCgQLAyB9ObGAlGs/N1BATRnFr78BTKdY/cFx1nnJOS0fSmbS
0RlQxX5IhoJPx/PEjnxwppIqEz8F2qekHIKr6VkPfvOwfOxtrAs7/BT0Sl9OMfgYqZoK2ipGmg5u
c8jax1c74otzWVm1xYOsWJD2hg+hTXkd395LsnQ1a229YeqNIPer5maukqdxSPeVOEV9iYyLIgeR
ZOJgMLBwza5e7Qzmwiiy0ftkVGEq9xO2dNikmn21Sg5DzN7UE3YPdpaYo15p21AF0tzZs9J2XXg8
G+TJ+bRheeLRxGfDhcbxNno6nCE7JK0NtpzBrmvOfr9KeWLX99k3KuoYU2epYaKHthvc/kbJ3xSm
qdOIagfkk0QzW/ISgzMvEuyhwMx3NjRxYy+KuCndBxR3FSKcPSF/oj04fnE7av1ytVajKXFGn3IG
A9sVG5L6vOnocERcgFGVcWeNGWMT+Yo4a4UFtIMSVxsuXjy4Zam97t6/fe4SsjoQOm92UKkCKwge
6NHU/DsxZgzfkHepfNjC0lmp64IpCuxiy2ZbiHA81Gm58Yol/BsJFjeWsqKFvr2/nTP+WL3AWLA6
nXqQSy0g3KjWrr4i72ZB69YnFdMjrMTQug4HlkLmTp997I3DVTdV39qtYLvMIi3ynt3tI7guNoS9
IIUmbZrhnGG0kcS41wE5H+6ML57NFWbNQqiiG/e1vDTS4hJbN5TXHexNjfmjDw3XLs68TE6ytWmo
GgxvX50xKrOy2eSdQcIzYNxAXDmy0S6H9/WhQSs8RFrOFK490XZTbaTAl2NlKicWEiqzcLjZy3iV
wCAtfUe3rsE9puJaVISGWXxY+4Wk+7JSqlOtEy0TXoY2A5RMcAQv28HxkUN0e/dvqyUNzXO52WmX
a16CpQerp/T8h2yOzp6+ihorIY5GGEfb2llOKsfZpz5yFkyUvoR//Y7qnI1aBHg9BHrGpuWRBfIq
r33XtknMCwu0L7MDz2XhR3SDywtLiOJlR+A9ZhmZxw9nJ9eQuenEl/fGpvXLfhPsR3K5nIwNZjKh
ZFiUkySIsZRZrxEMnmeka8sWH/qZQdCQVlEy9x5shjEJQSvTjqSXXaZ6gvWKYf1LkbSpbKzgPtz0
ALtHV/uouO77ZSFdQBbEhG84TW14zozoF/VgDdrN8NrvEfvuAFeyuhO08fcsVIzCYsq9NnpX17bR
q546OFc98fpam3dvSLhwdp0yluE6oeZAAKpF28iestedri38XdWrh+/Du5emk4i0trvSRjb54Rd0
maV1Fa8joEKrkhZqVxzLps9VSMDTF7vOfDE3+0Hpwy0alunthD6ApZCFlGP+uFVLiBBGMntrN4JV
n4ou7rd3usy5JGKiC4eyUeJwtikg6rLCZvuo+VO9myrhNjs3LZDUziKLfXDpUTEqQFMaVelHm2Fx
A3jgEX9woBo9+VC15AgGNj71wUgFV17No17NSdV/c3phJe3J+oxyZkb2Vs9mUGPycJji4g8Bukde
tk3v6ovnWLzvfVduc65BwCpzrvbg5jEUo9NA1JVGoXqLwb7PYLwC6wN0QJZ1cuoi4ttf4GgYr+mu
9nuP5QxqIOilWQaYm7q/qhzqz++YIVlo0cdOah4SUkdHjuiN8yCeK90jsvt+qozBNHiAWwLZTmZV
5NPDeNFQ82AR9s2SRFXSpi9M/r2KCC8/4/yW0pzGQINw/aaDqutfH/ucP4NS3KqhGGBbI71Nq5WP
l1+Ozy/gnoopdiZhPm+FhgK/azf0VFLlhrf4tYuXamzkhBDgqTZYD34dX1sDf124VxjH6iEoavRO
y+L3gwImI6ZtVwLk7hiMUHhSfNB65+iqJz3AZJZunJHlcqCbHCH2kPlTO/8XI63AjobCm+X9iupi
U4JSQoASkI5Wu8pLR6MgJ+U/E92hch1J+Kcoupl6HpXkKC8MJP0lOxZ1wH7/gWl9muOCmMb8DT4Z
QEY7jyOxOXkTx4/er4PTsh1j3jZto6D2eDdDvplnwONXhwI8UJw5pizjNPQ1Jg2dotl6ndcZlodd
dRL6lsZ3uXG49swGYyURVxtd72Six3q7/6FOHuTJ2eoIiRQ7eAW9U2kjCDRMnwlDfsk5mZSzHtNO
3HyqZnJvJ6TTvK43H9VRI1ahcq/dlALBVJzcDnapaiuc4gSyleUkphxqCpNMsAO+LOahyP3Wv2x1
UciWcbrtTycxV2p6qqicUOvF69sgCEVODZ1ARH9EQj498EyisPp61+whPWYRl+2iTQaBgjxQx65Y
fW49zoQkUnykF2CPISxKze5L28WUhpe+nM1XKMOeapwbiRfFdAOPoGhr/5lT38Ulmw/uSRzqBeoS
k0ROQKcDT1LxWBsdCNaJCopZYAnFnzhFx3UwsWxxVZAMj5GzUqeFzzGmcDkArAOk5taFYGjjR/Q4
UlGyYqfLqhAhpkVFVGizpRIkNtwbyWaf8j9P4tDhCVudY8tNfDSc1ZfXB/9wlLDYJs18T/Bol2fm
UE8vUDl7BYoAw9MKs/uIzoT5FyulTVWO2EDU4nt1U96UJg5mOkVN05uYQ708J8W8JnMRC4aVW8Tf
1f5pDv6CGk0Giif9H8qDJVybzcVo/NtGJE/CQFRmtymfkpeBOsnrxiaYcDMOQojWoP/gSGfdum1A
XVzh7v39VwOIfJ9++K1OlHqRmp/LoKlcuMm9d5krj9T5iGI40EnCsQLfkuOnb4HlTECf8ANsnp3+
jd3Ma0k9ZlmwEnoxyXjA3f/+fPV8wLiyJQlPeBPGxt2kGB19dNZHy5itamMIOrIBTm01NlX2x64m
XnOozYk2SGH2ai2gv+wZ+8hPJgKv3l3wvwnPDr60DmRQgnKJ6lccWIkgkF0eT3H43ROj/nLeIPD0
2FzqatoSIlB3Px/b3XR3YmP3JMA8jv9ad6oy3Tf/bgOTTuKzQyeB7b3RQXBvCypQ3kcTs0dvwZzS
SDXGrOIlUUSPnrI04H2Wzcdy5eWYqgPD0c9pZViJBd2jWcT4JafJslp3XdLzgKr0APM0tm3v6wm4
ZoV3heRGLJid9RJUnUgfMcYDc4x3+dMaqnSMVtptLzraOj3wxF+Q1pnkX10uN+O58IW0ogN0Lj/d
WcCjHTzbHJqCJ7LaQPMO++2iHmEbmKS3F4np5H5gLBfypfGGinRowT8oQjyRrugBw6RBPQifpKuh
fl7sDZgKAfNmhyXdpz8nsjWxAJkIZrYyV12UsO8f506NGRWzGYA+So4IK11eRlWqwlZ3kwtKeec7
8qniw0c74rLWGF7o4eovtzXTjqnBf3qjdpd7F9Zee98ibDW7Issv/P+IB5zqHsaplPdwuX+D1H8P
Y/SZz9HqHHmx3INvEf+s1oOAxtYNpSIi51IOyGRC1XoOFOZVmpqeD2J+q/JlxdXaiX8P0XgpHkfw
I4b9oGsom/3+xnf726FrPXNh34aKIT2dpUvwZ86C0VhSKT7G8O8BxOgabclIXY7+Hje2MHuaMRNu
wJs4JqHYEnjiRSF0WxzuYrx1EVZl1SBKXDQIoc6DhrGYJSA1uOJKcXEawywAJrKZP7SfVLYrkS4F
wm9yWnqzYs6oW/TZG1Yd0RBavVgusySJRVmReqB0W5t3XWBU+Rzn39a5512HnPNFv0fOaksaqCCq
Ilr48C1ikzSCCZNTIW3aI3kYwJAWra34GPabxUc6EqYLDN4QrX2bFLmpmP62aCtxsr3x1Qldb4Q8
YnHKjKtEoqaS/+Mzh5xMhY6QGgUTIKcB7+p79OjB15lCVfU/YN0FITzQGj70hB7UiTQHZDM+q1K9
2c6n5C+PHX8PVtGt8ym4EbUe2ZIvCCYmX2GJ3MzRG1M5t+qaYMQ+X/M/cs8VgI17khQLlS09ZLl8
hXvWSc4sgaw/+yUozYjpZjm97wUwFFasd9Khb/VrEIKZB0EapZfO9npuIilZVkWPJfq8NveikBEK
GUmW4/+cq8SgWNEvelDFvpUaPGTVxmOkTamh9qLb84nzk6/mPgHcOeVn6CmrqdnYyWtPR/qsWHYS
r+/mnlDaUYKnhAxkPJp9ggyyPxvvKqGaqciwTzGyy0f8UBNpipTP6CPlYkzKss7ME+x+rZYnSpnQ
t0PQlJI/Pf1BOhEmiJ+Gy3cWUkFxzl9mcj0HxtFerlMVOj+NbZtisgwh1XkOFONueAtiZwBVJsqn
LlBAfaHBIO9iV4Zhc8h9DF0pbNwiVVW8bxqsPf1KFBJQnbblutH5Azmvtdz4OWgJnL+yinQDySaf
Uu6zH+nasiVsn0XphhkWhOZXIYpmyJDwcPr63pH28fZvDDJH/coQRunNkU1nvjQWyP6inKjdqOXn
+kualIoBZPuCG9KrDo5P6AlZKkF+zSq5OmBQYFm+zeWgy0ZLbe6tyVw26oDTWQ2vpq3MHxurppU7
YtC+Rvimdz9BNlw3eMIiHBfjrKzMR3KjrZeSbOCb+Lhnp7g9r3HdVHQLONYHwtqQz2bfAgRvqGgF
azSgNrAUs/2NFvnjRjTzBi8g9QojIaTjZxNHMUIPQaLcwmgyw3MIWZApOTXQwAafsu96NWfx6u04
FspkuLBWjYrqcAKMJ5UxU9THtqyyDNm+mw9IU06lW+JYWx48yAP9p+X6YoKYJBcmVrKDLNfPb7CZ
sR1TbMgHmYH53BON9fv1cYtBn+/q/9ws/g51CFf6QhxJrXEz38VBtn9y7A8RzW9lCxPk1ERvzdiw
lAU7wy4MA2bTHSkyhf/g4iITox+2TDXkffV6v7XRAZumyRicabekN/F9tYJZUSl+WXjowrp3B1rh
nZxHBoxT+r1A5k24tqjROBO6cLiYB8/x38UoG3Xm0Hz+pV4crp7kdiAizbOz4XS5fdDQYJVTdlmY
0iKNvnIQl7xrtIU2n+wNfIUSJ6ZfzEN0CTkhhHJht5K32ukui1ODY2tD6BWzdrzPVhw9klp7CNa0
KJHvPa6km8k0zvljLy1DC07n7ah4x48sAkELQG/SyBKVUpDtPPF+wPRDxBOvfKuXlbsYLtoi8+ui
Rj1aaFByTw3qedDtIMeADYVw5R0M/q76UHD1lWf/SCSeRm9KoEHpBl+SsRz56/0wSnzUHiVc8Aqf
Kv8fOJGfo2//0ueXvRLu8gQuTKL1Rt20NzpEipWpvyKm3XExctoCwJIEzLPD+R1/pVJvVgy4Ccas
3OloD7QoQ4tXOZ2uZvL5SjUpFL+I0ezCjr54emoO+VZ0FveoN8J69r9l1lN6oqtWkFm0Af/xC1xH
vKrFUeXu+L/M64WI0lJK4NM9EDOkQ7/T1grU46XcNIH4TxBJEKTUrs9yP8FZfySTIA3yYfdL4Lz8
1QH2ZwrtN7AWDpeT/3K6M2UvOFoLQuPGAYr+SWIjiNxsyAljH18hCj8KpM51vi8PSyj8iNHjSBYu
SPXSvFjPDfQwXHHNCJv24pBrXeDK1ENh1C9gDvW/uZ1IJbExLut34BaNE+aGSZlsB4f4qxpHuzdt
1IcgKfOlt2bgRPaLxiMYSitfobI2TDCloaKMV9yTGAqvVjNehDTPQK2u/6Q9AARRKQtOTMIngpJe
wBj8x+R47vck2zs8bL9VUizBGmC/JUAmcz9hSVrJqnIcd7G+CePMCEE4I6fI9CnsnJJ7ijcPpOct
glJUCer1cYyxRHnNkWAfukBtReq+isP8cS1CvpRfDSpB5STGqcmNZr6HOZELfV+F5RTl1ENn8gpk
CZO6dR2LTDXsxYr4E2rOthHys3vrZOkYPCZpwBuEUZjQ2cJ9wVqd2+jfB7iMPaSd+yLWgPbiX4Hy
vw1S8GfahJHPEriHYpiiGedGINFkoWUkGaZkl5PvhAIzqhjlxno3b6QA71pgduxzBGr3I01PwBYG
AC1C7mHoIkLL+j49zoxFWSRRhayWckjvPRkT8YQIfjPxK+W3YhYESR/b6I6aJLkjDUVVgZ1mWFpj
xIoZfzLLNvtxKBCR38N0TqLNio5tm1kY6zQnLBHJiDKmJr8TFYpMRxzV0dpt69myVTQBKJ9Ym0FV
UUCl2iNtZyggCx21eJUL9zu33aWSe7eZk4hESdDqjL4ME+XsE23c4g1eBwED7Wkis9vSUScIHtVk
YpMQ3cDoneUAfmbIJ5ZJlyCdGOfkFtyYFdmWLDI+3Eqh4MiFBJHZuYSUHrtNm7g+C7OJNOYksqa+
WXZQSVNiSAVRWJB+5gnBShg/+D1buS6wbzJBPtQXAiZGAY3Q9t46zgL33liIGD89r7KozwWkggdj
B2UmcqqiPzNnrPt0X8B7o1+APPimHpj26FPNPiDOe7mrWUGFgHif6MidIzi0uuzLu9soLR/Wh6nd
QtoaVPsI+TMEWzt7FJ+xiGJpGbrW975NNBXgbLTNHJZbMr2IXFSZRMP/1BDMZLUTPuRdOCz9E1Op
Ux5vXzeglypNRAcg6FqxpwK6bL2FEApGPYvVqoDIUH+OGsa6fqvSdpLUOpCnX+yKsXidsvyyWQSb
LX2V1O2xMFFaL4g01H4ByXn942yZ3zgJC/IYfuDi3PU80ki6MEAaX9x/oM7tkyh/wBT+Myou3z/L
VRqTMF8wjThsWh7SsplVBP1Pq3fP4nYEjtB0obXfpQPtRc38Fjx6PSQA+HaSq6seqPjRoVMcUOzW
hWtMPTQDiqd6r5ephIREONli6g8SUnZTOcXFqGvJ3+kLXdnb/AuPpkt4qwlrtz0Ydk6dTTW40yhh
0uHpYbnm3YJKOTg4i0VEelwOCJCnE6WMyLvqelaWqNpQu5GXHYnhC0PAUnVMM64VdFkIQ9trEQHC
QDUvDmVXEveRUa1q5xyVSyURKSqHqqT9nrAhRAN7EP/o0Ty1CVvwsf8lEGCsWBRTy2DrjQJcB0el
uf3TxZ2C1QM5hUkOXaBcn3W3b5oWqJWc+1Cq14ZwNGUXG45saWhrORWOf7kbMc79YepBv2bSwFAS
zwKo66Mq7ZKrSL8J11eLvpIMl5Xtb2HTQ5yYxGxbhyAUyjo39OfAjljzRBalt097JfECXqEHdkWj
BNAG7gd2+ll6byTQLKdEFhRuEKVoQtbwXG/j6yJawk1i3p3J8S6MUGN+AZU7l/3G8SbsS79RvbJX
12gf813bHvr/nRyeph/vSaoHoHwxnR48wpboSK4I/8vkDlyqhW5+qIHSYRdflcBZzdC9jS5kmNb7
OWK4HxdwB84bv3V8R9eqoN86cWYFgn1FxbU/iGeJrcWOaEqrEG9TycW2+XQYvwQoT6BeVpL7vNtI
qt1JuXzm3rVHmbY4Uhv69zW3w6+de7luBB2aBEd/sBe+aLjZrJIVPFezA99iMnmmla90Ax8yVFuS
3dyN/xtKTO0DLlakVqzzRHoiHZnlvXiU0Zbq6acgNEs+0n3sdGGOcWzYhU46b2BUB6e4upIwqs5i
Q4sMfiMTU+pQ5R78ZKg2RJKPT+eblIKdSJjGwmK4b93qQPm4PidYG4j97Xtu3hfn/oFQQoGtLCRa
PWU95WqUkktnMOeLQaikY4DOhM5bBJspEDgnzngsCltHWI9hIjOEbSAvKffT8ibYnWXoCRJQo8CL
vcu/Ykhm1BzOJ5mLwiz/8p7jnMkjSHe9s6nXVeRJ9zEKcg7iTeVaelXd7v7/XTTbAm27emkkAwMt
4rjZpkZcK2P/hUgujQa1j+NJoNFettJh2nSoH8QuyIO31QD1tiQuD9Kn2YEwYi1y9UEaVWn2iTh1
Yvs0upuasEXDwp2VxR6dOIh2QGGkrO5VuuEJv4zBiRbYoS+LdjeTuujt+KQkiQtIJVCNWaISQ+8K
C1gSPKMXrFZY8s1xnI1GGoEvG6xijgdmvbeZfM6xH6Fyz/RaOeu6XKFCS7N97ZN4o/ClFW3Eb73V
+W7ko+eMvh3J3ChXw/V5PRh/OhftTpKz++Bo0yUjSC9t1uf2YHss7PuCn0gsafu8S9rCUR8mAi4C
XVX1IM55CYEoD0DnNwGz6ycopmZXSMUqLNZq3/lhxqjJENyPP7yKObELk5AsKYBUHrmJzEesa6Ra
4KS+H/ee7Qcc11YrMlL8ec3q4qt8n1u3EyPwTFFlWmEPXM+7JmSsqfQKUglvqeiykPDySVC2rhc6
7PbjnGpDhImxVCrat/gtnQzOb65pO+CqZZ67Luksz1lhJaqLIK1OeB4JQjBuyknBrBYz8PqFVLeZ
msDxfMEikCRW3SWEkC+arTjUCZnpLRkL77wdFmUsMNjQJzS7anmjGQAp0omqajSlxg8MlqrPJyHw
s7o5E7efDEYcsr/V8APjM5fJoyoAbj6aeUJ7zgYx7prH2tA+UoLwLPLsasBDppTw6/0quhBNF/Vt
rli9v11D90jRA7+9KoKIYp8EEQG5tEtnxE9MCO3Jorva3OudhTgjpPoWCQelFB9ZEW/+H01WmXCE
HzxKWmlSXxB1rEhUHKVxlszPEueXmZxYX/+vbm+5zrGkZ8YXADM3g/ZBK/TFj8kWhgqR19TBXros
Qwkj2TVX2Q0tsd1fi8cxu6F/+Plcab0uEBpTFwA5QBOBSC0yKY+OV1RdNRtarQcC2ai7ggXaeccl
BkPg3Ygn5mIYNe6wVwJsbCWurxSzFEH8wF3qkiq7/ZG9OMFOUzNAOsMGe8guEZOfgMcYDsQKUnqL
Qi5bvGj7yqUFeuMdfMtdfRTGWVASenxGzVfuR5ngwuilovG5afiFXzS/jvLMms5NT1ozsqh++YiR
WSpMjsKu98HHLzzd81/rlaprVPjFZUq8dTW42gZGLGKdxxhjAThtw9Chv0Us1Srah/SLCsdBvXjC
OCQ4UJtwcOl5KhrquXQUVKRl7O8oy4HtCjnVx9UKUgzCE0BSXQWbK48krutDIIEdfnaChTiXh4Ao
YZqoIch9c6CVi/Z0vfYQCwZPmic+WKTFEx2I7c4G9V9JBYz7E1UPIdy058EYAuPd790mFR4MTMyU
4F3UhwgCcIKm5TPTUC/g9u+SP/DBqTPDhkYjaiWnWU8dZ8PqlmWzDmDk/59H8+ZNHtFk4I5soiLb
qzD5KXniAXw0e6T3gdAAqYKsM/44E+xFkzy4JDeJE6vAd/BJklQd2BBjLFIISrkrOfLivnBV5onV
1hAWdTJTmqWyQwrmV0RFjMLl8MGAN6XDa2XxSlU0I9Mx3T0XRmhxt0adfmwQpx6Mqz0Id9d4uG27
nV9Kn+2UrnXt3FcwFfBszdLCgofQJMBYWiPYVJhQEIUXxHH6rV78tkYeqPcHLH5XI7LwEzZuZbG3
6+4+PAFl82ctcgPimXJymWNc433NrxY/LsO2d/JP5JYYE/fSty3/Ah15qcbY5pHdBeged39a8Mwf
g0et0gaboQ7g3eGb4aurDUEkes9OfsMfrg1Kl6xrzYMZLPGTttS7EtRpVFWEoxTl31pOTMk3E/hh
XtuhVhRVyBpmM8Heu9NX/R7kv0ydgerlbJhJgRfSxJlPrCPnzBdrC/6QSALXabAiYJuSruzUSpfa
Z1qhhftYfYYaNyPWy6hpkquoNWINayBpwAvZ4gXYsHJ94D2L0vapYEUugKthixCdR9Ri/EqMAY6p
2o21vpVeDNtgKz3HaA/rMCz2mBAPKhsLL6ER/hLfQ73i0+KmIVSuItYrA9XmSCOJa6PjBPAMtJ3/
OitKMN7PcmL+ADe6LWqV3pe9TgRwtIuM11EWuBYHVIwzO0choGSqIpdxxXioC8j8cupen1wgYYa1
60ddgCw+ex9dwhHOyxjB375P3wCOLrRuMuQWX9YNyEaMiU6T3gUNtfMDie6ic5k4TfkzlL7OWzdh
1YTSdyju2fV0ncM2wW1viXb3lK32ehXXckYNQIow7DnY1kTpG8bzupl/ii4Tc0UKrJt+qLwt1yiP
PCNb1yho2rY38rO4bjDi8EJxuTXqsDI4NBdp+/CEg8fzfsbRK2splM4MvGCjVniTSvHtSH15KrNA
AltDqyt1D9FyBkhrFKtHJBZdV2tT6aygieTtvOoe4cdA73EGIC2E0ARWjcKOfhsCsYQQxop/XfXo
4llMfIiX3GRX9BPR4uEEDRdkEeh1vUCkZShhgtToFCO/pjActShb/gQW4NPH1IKOhAA9iCPl4pp8
y5fvKsfDQ5G0qywtZIaERnTnNHcMtMjNkBUpYKv7eBVHy76s/ei8FQufAVFkSM2mTaCCgYnJPv3f
bVuzBYzT8A6NQuynu2j17mPDxNs2PTKywJJY60avOIPVtx/AbjXKkIyv5qNgipFSgHFP/VaGmcgj
TGh7+eLVuwG9F8w6mPZ2tDvAXc8ZIQCepoend9LBycbXyWjTIK4O5sIvRjlp3b8lzswEtIdwQ8k2
z3oVkCbeCOl4cjUsuiz9erw+VbJHyTHOdEFeX7NZApQMO02WJ5oZvyGShiikLq5sR2JDOZtfU6/5
RXpGCvqwVvFAMM/5MCAhbIX7ct1RoUqFDo/kJQ6HYtZiD5HreMb+zzH466yNb3GT0ldbFqShqMfo
YII2Ay+kYGzzs9ICW2+8t5BOe4Ww1SXBjidKT7uTxPphaHqHe/wTRL796Y6ctiaisK6TBfRkPwba
GYI3dLU5G28IrX3Ve0mFUZpFRnceHtDMYqcHavwrEICn/CnxMwg/7r4tCucG3lyWWsTjd/Ul0rtc
V+UBCoyfZZBPOS4shz9JVdJHwKjR0qfP5KzDU9gX/eKygGwRxvzRKAG+7Il3GkZEF+85cFMA5g2F
aPuItw5rfYZcutO5fA/iKkWrqMQDdNo/XPchCS5HjTq7TiqMsScoirhYZMO2lfNxjV/iIBAYvX2S
KnJZHFNeg4+i75jXA64SpUuOcNztqnRzahqU537+x/p+km86Jur5ZRvMCg0S97fBb5gYtXO+d577
8TuSOUgtkVVsJHfWLEztydHiAXAkxUbf/jgEoEa3fpFLG0mOcWLFr193Bhv5IKNQNOfieMg62EZA
UMH4Us2vUsnbP/EX+1hJwObDCBjp+4qGE3ZAUSRYEwExR8UsGAdRmVpGuqm1QQpNqSh4xq8iiNWJ
DjzzzCWmCj+72id/OMlphHmkPwaJBiVXNmknkcXBGhZGqlPDCVJEXyHCyDmvWb94CIbaSNp0MKn5
00oaeWl35AYNfj6dyTJYrqqfNG6nCvsKgVLxui00YYh0C1rGdtnd+Sb33fKvpPDsuXv0n6AiRzsy
DKvTVkEzf45aYgSt9griPhv4M1iJ1pZHOFJ3pI+vjKc6E8S3wPSiP99FTOr9qBxbdaVIaj7iHDKx
A1atGRXGB4g6RK1Mw2wKv3DJCGzpesa4S2ucPmLHoXKCA7BHa6q9MY7nbGLb+13MzGcSMndwziMn
6tlIaOFP/susUlRYbkqJ0j8dp4zPuhCqaXROWRuVrEC6udOyd0ccl3PUtEIf7fdTTp+V4QsR69Z/
S30fWeRXSXOMvod1HMypidenjS9WO6d7oUGWgK5cgNuHm9Cor2NoNJEg/MrIb7QwAeLu9Cpcvq9Y
6+JUCJ0Gh36In6AyISO2oeHxzzMJmwJF1SN0MToPX6r9tzagigpiwGSyjcqj4WtHjdE3RENx09YV
Y+hwnRiheAlE1uDRS57ZcPpRXaWgJPMqxbCvmjwAuf3YIFf89tE1CrNQsOgs5NDVRbqYNiTdNfYJ
C/CF4UlWUnTxMum8SbswjWRQhgBSsbYsVP+4RAru9YP7/BtlM05iOcheLqpdefwuNOuF5QAJANj1
aKKgSUZvk+LmwNR3w5y9/m0kEg1/9CbDDSi/x8W2XTbFE42KlD2mI/mE7CQMTTnAhszASNxc4V8b
yQlmvE6TW+FMLf8apoAMDOLIUC+IOd5IRNdylM+t+sgPbig+9B6jnEuSuyDrOl0+QmwP2J4pqJW6
/y4YSYt2jD3TspKkqdzyi8rFLSwwSdGNMbcVk/at4ulXiTBXMIKHW5M9G4XiJt7Qz1RyAs1F3qHO
HxhUl69WO1d14xn+J2uF2yA0v65aGcwcUl6qTwo13br7fjLCYcCJdGE7nbokO91rkECekqnb8mFQ
WejfL6t8igRoF90E1jJL8g8kV9fPpeCKngUPax0I8b1aeTpwx3Fug2mwb+eMTunRCJ+++2SQAA9h
yatb/RaVOLb9JkT4JkjBMXO91kSAzKmzGyOFry7b57tH+zqvWeuCK9/f/hWBCLmYNKmaqEyG+EH1
IFnRKvuCZ/mFt3MmzxA7omP2ZTii7rMnnJu8YbMwWnldhqjMFl7ZivfwcsPdIYuy7YEbawCCfz65
mPlXN8fzTxi0N7dPi/yHhoENOKs4GU9huvorCKpK8VWaqxfPh/3CSqsF8qVJb6LMU6yHBvEQbgvd
ZuZxH8hfhEfqKv8xNf2Us4L6mlf1kVT+MRY3bkRmhHOJdz2Ia2RWUMPX34WgBAdC3XuwMuMn/Jtl
HLu6Lb+eFTrg6lBOQpGwz74LivomF68SB2FznErKwcTSC+Joi9Mr7KQc7bIkOEXyPOdeuSLVETwU
LAQFq4zwdy+HBbF3qjXdbRe/w+PmNQ6Xpekh004dugrnW2NO3CjWWxaScor9mylDIjM4lc7b6kN3
TDcJgzThujtdAbPD3MFsQLB0qcnbNS1HfydAa89h34wRjLsxxCuj1tSdRdWetkCwDbkdzeGXlu2v
VXJVVMhWOELBHhV6AkePe18XMFqS7Ji7ccXNMtZ00t6ELjx9eBOyMZWaVkDf75uwdgIo7btQLb8B
1lYtInWoY97p8jUzMhVGizMKpcLjEtieGZAeuvAuRkc0AvQgyY+q+y3SX8Nt2/ycl48Dg4iDSgYz
4/WxSbVLZ3ZsgpOzZwsmZccUb8u9gNrtTVWH9wXyaXw6pait9jwotIFCquXP+BlKgRLkUx12mrxn
rGRguy1c34jvk1tTOkmXpNj/oCUon9e5CetbtG/Ayq5zSMRd2DJvORlR+Z7uiMeK/x8C9gAQgAfR
GmKSzYRTw4FxcYYNt4aJP2qFjp3bB/kx/FNN/i+FYEfI5BbfMlTxGHIOaqNwm3kKgwmST6n9XluK
5CiIalrRXCSkh4oDmbVBI7IZFAhNZ9KGBQknYZ/GYsgApYVenFqVXU1zs1boLRRK7jIfvFpIwHp5
uyvvEPBV79xI+lGT3TeXgc42gJUttiMCWvZVMJmSNAcGFZ54pakuqS1P6Y0cYkYTZJQvgJCEHIbi
ETJIUH850t2V01Dzmz4P84XHwI6n/FspX6j/JShfekuJMpKRuyxepe6i09B2zyx/sbUqQz75VLAM
L65xO8pKTBKKnrKyJTPtJPgqe5RKqUlBfmB7DqpRaw6FGqGIogD154tvYGmxP93UCapGcSrLGG9f
wIX4gWIfKGHl1cpzKJcL8S3YltsjS+rNzaOCNB/u5Epkb4T0b425mlt96gLi4BanQGSs9Ee/aMaB
a78zbp/ORkRWUrd+BSIHzEykQwAlZZ9eYIaidpegM2KksT3J2QV4r/zvemBUspOh5tPdKI+mAj8V
hUU1RZNcTf7tVu3sMqyjxtamkrDPAzu3c8Gah/6QvgyvKItukxxSbv2EX+X3KvrH9cTQ2ermgJYU
72dq7TsqelURjKCAQpILoUjA5tn4gzyRoh3/iXqZhBGr/R5Fx+kMaXEIQ8cpIPSqq5MIisdWvk8R
3PE81ueprB/Td5mS3QC80At+3e2/Oe0qK0a2bjShBbYBjwRLdFodak6QFEW5YqumGzYS2oiYLv+U
MCn8nF75NF+uJ8dB0NmYu14YmVAKObX0xszckk5SQ/h8Da6Yn0sY8+IwcbotjsMvMmWCJoWTsdT3
RFqRDxuLQwPYiS7Ac7iszvP1vFI9QWjb3hJtJf+GRB+qemG7t7LDzst5ZFu+EYSL2a5U5ooBzyuu
ZsFTlz4HRbM6/T1FGVOffIW3vJPfHkQRnJdk6n1CyR1MPq76MtfRtQuGxBi3QSl8tzQR//17Hcgo
vVIi9mawZXb2yiKt6jjBS6frQjYfM76zSfuKw7OHVo/tjCwkse85Unt4Ahe45xCk7b9//qe+wtpr
SsfZCRJoZRf+vG/hMOMJ53p1UVoS2DSolKR/0O20UitjWI9s9NI7mF/NSijNRBD+4Nfxo67wfYTQ
P9h8kSdRkBexOffFnKNUewFAbNdydJqpao9L+7+/Wq5eolVkAFwTkfSx4qdHBNWHALVuHNjvTk0v
ktvEgWONm06q+X+zw9d5hhtsRBv69UPIJ8+xJZg1+l2YwHwvxIEJUz+6zfBH4Ua1HhvIIdfET+X9
IvN1ev2z4ChJUx7Xn32G3TB6GEyQTjX4dE2Ai/TKxRK8n5BXT8kAyqCmQQs67XdwH6EhZ5+cRUTS
XlKMh2HpqUK0exSIFQCmqDteSYWYrs+yn20uY2B2KSvzMnoKTD91YL0tbkh4kRKygUPVMz04wBMq
npZR8EiRBh/AFpGKhr7TSVDO/f4fCvfiH5rf1S9+YP64mjrCxyc6RDWphU9/zl/ZcsyToHBVyi8O
kbaNEADzGO9+ZgRUUzeE1GcXs52m6pZsx9/hlj66CeB1WCBVkLBHg6ytwlxE1l8Bb1efwDLVI5m1
mdhgQlF62d0f9vrkoF8btL4JQqjYiLXFf7hMoFb9XdqgGf1JUodkidMrqzh6udcWm1pCx4XBgD28
EqeZtHiOqQekMwUsD0m3Q8MAY8Q/7LPxK+CG3sNZTqVJg5EomYYSM3gr4HdzXJirVJGb/nOVbWW1
4TVbVNqjJLnNMKuv8dn697ZKlttXC1MGFXhm+9n3ohJ0LDhRWbvCFL2DcxKXBaJDdn8wNViEmSUn
D/sY71dLN7g9NnahiAySvR8tsb7SHjESHe8ktejzuiXt3v5fNWB6SBRLKs9oND/7lkz5vlRE5FNB
URlNt22tnFDtYDiOdQ6XWg8aUCfpLu3kEc/rcM/gHsNuVS32PnIb2LtbFpedGw2tFoYC766Efbcj
c4GsuAEHUbpbZRbMT0n9Vov3hlisVjDlbdLzPa7aPMjykhxLoOHc67UWIKlomE3IadHqjweNJd7Q
49nxetXjcr6CPSqy4eabAfsNzlCSq3oR447Z9o0dHkikR3/4jNvPH+VYSulsGTeO2XFgaxlBZxeX
jCQxvMQnaXihvrd+R3yHNNOkOyx3+zAuxKrlXC48XWCVbrLnSekzVXTlwO2V5Y3X313S8Qs6Vzm7
11GF23494Kmr70DDzq81Pza6gQTmLDFdsmF4f2y6W4sXXciJEznssVyg6RdsX32QSKF0v+C/oAom
5klwLsmuPQ4+nfcNp3HxJp6pQ+BglAtxNPFxKxxFGZT0NcGeI4X6pzp/OZLO+JJYGgdpQPFC0LYq
w+zm+4SQKC7xnvLdECMZeY3kS+5WmAHN+NgmW/63m/MOlyaA61mXzMIZuiCJ/86f71tu6wZ+BBIP
KHnrs+qKbxiIzNP0eMJsE4NOlmBWnpdJN9ViCgHerrstpoYACKOvMncwunhUr+mFhPmmiqne19wl
9W9d1In/7wIpvJFDfKzqcWB18oeNGBojwv3sy12ptR6aGR4awur+nzBy2FPR5wmqSHGZUA0RPrFr
BjWjYW4qXfbqjf1XPBVhS5MDASlT6gQoAMum2ynokp6H0a/coXxkfG0scqSB4DrqruQi+YFa/5VZ
/P3rbRXSf722SF116PpzcYMcRC0gjCQAb8WBrlnnAAfiTOSGLzdRE/6I2R03aus1csyJzAlJymFH
IB2MQ22leFKAaPUu4K9AvODjG7uDRZ80r/7pb1tkJB5/+EybSIMWnKiEdDbtBdTc+dgOpHfBLQPl
Bd0DklwMLoU4In9PxU8kIewCO22dnAWuUrxdHC93tikGBksEBARfxdyIgOI9wYSl5pa6zOaZuw8Y
LPC1bvGLHYxS+eTwK0+4OmDzn6BRLrxpkLHbkYq3rH7lt7c/5wkBQiiKbZgxJFiP7k9du7ejvTX+
1LaZuQ2fc2XRHCbU8Ns3MO91CUzWrJsk+2FiIC3/COTr/Qdegc8qLeBmgSU+oCqXcIxceiNR1q3Q
JJ3q8AAUfOv3cYhfEen/Rl8wM3vWHCRArt6/bLWcQgZU2qOlwIaDHekGpiibjfMmG7E4oL32xh/c
LVGdOjjp8kdLctD8z2WJQiPjiMoxJDCLNHP5//inGe0sZQ+djuQIjbywnXqTTaGTfwyfVYvNE09D
2saqObjBFS5XXZFVuRvvIA8IAS6r9bH9F90kuhJ4+pVZEhGASc7abEYIbRNYw5JSBs1Y9b+ZRDXX
aZVSYfsnRmUd9EfSrAJ4oevgSHH/yZiannI38xOGoixYjtDfWQ/O392OJ0uvSaX7ArJB8bDHipwQ
DvA9WPQUt6hNqfb9paIzbltsP6AtyHL+4M7mRp2y3VS9QEp/vfOw8Cq7b8M6zDySlYYHWXPZP9lI
gnGPTsp/+6mfu6TYpECMcIb3gIfz79Hf6ZVntwxeqZXkVVcbSoIyBA+bc9D5fsEMaQY4IJ8CyowT
Q53RDoTPZw698oHadQAoNCBojd4ycsDhBfxFnNiEIX8Y7vq+oxqYgF5guNY0jHub4jrutZ9ES3eL
r1mGwVcg0O7i2TfI5Sc8YY0vQNKZ1kiCWlGGhl0m8R7inG4aoUTn07PawuR3evRYq41ZunhbW6HH
jxJ4phmDECG5t7ss5SwwZFRy3r9sidp0FuANO/TzXMNQCg2z72yvKcpbVRou2cdx6J48Yt/E1tOU
0L90x0LLtQ/18fDmHdlYlX+TkJvCh2rmgU+9CU/LgUxLLunV6tCeUoTLeesUo0gafKW0Inhb0KJ2
h4lLvUGIWFuIeOOFTiLybe0JzrwzdX8fGBJ80iOIE41dkUsaol1dvoQg0zqjF0WFY79FjE/BqO2y
PsMhA6ln4GYd+yhjFhb+2aLQZKOD+xMEOWW+WQm9ZG1tICxXDJ+XEpebmR67lX2kOQ7TBPlsOURO
S16RCg6Z9swpu062kRli1z9+L7QpD8e706Fp4WlmfpKhXvJ2DYThpQWiRmJ3v91ynHr6IxexMXe1
OtBYTONoc/j2tssuAKjbfZ/DYAW6QWsLqpo++zs8WP3Ob3e/MDIjtz43zshTCvEbZlK8TIvWtWMy
+OehDYjGG+9vZLsLPUiMAwpid6Ma9Jnbo0jdVxvmOJ5ZEl9j/GNS4muWz5g1WK2PGsIncSSTUTt2
sY+74kCqDlz7cLaihd3m+Sm+I6bJURTL7GUjNP4/hSDDdenHKYX55p+bnVtNwzLHjET5O+DpSBy3
H9jINLhh+Vtkkhb+tbkHcB/SsF9dxfrw5D06T9gjwIUB38krZJk1pcaKgOAcNcgRF0CjBI1cMxtT
PaBZo94SvGGtIiK0AdYKOsHbpbkdLah2/mWR054NYmOCytGepRRFou8+tcj30Rxlh19Bznt2AFi3
xlAHz4j4czoZ5BUQhQQTzHxsdNuXSXjwC5zkTpgCwDBHXdlrRxLEucb3QU4zIFmkL+X9EzgyTgrI
BNPsB0VcEueKhOi4hMGPf5CVfU1SYTas2oWiuZgRPsOm4g1OMZ/bVW73yesfDw52DwFtMQgzRSpP
6F68wmJAbCrfjFfN8ITafXHwJ5Cpm6X2Eky4rvrGuWnNjV1/sE2Sknw7Wp0yX8ZbTFy8QTAtGtLB
YOs8UNKYObiQaCY4zMCqPvSpdJvauxmF2GRfys0g7Nhpw0gwBThGCxQ5pRt32cL3mVvAxa1LYiGI
v+Dkf0R8sE5tazYV79GsLF5LtAYW8uEn79ok86Wx32etR15rVLBg/Kat482Hn9IWbhd6qAd40YO0
AXsN4l4FFoLFtKKR34GjGlrNtRmbyjzduWBc9NDc6I4yDSitO3m3jvqhUpqVpdRRJlzAOTnR7qFq
Pi4eIel2Sskj7tOhWYqJyamdGIhcNQRl5OB6Zffjy6kb48xiIWgR4RIsgcTAvOPL+aibDJ2/MWTt
wsQllf2jRF6eEyuIFF5ec9VdEt4uo309+MSkXj/sFukDard26WzCkjvcfBq4ioCcLWuvplseS4MJ
VCfcTatuAcHRMqHXBL9jdq4GGQman1WvzmShRUsAgf2NqT+GQVwr7qw+pQnnyZxb+cMBGcWNLQGb
EQmD0j/bcmacxBZ7CJ7oVvjZHFUjS+SquyQosrPdHbZnHCTSTbGMPsdhXmVKjKdK3h92twRZjc6P
tkw0vG5+TFuAPQDD6h699Qwek9Z7ERj/yVlcniFDp+HSA/9WDCnxdjMQcC6Shh4E/MFnLb2+HDmi
oorxcbhwkzJYbmOaFjLev3eUYCxsS4E3zEFboaIG+NWG3hlP4zN0EExec2SU2aXfD37SB2CamBcr
aWp/pnZciwfy8MdWcgeK8floxTSUd1SE6jnCsQcYdim2teb6bWYMqbwwb8ri5hByb/7X5DN97gH2
mPF69wznvrHMc/TH2WEQfE74KSmE7YN/b+XIIMJKv5+ExdhapuIzlNz/vfMvbbGmUI6F3YSnvGHY
cyQVel/g8jWRS6iMYswKZCdSxSR+/Bky2QZeou91euJyKSqQ+fijFCxZB/l0SWc1DXu7r5asz3o9
DB/41H5pjcGGn1w8rjvmgEE4sngM1lrNcs1UTx5E4e3LpY4pnFEL9l21eH7f4tEgTwlrPxDqadRi
+6zInyw0vU1kOJ5FTkIN0XszZ4LPXtFGuhTP3oCaqdUFIaO0mEgi6O87D2F1OO0wti3Um/Sfk43D
VXSlvXlJygHgHtfw711BzSrKw9VyICtW4p0/grTl8zVFEw1i07nQCMPi7v4lC4/+O/ogCtDc/iVt
jWDaHKlz3oQmh5qAV9vQg/B17RJtApz/K0S6eiSeSVnGdZA866g67mghEBcFYxcfOvPpKTVGcJNn
GkAAo5TsbY8kW7HMzNOxX5RiIBJ+3K8E6b9U8x3JfZUsw+HLBsf2iJrVY1rSW9NjLqEz/sDCNP6u
VP7aGT5b/NRsSYlwvdWbGwoFObB/AXV336fFtHuqf3D4lJ8UwDtTfx8LQfP+Gkyws3m48dsWAlyK
D7CSY4fYhiUYX2Soza506YOsfHRKXVqIw9+OG3PeaCYHrlanJjn/M60NV4jzzjp/DGDCjaNxx2yh
CXC2oQLEMm8qlKm635fHmJlsZ3Hn0ypS3ZEOnfWhHqq6Z2y0Min0M5JbCLhuquH/Zapw/d9vTTl6
loGv3usWAeLaxvPMiEUXdn/JdcAuCCTWJgCIXtFpxoLMHYaAeycOFebAF45v3tMcTvwjrvDbTsk0
D0cA8UhMcfuyZTB9Rn5P1ntmk1aIeLXZDkUTEeKOpdF7j6iRrCCITOpMnAwuquzkNOCyUYgA9oEz
2oCSTiPTvuNkty9P9yR5pIoU+PvrpXVUiIxLdVV59w5/dn6SvSGzSm/yD2RDDPNKu48dB2e2p1Cx
YdhvzYeDWRKIwXdXKNW0Q2BTd6/R9iDSR7MwB6+TuOc3Om0YeL/PFNxjgyvM+01od8z377Stx87C
WP4Zpt31Zs9mSGxcRCDxQP4TglpCl966pTHncEp0cI5irK1+RnQScKhMhsOlPiGRAsikvKOg8Nn9
mTuZvTNQlfdmXybZktT0gR1mOlRIsXJCD1SI59Q40PBmBtR5hKtUR1M8yc2Gh7zjsTyAm78LmSyk
dvYsNEqLlTcDF6uaMX25LpBNcVNokFJYbpFf4slZpmiTuOxL31Xhc8rfj+XS4+uukW5rxrxN3kcU
bD2EepJAEr3rRhKHzUiUbt5Peh58uX23afGwTRw2oaDrDUznDQXOdQeYympxgmXTM5896HEDBmUS
SMcoHuIueCojONZOhPCZfkvPRryzlAoyIE4pHZvDyJirywDF4XYVHuwy8aN6EAaf3mrK2uJcaQXP
y7Z2pUyBMpsDmHDekHDm7jkmu5pAUlit+7hN6KYKQkHBpIooBr1CtofjWoQOYi0UuFKwOae1G4S+
z7+ZiTP7vGfVPDJMvYfVCPYETIheudBwGM3oDeq9pngaLCr3DBq1QNohWPPSZloIoxvji54zV+2b
Z0Rw8lAXCTU9QrtXEWbuEMmVO8Ihs0YYoSZi5Y3fpq2n9hfTwVRIJFJg8/GANn+rnrSGwayQgnHh
x5PJ7JBRMBG8wcdUyhWvnJdXRqE/2L9tF4dmQdIm+4k2CmJuqKHUn0xU1mJ9ieuSAq5mIniQeFdN
LUSGG2g7HwJlc69PyhBFV6yoKC2SYlXtxBiQj8Uwri0joB7QpgRVDhAZOxmeg1VX5zjvLcTDr/mt
OHHF261UsmQ5yiuHWQ3fVDgGdakhW5gRpZYblLc+yCdjSDp8eOrtWgjPO8EkMjSnebFO8l9lErSu
yPcXhuQOVOXAHm/67HD49/Q3Ntoqr0O9nuHyZ4RxeBr2X1Y4XsIkRb8ViFoztBMvzKIWIcL+/rYk
CbC0O6KxtxoYLZROQT3sHP57YXJt1sDdNLtfh2NesLduvgYx38ZFvWmNZHBstuwns3y40cRj6mIv
uKd7QezYXFHl0aS0yvv52/NvCGdoywNjolaipr4d5PxsW0cY3ecfrIl+csGMq8wuJ9Mj7ymRRt1E
3bo40XWqnrU1Zq2RW+uGvyI6ukBW4wBsG9tNvcUjMmfahc3TwM1P/d2zXmQARL3wKduZMb3x9Fse
osJvEF48E5AX4rKLQ3J9MeaL5B+4/rbV5w1uYdamGzBURFhHKomM8ttYHK2lf5GyuI5NqvssCANY
+oHvUTrASv0ew7LRQNqwgBSFk10iKvuL0thbdo7DoNkC2j/R8b3b8Nfg6E5bEHA5QvYb8tHZ9E/b
lpXwJzr1z4CE4gPuM6JEg92rHYCAT5EmO6VWZD7NZAfs1BsUXh+dXTS4mfSvvsA47yDg70b0Zsb2
K+3zotqzdqj4vej+ZwY5DIKBTuuP8KAxqvZefoKEueus2uujLr3pc+0SP+1ZwpB29to85fVEMRq7
5T6eKkSppHM2asrOfNykR8ERr8QlAgldb9YSyeyMbfzcxnb0vSyDLMCEUbw3vEnqQiEJzJTphu3H
KYC8XWIbM2tcvA8oSlU3UAF2bFnFC2PbvMcX9T0fGI7i8VTaOCZrNwmXq9xRZv0yEtNbfPeJkCwt
lnLq3fBbjhhU76ZvmrPfsP+dcyynZeUGpZLNan4f6/Gr7KXK4nm8MS0ZmxSeBF5TInY9DgW1zA3n
WZG7YHQUb7iihAIkdHHG3mHUsPiDMxKvEE1Wy9lirKcvHnTHNBalsTaDxFj5mViZgS5gBBqJktp9
dYOzeq2pSJuLSjabtQLkicICz+1yQcQ+VhUmLO9BT2EoGBIA9F33dwZyIUAePf2Su+BHk3+SiT09
kBUzyhv0SiN2BYjHhcGHd8rF5TQyAGjLZyYBh/gz5NosCTezPp/RiGIcqpg80vC89/EvjWkJAvmO
5MBeQSRn0fGuDnVG5OHz4QLfNK6sxsWwfbxXGoYKSjvF2LyIjAkB96w/xsN5xvGPNCIXfQA7m2X1
fDJUQLPMZE9pildhYSUF/rowI+Ze0H1v3/D4quBPrIMNJj1V1/i3tAhvmXP1r97T0DbRtEVl+2hs
PaaA0Gtnhx4VHaKuKSBYNuC/T8E1i6rAVRcu3TzOIVLr6Yn3BcyIqOPmGtlH6dc2GLZ7T7udwkQU
OdxJZAf4dWk2cFm6tBZX8yfeqZX+Hq3Gh4dEGB4AodhkrDNPjdbXgPvZDVhkXoWdEhlt/S5rwIq8
f98DVbQOaJLoJaQJsf0sRXEg+KQNQuDdg5SRaL64OHtZoxK8x29JvE7AJ+hIdXp13fNccASCAqdy
1H51wfXfVAFuk9thJkZQTOd2kur79yk4yNr7EUVo/BtEVYoQOD4I4+HvS6I+v+E/mF3Qdp9aU7sB
15eypPlvA+rOaep9ZEbt0z6S1LfzlepNWEktt+/H9w4X7JTD4kjdtHcLJJnaj+bTsk/jlUX8KzYc
+rWQp0O+/fTHKmi3yyx08kiRut0/IcDSW6Q09Zo7zQAUdQ7S23+yw+zMTjfmuVEqJU3fEh8eJ+Z6
nd5nMUYobw/Xg2f4rnylVlw6qH/Fjx2CxYLTh1JGSJU89p1dZSdQSs+1J0h/bIqO6yYrNstNlUEL
2qGeiv6DxOMGM+bBoewJUS1YfW3o4JgUbrAE6tO4j4e8+J7M1mgYq3ocDDeGky3tiFM0xyLc+UGU
upICCRW/4CoNOkXbIxMb4/IN8cHDFe1blZUNk/Ri5S+tc6BDhSrPJLeoVOicNhrDZtqblgIn+NXn
WHI85ZnmWTMGpRC3SNOpLZ3rIEaa9Nat3XxnOX2q3FF0llYO6Y+VHvX1x8ZTAQ1yesllg/n+F6iG
b8t18Lw/nl0PU+dolZKj+wcqh+2vyT6fTpxnuC2381sgKFhl7mZpPaZpT5uminwVKFEHxyz1eJXp
o2IkgYjnkyCCtDhymJG4u1nx4pyDHBBKJZpshKXhK6xOU2YYo8TEhxaA6w+9GycaEWefHo5Mdlqr
ZrC7md4Vupc6ikql3CvcgdSIqrzq8oM6sADkG2pUbdXjAFRch2NuOtoU0OmYITK/wooV/dbEdReu
+zuvPJ+lpYlIuFoeTTCWvpxOFt1fIL3/+J7T8z6LA8JRkm7q0pYIJHaMkc2YeRzDPokoIhc/7GB/
sRafo/Eb/4mwKAZ9Wjj9zBaC78ssibXkT08KWG7rvJ2v8iEJ+VYH8FC9kzazRoQvNAz6CY5jdGo0
4RA1TMy7hupLuU/RcPMJbAzImaXBDy+rJs0XsAdwhtYsYfg9zMR42RTVUu71G6HIvzjfu78RBOT0
0mGanKhxzR4inTTqtGKFWMvrg3wn6pYbSyKo++t5wfB/nWzD5sO5dglZ3uIHzdTaFUaI9mTgPwS9
NErefFNGo6nHv8Z6jal5dgmSMfuy660K/G+ETUTSFnnJr6hO0cxo+Y9dAVQqhMBurhjYOCuVoumA
DhytQefKh7c+J9/UTuyTH9Cd5OKimvHUXBaQ1mdC0DqL7Dx033uNUokNQCPgg6ifPQga7HnvGkq/
X130kZ9UY3Ox5donhySY7jve7T0p6WK5xxVTSrNuVqEd57Mp84zyOvlNDUmxguSA4m5m/sk41ltk
Yq+5yNHkcXNZlR5/densE9Hh4Z6qiFhBrdPEgZK0AVGRA0RMI2gfNSXvU0AwS6o0cFzkC8XSCrDw
F2HAAgOVrgGWhcdCshXA/wppfM+Vc3eb5sfr+GccGZrqc5ab+smmqqhjq5VoUiPG3CfOOQVQL5YL
nXQ0cWUQ9U1bsBRq2V3sRfCXOCgo5Lv8ZywrnCy8e6mieekeJ6BV6n8rZzUPqLENVZbct4XYk494
iqj3ng98Nc6O9E8DpYDYaqzfdiIyXQ8BsyNAkUJj+jNA9TqW8y4zR+W3yClvKCrOosiAbFvi7TGN
KnSgy6u8RJkws9J55j6oFp9yBMsZTS32Nhi2lz16JPzZdCJuZ9ngE2ArchAHloBIIW3MJENRFdbg
nXJ6mr4ylFkeFjInWSuCItr9JZmZLzq+l9j5SSwUwkd9nK4p4KemIeRbtzgKc2OKtvxfNs9HhmNW
68D66yBGozTc1HLdav2Hf+H+RKYDICPRAfJ+RWXo2Upph/QbBrlh9znP2+jIjiYGv0e77RTHr8dl
Nibp5SQyz0IVqbdLfKxhaAIfoD85GkI/QrpDnr+Y9CYWxNxPC+frUbf+ehvGKKXUt1vjyNruIckh
R84pg4dlGS+CBteo/8EWPcCNdFnpvhp1SZ8iXVm0blijJ5wqSVVb15bmW28m7H+VflXaugui1Snw
HbFGUyKGiu2CjDlxhHkynHELKwTwHUgTkTwMl6qnZHzoCvy2+D2qZ7uafNVZ71anjtcUvbrc5nig
sRbakkqM2iwVAyKWq9mJJ662+S/djvhPN5/4rBYsTdfNIw11ujtgFNggM5F/WxD44uu+60wWRMhn
0w5hjNeXGYBRaR+3UJBynicpUdDYfm9xU7j4PdRnqzuR307rv1z4jlcwbbmXwaHOJ2s0qeDqERbM
lpAKj8DRh/+BlAtOHTelymo1OqUaxwUz+cTJVOVsc8C5pmrr9lzo8fFnqhFltC28gxb9KiyE9Pyg
ishe2aQEVqhNqgqnMvw306tnA6sXs4WjppY827hYPsvciq4C0Vjk7LeQ1PPjISoXXE3c+2sHJZuz
GWNpC5eRGsHQu5hOV7C6aIBdfP3JFZ7zdgUbgdcmBP8fP+0A/0hz5hZZBvDtXRnmhweaphwT7+aW
udat7qai7L6UnsV2oNI+yIEI6VE+aQtob9OrKuxs5NuIQ+cZmgfrV1z7QBfeRevKSV7W3F47XQ0/
Ecv4l1Li3hposRN2VhkJuJZV/F4uwhIsT4cukHOCR1VoJNE4nOlkyJ5a6heSPLiskhPe1dNW/P0A
VOk/xLdee7oeW9ok0kkv4dlFWUpoZhSc5AfjmNuA7ryu4HT335ckADjx9BReTOKski0zqNrwt4S/
e35yXak6xTSjlDDHHG+oHdV3m4nRszSGCIB0lzpxoF7X9uvwXxqlLikcjyoPpKvkTEYZE937DGG6
LuwP7LrTWIsmjUYv1EoYj3PXR56fHT9N9E/BgHMnDeaYK/CmQ0jWxSJ1opKnXY0+lWwGLeA7sksJ
mAUGHFV/4VOwueLy2zsHCk84t664xM0o6W/A1XMLwYjdh0vSRtl9XwEhmWOkdE6xYTcIbE4FjTx0
OEQD1M3z+YR7CvwID7nn7rSMEiWmJczBAr2hjCEBhQVv8OxqTr7xxPxEMKqBeVN5A1AEscPgNlk+
TXnAWXnH7w6FzuvDUQma2bBPT7j1HB/f7bCcW/toJn/W7/fvHPkBp5uWbj1x1IZ9j25EZveCBELm
Y+d/1IVuSFTYmAbcwBZ2kylq/FjDJt3H1sgojGyW6l6NE9/t3qnIe43MuXmj8aNv3auE/1sV6Gkv
PjO3LrB1qD7Y44TDy0buZKarD4YiEnRMinhKwlzi1V5xOP+opSGhDzEqLM0eCT+qY1JjOLEhhT4P
vcp3MLnp8iHguM5I+VVw9nCiXT9wVBL8YToVC5DSgtZe6TaBoEZd4aZB283nMpsG7JxubqLh8D1f
FykxxInunCOzDeoBI6WoEOOe2qTuC+coIV0ULixoACcwc19lLUXwm3iYyH1IJAEbPw4rSJ1pmkMT
EADHcpD1NmYGYDTav27FijTkIcymwkYPH2zfrpKBUnsRyC8S1tLl8TgifohTVvS8DeV6AZAZHtCq
EbN6zgz/aWFZtZ3X6GkZ3x0UGHkGfxOBrZzCuxW0anfDV5GABZejgJPK04iuerf4gLAcN/D5Y9uf
LEHPHiD+cLM43TGh5ew+Db2jqEvLahu5uAGrqzB3MwawOYxtSXlx1A2DOWiL2nNkGfxLWSrDrjiP
/b6Gvk3Nz6cDWTO46Uflf5z/DOzgPe9eTKm8wb1eZaGOLY53nJ/2BwlpzWoq/FndX07uV7Cy8OGH
jlBC8ozZx1hYeyNmKKbV+s9PdtwsdDZjWS3Q3VrVoFgswbvIY1dRXiVMB2uuYFWQ8sg/aIDWYQSm
YMgF8UcaY7ddBmnMcgLhNUezE2vqZ7L2VU4adXqe1H632AZx5NGipfN5/RJNnWk7jdDPyw7HnVRm
mpg2s/U4YQL0tETsYuv02bLxKhnzXpOKqMJ/S3MQqqxG+4+5SlLeQPvO409vlNwPZMetOwotE05e
dEQnp5y9ipHpdK6jnJLNFxugErjr9daOlV+BhXW8YQGjjvDBgugXoQFFohrqPt+lhgDri/M9TP5j
OJmShvRrv2qnl2wCgeMjNjXbPzhuQDEKmObHj5tyPQwGOBf12uOnG0hVdbfgHib5WPX4+KW8fTdm
R/nJQ31UgmSqcwHSc/WRCZCQALkhtFKr7NwnI+jGyqBulOiTimxwo38SC5gjS4u3abiD/jlYUk8W
SSWFFbIg1oriWtIlzaJ76nNatnYBGg/q7IljGVzpFDBF2GfgrEfFXhFXGMViGjPaR2Hj7/CbRnl5
651/edox2tlLBP/dLe6MaCvksZMxK27erFk7nHbAtjZrl2NQhpicuWQmH2louqjndiDIjsKCp679
ZQVGqspyUNuV2TzrnHNAccHKXc8H7NjqKt28The9SPYbs4KO66Nhh0GfIZYEiJJ1Qm8283j0uGg0
/47tMR+Q3vpMvICYoVNLt4YbwvPHoKAUSYETbAxB/8Jj0uw2/knM/FQ8AzNHvv5TWkTGxJEh1byp
egm7NLc3DTN/OngYlKl1dT0RPB5g9ul/VY6UhguYhaT1rxYWZJV9Bcb/UTcde1qfS5XjGz4uHJ/D
D67K+A1ALoXyjbLEqG7WBJ2WIuKtvc7pGMx0OijMco09q3kYcpzOShyb7GjoKgMvOAbQfcWzk+ZF
ENodtEQy1pzAJNO2/jQ+XcUe4gk696pu/qZRqzG1wHamSiB42rSVsa24RSfeyC4HETeuxFvcj0BC
tIKTNT3mGvpQo3ZB8ZavfBGmU7B39vxwqFhVK23NV1ZHEtTtpR3gkOVPxIKI8ZK3Qa5D+QBdDjG4
eafQR76yKSj00I7vZHPrCJ1K/jCXGDBxbAdWF3F7Dw0X+3SqWeciOiMfW2CRH/+5AiaNdj36vsFc
6Ksi7xz3aIavPIOVVfr8uPU5dKkYIP6TbNyCAGurxRFdIubeu/cMVHIZWChbK+bPwQySMIMUFK7p
LmWA/vCQGyzYMKg9yyHCsqzLv+2/ZVGJXtw5wzXxGwh7veUwzWgH8UAHzFbbPho5sa3t39V+qEA2
X4cFoSXdDHHTe6BWVetsYRVO2OuVdUqJopZPOuSzYrbBVY7t9U/Pl4jh2g9v92kuGb14phWlYb59
I2kHJJr/pL/0pZdKaH9gBxfEEY6Ks8sgPNccGmtX0OMz+2C5QcNQX3TOydw8nlCa2x13qh2LNgKd
t7/3YqZy4fczIRlsd8VWXjiUD+4uXO2Ch7x8xTJi+eU16KQkFNVI2J2ZWjJxfmC2Hfn3IF3Cpr4v
3VAJ0+uEbPmhM9z0/r6vEW/qCrQvpGH8C03iI4uCV3CKKm8d1/WkxbnR/MFNmroyZSzbsU6NN5Bj
lG7/fuTmBfEByv3hUsAGrX/djIp1VUuuWB7+RpwRRFaVksRXZztTTABLWULZJnqs5Puq7I6N4WMI
7sjLthv8BtGEnjMDJfl2m6+PLzPAVFElIPGSV1sOLU7elnfsUzkSqhV8p7ryT06QGzRpsMJvPz+5
0sSkCFaQ2d8eqKVzR5k+zTquLjMT+nedYmNF+k+GUC2PDrmMLkDYE4IUal0eMsfn1RINGyehEDpe
hxbU4Y25ComkxPSvKNp5wqgbkoIMuhCaiT54vz2IitlUlhTTl83VdMwMREzfuw9jVeJjyJgQaAPr
o4PsjXO2VZqHhtA0p38kWsblzkPM3cxxAb24gCurQGZ1RZGRVUVLaFhiUNmQPiwNm29oB9dL9NsK
n3ZpZVbHDF6EiNgszMxHZMkiV0z/yUk2R9+V/oPHFHTgKzYXMzaZbdWjXlHCgW0Y9LyHshuSzbtU
rKJ/5jox5oqv1h5Hioa3kHPVdyp3xNeV+vDWaH6k6ZXg7rtrVjlygBWx2IJmCzXevGl/xFRC/Y8L
RFMNWkUmzr6FdxBQDp2U8vG2VRXP3fP7OF016fnf453ty83gS4uv/dPIo8se9oE0CsYepO967G0/
3XhKgOOsBYf+YAcnsjLphQyq4tQvZ2Q3+2XpOsftzrIxK0/NJIY00gNJgrFjJ7HEhi9G1e12KNn8
F2dyf2ju+dMumwUutFm47NcdtuOCPnGfvKqkMincaw8AHrdpGUHbVTpIc85W+WzjtVnJ1xhcjpXm
Y6slV9GV7p+cofbcpNzHfnW2INOv+n7H+h8B+5MKEe0t7e+pBinle/DR3zVmMDLB/rNsivZm1RUf
Bi8GbIjhJqsHCITg1BX/mxnU1V0wm2r/Ubfu14Nbvp+Zhy4Oi+jjo60Y36hq8v+fl4nEMKXMka1M
YwpjbA5r0FclWBEoPovY9/GBdUTQYRx3W3tojzWq4E5B6Q9CBfvYOrOQdwTKq5qDql8WbBKcVTJX
1k7oqNzN3Q0oofW3r5bj2rXFjAzgmSzwEKX9phrgaeuEBR4GUWd1ZlBkihQe/tNofaxVi4BqR4J9
3QmrfOc6aiIaUfG6z19wGAxBbikbmnR9OViyZnd0GIfsT1zhMfwJO4IhR9mfSL1cxfC4C3CGWZwz
F2XrHBEjan/KzqVbuwKtMNOvfvmBXMVfl92yUWxghPKcVN3U2TxL9xgaRFe7Q4clOWhWIWsP/qKn
wIzsC/3HT3hqrUXQS6fTzle9XI6nYXAkFHHQCHyPvA1bL7g+iatwS8DDd9yfhdPHtu1957/cKJUq
z6a97QoNvOObuv1+1IbDrGgYvU6Jq3TDiXXAMsaT9mSQVHCDPSVy3h6Bkjz6OEkEPgaaWuz+j6/1
4oumEJX1Hn2MYMEBE6wBlGehmclI+i86xoVzGsy2FOtWnJCBNgObpdcuPIrFlo0OsjYLdpxruJRU
rwLuAeRcD9uxlX+HErvdSne+8sNLuk0IF0huNynGjJR8H7uCAWoi0PqsAuY3MYTuecFOq6qoygLe
tCQ2C/PYfw+n3iBLiorI/bEzaAJpdoF5aSdnds5OzJVt9Z0QsQit+cfK7a/uCAjVXpg20e84SMPK
hUeL2HrhllK85WVwZW3gX/67VxDSVMgzu0hD+VM9vp0mCw3O5Lk+6wB3iOtBGGUU3MSHDLpchFAC
C0pKE+rUl8uKsCYVWJjgmkrj2wFdUfb2iQPDPB9fzwp+hjL1mGMK4ss7SSDmSFDzD5RFxl1ynXzZ
j4rylQKu724Gib+tBHRjw5Ysfm9DdITsWgUKQH0San9mHnHA0zYEUu3+fx/TeZxxRa9ZrwY5qbTS
EedOvh062OXX7ByfaddOUM3Lm1/lE0f9xiAZVcZGXhAvqOl11m/M15ausBNYteFJ170tGVCHDB2t
DwcgKW3MqF4UraojTGo3dHZd5qqhLMD2Ia2zt8owYsH1rmvNzGLG2FEQluowcHmdqZBBF2W/lO41
1NQtbN9jihVgeqNv3kbnozY0bJToh++HLEJsviKTPWBkp8X9ZoMm9Xacr0/1QoXrGHnz7pdahuIv
nokEsqMsVgoYSqr1IfcgG+v5+INfO1efiF7U0k0z0CDV8NeTvSzGJtVD+5n2t31Ui970AiVPX7Gy
wka75cIdndC50Re4CconnJEV2kToKEckAw3Rhb2U13pgD34jxJYlU1i3Uphn1jHixvi/aVhC806V
9RIDuKLZquU1AN2wL+H50Xjh7F44Zvugc7/I81kSoVGf3hEtPdPjNPzL3b5reVUvIgmZo1rL6/SD
rUVpOUuVRpFJcXaDETo8SPA+q/9OC8ij71gzOG5buGgCnW0d9kVFpiZIUvLSVjtbzbVv/1Glb/2G
2kN8wZL3TbByjEnyQiOyAkFny0iPAZFOMJCgOxJGQ7OzGaHGCYdM3YJxeaa0PY4mSrQqG0C8H49R
4skcx7dTNtxncIe617oolMG5uMTPzft1KjrgXDiRVhnTuImB+xOzP+5hERGXio5dsUHme9q7/4Lq
St3IQSFdMAbmAnJgYgjIIrxfcQwHavpI3xeUtcbf84CzH+t2DAw5ZHVXmDSuqmhj6b41GYgobjwe
StEIRwBSS+AXjr+HkXDueOEMLwtUod8JZ5y7Zh9VhffHihg1sEOXaQ12NhVsmrI72WYROHgqDfPb
Dw86ECnoV2nyQr2q2mZkPJnNFhh5MkYMtDtcngJyjeAb/i5YNvdaH6eR9+cR7DQYwPyk+wVybwNN
1q1cmC3EyQdASWXXI+tqAkPXeLD29ow8Kc22K/Jq3oYqfD8WTT9IXTg3X7Tf+yWN2NsVaIXw7zRb
pxpBuBW/hxbUCUvCTC85010pLlaL+hoelLOom7Gxu8/n1sDsoUIPdUkM2MxCfPNIzGexurXPFI6q
aM3PVKnBrZBwt/8/0Mt6D6wsvhYYRu71yLWIb9pzRw45CaCd0xTQr61rb0K7U5ecrub+Hh7+RjjW
9tneaP/KVcsxhYtKgILD9Fu1QLWpZf5ArB1sT8aUA8ZnzjAtdUvuJfAHgSZrEGjLTfGTWO4lcqnH
9RnxjcWQFNW+txmhThSPuC3H2sPJE147JTDRKCiCPiSEzYm7EIcnckZIij0tL2R1xK+30aE9qkGR
6uhfgcvOAd+Hkm9d2tXtU5dPIaPcn+2wa38OxQNMAFshckpol2tD5pLxOEnx3e4qAUlzJu0iIRww
m5DdzOAbaYS/mMfadbfsw+gO/YATmD2uYyVKabHu4qWlp2GSbsiaUiVMy+K61u6WRFAta4fJkjhc
GS+MtBixHI+pm2gPIswMS5z7tZEFb4rpdhQhd8HTCuOop+TMweVXCh2i/S0ITkiM2px8gIaIlZPa
YX80E9pIGLzJh9FzUttJ+tp479ef09VuO0lej2bNI3RbYOGHVIk3ZvtuXLAQz4X5WX/FGGqtTnii
DQJaOyqyO5sayi3Re5RFbWba2MHOtBJ2ahWaL4lT/trbIksJf9yMHYrcA3C2EY1YOObAfM/dFk0w
1w/y1cyjdrD6cSBsucHmBolDP3ERqH59inJ87aM7XGb2+D1Doj+SbJP/C5AmG/7D6FGFTh0D1w2i
8XrZcmMg7hZ0zXX43QizSYTDB+VusVcRPmxN4mSlxSLvS3cU7PTps2qh0mZyho6DBj5CclXxl1gP
vN/9X/XW2V+sGNhDkHWR/PIbDyvhrwWqEDHQxbjQhyQb6bxAkNrMBOFoMWX7dRsZyYxKDmIymfEL
rk61TQbDrujnG7Xu85ITAlEw1NA12JiFLdcVW6u83XedcGf/RPRT9CN1ufu4SKoiCrNT4205mTZc
4yK5O/RjPH/p44/SEv6ofYHS4Xm2HGPCGNgSd5Wpj+zLx+D6udzurKW9xHDv63/oTRPkvVaVyIO3
jilhZ2JXsAFEhbiPLo54Ybz+CIROLVl1tZzOvsYB+NqrqZ3W8WKY2mWjTfZ6N0sYLuHPzu9d8Jva
2JExS4cI2srbWdXjbuzD8trOftVGvho6Jk8/lD5PVjW3Rh9YOXLPGWTnb5Um4G9Au2AAMS0l5boi
ybIRthSnBccplhu6yn4VQa5nZFomsuDzhXToDakX8V7HL/a+5SXozvBDAcXgJr5snLZvHLAOruPR
4zgXuRplRGUjbGaVkDuND2bD5AYJ0EGHScXZYrj97Vd4fBhtRFp6fQ7wvDhGoC7zb5F0VPM0bCwl
p5omtSx3Ac/vmeahXcX/2JHglfAmx54yRLefCo40g9ixnk89IEqSoneZ4eyKZqiGvqUK2A0VpW6r
46nG/NDFwLk83UbUpXzvVFrY+XyBZXM0f1DNiIw1NftCkxEm55usGHqzmV8w2nwaLZo4ip4SRsSW
tsBxHQsgn/CxgUcQf4PdR9qdDHgDf9eftYKbVj+DdvF7IdKEkOcO2g7CjTDMNtc9+YhFwCqiaS5y
MdmshwKqH9S/9GMlj5fohtXBkT7X4/juLDnpkLl6Uijltsmtte4yMQXehrgxXmPrz8oU5EB/9Xl8
9UMpO+2BHX6LAj9GlM3BVaAr/OpZROlw13AaZ7iyOxL4uIXTKJcBtRg0Duz/Assf0EYLziH6Qp5n
u4onx8i67tPMXp42y/1aDrX62nCsg4pQ8Axba4N3OonVhNfDbIvmR1AAzPChnsA/vC3gmnCzr8bY
PYHoNr8tdnTUpyaeT8v7hnKZmOCu4xIXylQz0y0zFkX2ZOr7uShVLYVPwdIYbJwFj3q/Hmr3Ja47
5+2YvaMKkA2c3PdBuG5yYjwGKso0uCebJ2wlNYSpbrrE4eQuyaYSv/do9xzc4IyVssWUo48+e/Tc
YQgSyt3LcAJ2u/478xMTWeLfAhP8Vb6qThbSCKqo0cLqnrDzlkXpQY8lDoa6eu1Y+wsYTPz+/bOQ
XAo/BI0sm163Z6I2bo7ck4KIgPzfGe/iyfXpQO4OXtaE1mDqo9sx9khcIaxKOQohkQPKgtByIXCC
hH7LUnLLgKnSAVJ1+bGJH9sbbPZjyYp0ELly5aCUFrsiyilnGG2oOyFvvNtf3WrWi8cLwv1rnrpE
H4JbXXfnrBYrRwhIOKCB+CqOXABINMKc/8O6kKAJvAEubhgozxNrH5Rt22NWTjmhMMNb9NBD4Xoh
9fUGKxMgY5uWDEXLvXAuClnDP39/7ia2Ab3paawfZVXH6JJXoGxHfPDPKhbblg6J7zMGqONMjenM
QcrNg5sTDmpVL09RxpJdJYPxyptkUGNjql8YyvcEVxCP0apOBaAMzEnDL2jYq0/Mw60d/zoYJju+
YShwbDUwF29hIRtArro9BYHgwFPfKbe3rdb+LFGgHC0tFPYBmKVhBf1u15ijCrT+4LavDyCmq6iH
SII4iIMA6ciHQg4uS6ZINquS+sLkiONQGAWyEHbRwl8FQ6INS6wzPrRNqR9llIf7WXpwB0q5x51+
0EKpFpDysHEjdau8RMKrC22V2RpQpdXmCtw36gmW2yzRSvqVceT1oSa/Xm9OCzFlyO0OaF6ag/An
3DxcEhyyfpk+iTJ7VF7GRdi9b4RFVSjrKx41pyuEJrYzQrrIk+UG0Gw2TJ2+xzyIjURIKZ+5WjNr
MnlughWRis8enfQ+2za0v4SuhxfnBryy4SfZKOoNKKNdxYPmCRGWV4qaXiqIggwEOfXWkiwfCHFB
RyX2FQLa/1B3N9Y3TjEaRogu5PMqbNuBRlaw2vmjoYGanzJbUZkwDn73s4lmLrbTFZNKgL+1eWGz
bchnFhSx2cjLcetKCcVCYefvZWjqxLYx6J6TyvNsQJZX0zic1VT7cr7hDC7Qc26zc5QPI9aakRci
DhoDIBMLzvcj7IPKDuqDPXSvqCIam+nHDvwZKNaAgyI1Ud66s243rYZ+LZUUN32xrvhJ0fkn0Cr+
O5cb1xwwO1v3NMPxmiHYH+RW+yI4CvcuWApz0En59BVPU8jthdny/UvAGLLuCPL/Zr8PBUMPI93M
66J+VAKZmOs6/No8lR9LnbUeoyRU8J+0cXV/Cr0himtDlQiUmVooQTSHMOJ8CcT0DTNuksQe/bjy
LQ7WG31xcQMNLDx/+swUOSZsxKLF9hr+4ZSz6X5qxqXesmZvsUNIktbA5dYSlWQk53/aMvplKCMS
UixVoMMxQ6pMapLYNN50N68ml4jxMCusBpQgUe0BUtztzn/2gS9lnec21MD6PbjXmgnXlX5lqZ0w
qwfxyFb2GO8kgpv27fQKr3RFiK9B/9kyOypUsAH88TDj3cOhatKZKTd04trNPxPRbZEkOqErjUVh
8hoVUNZ4Z0JCiMO4x7KKonDav/0bAYU2NYEyIAQ069ksa1fJN/4G57c66SfnvtlO4R57ulkLKSgv
rnZnO89Wx31PzgDhA72GyYB13yxBVfql06wIAVxFXnajghGoKAPMDJ30Ap1KbUUbl2b0M5oJMh3J
9qL+IzJJV0cV0Pw6rZxg8eaJcoJpPgMTy0CNavtYqWpI64IAg2Qte5OBQsc+MENVA300efwNoGkJ
kOr/D+8PiTH5Y/Ga7qmV6WxZl//QvaJM0GC595Vy5JktiCVuh3Q8kgWu9Sjw6uG33dqOxZQc/u6x
CFvX+hMR2MiefmXGiwhgTHiPpM+UvHgm6pQEJ5drM25YFGTiICr3S645SKx2vPqzuiWXuw8Y6KQs
Hcai+0gdejItENqjeWWbTt+wgiQODAcfwOW4OdQPPxlDaKAT5GqSVXjl3w0jCqCkMGk7k3o96f3k
4qXhsjyI4XWtXYbpxCfdwy10PmlEfBGueadLMAGlLj0wBlOvkJSL0Y4nLIg2SiIKIzAgCIUfpsKG
IkfoF7Xwda+APIWEMO6A/jdxn/Sf2Gn1JgTlKXTZ60O5O4+K3XNKov8IbxXeM6/VhaN3gA1XReVp
kBN7j8eu59kQ7gsNkAjtRS844t41A3d08XoPCg2Xf9MRV6C1o6PyJHoesSTf4X8cIR7b6N6Z/O8q
E9K6O907sHug7nn7Ti96t5ihTjmB/Dnq24Y9HlOxsYDRW2z/xG29bXqufoUiRn5weYbZSj1pHFci
2IOg1Xf6e2qnS032/1LU7AtJDBtegeTOw2q7ZjUjAIAbktjUg9fqMQnwCIg4fUwdewlb/Cwx8TX9
z6CBtD1uqcklJxIQDisGTAw/ERVIBRyP7dTWWT82gwgd06Sl6zckiXuD5Hc31o9h2KLUBdDmdlb9
pjAke7DtSlbuoGnPomRz7ZTEXwYiimL2mDSPjbDiTqPAJc9jYcU6FafaTV2KBCSTGcir9LTiNdzi
drCmEtaO+tVNZKtTo8XRu+Be7145qKQnKR1L9osYw5dDFAifxhAYBZ217jYgJ3RZtQ64zec1+Cpp
YzJbGmAXfkJtBiS5jGWBBKt+dzPVnu1LrJ7BRS1+KGWoTu5mFFLGZISz2R1H9duXmJZGvG4o7/PK
cI7iNJwdeKdQJOYvsChWc6wOc2tgsdSBxD/DZpST6Pw1rdGQ1zimlIJ2jTgYhzxFhnfhKZpLIESn
HpNPFb1JLG+8b3vOwOQP97LmhdoEARUzF/InqgkEC/B9Mo9STDoYalDqLoyX10CgYCPiKo/ScSWn
g8KLUSi7LKZmT4USWx+bFiwBC1Ae675XzFou+ASJenXjpFbKJyxhGVbe62hETYnFvsYAWjEUacOO
qGDnFHEcqHazFjJhNREPlzGW+G/lZQl1Pqhps+wI4BPgj1TGbKPEzRI4G9GazCie8dl6TOx8p6as
pf4WTdcr6D+JKCNpoO4n6RROAxJC1sInFjOKLSsz0h3JW//m8B/bGKcXeu1Xpu08Lt5mGdi+rSAB
5yaFku9sQrRQQNZW6pcggE/5ubkDZ6vpONxgcRIbVmafBQOVLf4DjXhfPmsSlIwiDLgWqYbHnys5
T/hinIG5EClSnb6CHG36Ya/uuRRlJfzNgXpQnEbRD6XGp3n7zzgOpEA+fznOZJSONwkU2bkRad5L
uKLxM56sSibvEuOCIsnbG/OOaLfJCOyaePulkyr8hBzD4+TFRSK445nSZ4L4oT12r9QfjlE0Njuu
49xZQ+5AxtuzLHh7FCpvr9odL2H5Vzz1Ebp9w8AmrRsir8doEQ8rFfasR7OcQVI9CM2fTHgaUz1h
ot/OQTRSagh6QmsvhqpKkmTnSdjWUIfvYVzLRXFGF2c8z2X3IKSyvhjRL7LdYow9w0A7ilOUKgVy
eWMHRLhD/Cc9oJnVTOMSFAIxyQv3qjRlE1BOfqhVrfUsSYhlerPVtOAvzyTyzLiG+j5Iv1vFaU/f
NlOzil7tPi6kuvUQR+UXiouoXVMmU7IQ37V/xcPGQMliTjFwetn4ewijwTz5mvO1MBWjdnRY1jmN
po58pQsyrp1NnacbeAEr/JOVC4DCgaPeWtJ/8v0krczqWqWXMJkbqUCVXOZhGbVzbCEIcvHRci25
XsguPFhKIXCM4gf59nnXm4IXXNOPhYubFafdWZKDbr2kbAhLV5CnnUeeOc/+tPEFOxHzJMf9L5Go
gp3K9mRJ0yoOLDe9eL/vW0WsQXb6rj7LJjFBKsddZm7sd/eCZwUD5p9lMK22Iy/HBMRQ3yvWRJKs
yKM8vu4N4egNnrpTCgoYIwx0fzMbTIH8T8uBM7aYOCCkc4BF0wkbeme8ibz5F+FdAedi/DuKFtYs
NQIf8LfsTueoXjyvS0NQfq5FND6EPgRNY2xkVrLI86n1o1boUAJIRiidfXSZeMn2dI9jgOkuDo/9
oCSP+LVf4Qfbpr3qDOIQtesmIBidPnbJjSer+xFxjzf2RVtIugV6EPWI8AfGsATcHI7b0gdwrsrm
euY9S1RjKr2sgGP6CL0eBBGJ00InEdB7WUPJUbzvFN+NOLpJJxJK7l9n/Rz4DANW2RxmNTI3N8wj
AsD7Hlps5C9/UJNKILRXDSNr3cvLkTFT6PTNcpHWQggQ1sruUY5cA/GFoWr97QWtTG2NeQPg0ePj
g/R5aQTo4ex/474N9dfLrxkdnuu14M1oW5RjGBkVlVE/VlRf3I6wwAfYWtLUZBcjwW0JXCp+k0j9
trNLNUCCEHFo3JFwErFwR48A/KMYeHw+GcH3BNoYgV3ycclmEtdV9TZEIuVSajDIxFFWFCyqKN/7
vls4XIgsQOmtkoqgUohvG3nDEZUgOK3Gcr0HCIcmtpTcQScUQozPu4HOjOwE9xdEdKteisgnWbfT
7pgXZnDgb4xpD2T+2DeGt2TZKxyh+A2AF9rnCqwZt87oD+d+fM+fXKnz13xtkBnC8Fk6EnZeTXWd
nY5SPnt4/9rP1JiezPAS+2fCOFnpKBi7K0a2jOWTEYHDDVHC5wSRSidCikjrto0HeVAhpF6Mxkkc
13Ww3PPyv9ZcYaY067dQODagB9ychTTddltT6dyZxISTcA5X2NAJqKUCvj9wJqU1uKUWx05PyC7E
YN8tseN/X1/FZwnG4AYakQGxik1iKYo+8WOCZw+2RlESRP/eNhZ92v8oA2CiZ3+0KjNZonjKlWKg
7h6zc1xR8jKT8oGbDhGP/kRfUSiMqrC+rl+mRlYfkRZTstBv7vFgPNG1XW853YKJ8v8G3jfrcQ+7
HrCQw0Uf3B/jmzWYm9lhxd9e/eF5cwIsO1tOnSOPQFa6ub1GnLqkatC016eqIbHSbT1sYzgwwnWt
bYl1zaQfe+jIPNgUT/rE+bK53TQ4dHI0LokcTvSvrT9TvnWoftMUkI2318QJ6cpVS6WwHuaD46YR
zUS70xb+6MzK8BM8Z6hGjaNI+bWQ/NGXpGNg63qdMjp8DbHvIZ7UwW27jckHpwVVydVqA1gGTaI6
5FY3dWI9OmEftUNhwRfmK0NCDxxuvoMu8YQL9Igf5Ec6DiKp7tdkRL4orBjsTe6QA4HpY9j8UbxK
fSs3bwPr9i0wxPeH+EHBFJF2hOoM4rodROFcxVxwXRyuQHRKWYHnLCRG88Ajo6NeDJaWDXnkrZO6
XgB1e4V5ePgjLa5oPUzdW8VzFSLX0vot4HgGswz/TbY0HNagZmERSG5NIix8StooHIVAH2eTWN8H
lVDZOV6loTo/8JgFV6c74ONEsu4+7v666GfY1b7Dj0gohou3IDmocFkZji3bUYFnHNm5M5oj50Fh
+fTFHLdhwTWp9yZo9+LPnHGlEoPTYtxnJocVKWpW6C70mSQAUqbTFpCfCUPbVdMRaESZKe9q938y
kHgR1oj8shBs1MEjDIOS5jz8u85IsiwSKkbesbzKhaDO7ga5nGnMzPO/t5K9lqoglHLGwjbpbLJ1
ssmGKeT+IfKT8XddhYOeBPbWPD0mjEHarI1IClpP1Baf+yKE1VudHohDF7eiHINjBHl8XNjE6bJn
qp1/sjCwOPRmVkfUXpSnrHQKWO5TdHOYZoE/gN0mQhGeo9oS1orPeGrFSrheHjoYTSK1Mo6sN/qh
zZx5eMfjcqn7GWUo4SjGV2wtG6Me0Q6xHRPMQwAYyvYIVmEZ4WOzZx23yfWXR59IDkDaZBUwXWw5
tXtlDm6uRj2dZKYtk6jJ023aUqSaltriqf7s1WN1sZYzRBTDCljwCECBEiMgyB1bV7hzbKQjw04V
DrMBSjRbcsW6uIIS5O6U+BUo0MeKDWHawhfTiMnjFtoZPvx3Jwjdi1AIRYLfgMUMba3xesZlXiP1
ZBCZr7UGX0nUkJVfz+W294DDD45j4gw1+1bl8wXDLakZQdj77YwsNpKy3TTOOyYjEXkrqS69c7/i
BvLUwYDlHXkXZRdnEC/ar58HVENEf99op8ZmgXiPgU8p6PO6vBYtz+gEd51OCAmmIDSTQPrrOz1k
55eTlUXyTocDmdeib1ip/4Rj5vgqM8Qc3w+7+SmxlP/ar++qOnMrdTRwNlFONnhrMw+boUmqUhfM
1Dz2EqqU7K9sz/cgANEwsVHVQ/oSvm6RXAX9yYV46XX+ZVMO2/m7dZgb9NbhqBfcbSBulWXnRqg8
5vQwOkE8zDpyezeqsijbkIifthmIaUV7zReAg12x/H2ePBljM8ZNEEJ+wArZbicaJvhQM/ovvhiP
P4AJv3wWN1igWyl9M9GLsUMmboYswu1AcDrFuS4yktcCyx5fcGt/imQzIvJImrJgJCrdU5DEFMpu
eP8Soqfq6h06ciKkrRkjbfwvF0Rao7CogEjPpQHNLaE4izyVlLL6ylD6xCPvp1EpelTJxnYwYsW1
RrUcUXDB0gfwnrw3QgbYFPmD7pOr7W9nlHyI6cucXDqt8KiMvy+dwcLtio+aTzBHXkCtGd5MO9QF
HjfYQdb45OTd6HiS7CmHAIGamKecEzW8mZtEltOGVRNHmyYPUWXwwUUsldTde/rZyu4DmRFvbETj
0FPdbC8Xiun7ApBDT6gBlod7cGFzRmZeAePlLHmdqi4fhaWHXazTYnMBW69Qru9ZE4IfmDgyXei5
riBCgtTnOgrIzS2A9zqLRVidfM8M6JnrQx+zjlllZvMLBW1/2KM72M4nZK7Sck0FHPEQwGrMh1Sp
hdwenvWZ+3N9I0pA2grWGu9bTjuYHR9r3v6nlqY7/3Svn6yR74KhIqBWSxE72wubSrp0Pwne/Z2T
NQrhVoNP5xjeGKAP9GljMKP77Czx8RGOC/8c+jiOKVaglFRVcSKAtKuDpIQxSUkZ5bqKQDQ1lNqd
U42ehvZExs7FOoAA7vUBh3yMv+ta1lk4fapLm/b8nYYpBObitbVbUBmc0WnYU/AA19GKW9nzSSbu
Ql4L0Mvm/v8Ve6G3rrRwmPUZ0PtUaxQEa8fNj629kvGocQPxDxFEF6h6E6UZMtLfncBkhxXss/dh
TiNnIvSEclndcBm8Wzxo4okjGYihy7bc+iWdRxkvgeuCPCoHfKJuA+MmQMTn70GNTMCd13buppnF
GWyf9q8XhBQIkERVaUoGM1/fNDsXnE/oIV2h/hgmKv2G9iHrZLHhAHqYzVeMkG4yI5EWuBd34Qc1
44yW5Mo56YJ5dNS0XooMqY4Zfh2eknX/G4SSMNn4bKCuy1CfS/rez5KIDwtmP1QXXO8Q1lB+w+5B
/9WxGFYTinZtrTYA4Kc8ipHsp2Xqg+FisqUaDYUqwd7aUKC+DCxo/5giNygVy81VwzNfOh4aMZoY
DGh2JteLZ5voxjhKhoRdVXJQ8ZSphmerr21lKJHII/s3GezxIh4+Yicqta/OfaVTdn2g9i+pbh7R
KnEtZtoNrfD6RGfxQNH9ORE/IhajHGCEuANOQXgGKcmXwn6j5gwlideRTKEs8f9QvO7jSBHPJgFV
h0N0iEWW8aWGh/HeCB8ztighZal2sfhcyZyOKjqCNB16oXXuZ7Gvlwy6uWZjz4ZrNoR+M69PlGyN
MZjJRaZ7CmQ53hlfLLyJpJzlQZG+djOm+GK0oiXXbi7iWrnEYg0+kibJQ+PQaClDqbUI6ygfhGgv
FQKKgLj8S7DVc3s2CQwi5SeNEr/xLVHKUg6YNs+0gyXekKhl6WkR+k6nTO3d+jr1YiVgrhpiDsMq
NZKjEJ21p0aABTQ+yXKJ+1SbWEz8BLaYSlFuMFkFg3QOOLgz/zM6GWq00exUt31BGWWhNsmc8U9k
KtU3w8kmA+7FpZwp0aI1tFPOjqWrc8bjvkmW7IP5wqq5d0JhBtIeT1h5tIXgCEc0ypB45jYS41bd
H9+fNvtxBkaKu2HSrqr2221brNDj5PecvzIxlJSAe1pdLV3vkpe5ETyMolFzJaHc8cPIKNYZjmAY
WuiRw1bTsQ1RtW0/ZvfVX96iMV3QtmwkuHr8Ip6/JqS8j8Lkm1rdeka8eqTM3RiMSYUEodRB6Uc8
nwqhGwL7X0czQk98pZvzGc1v20KYlM8b5TVG5yxAJBtmd5vOr579bYyufc71PVr9ODVR9+bUwTiu
8KpA9cYmpdFWXb1kG3CoBCrWKFN3s4BSTZECLIldsInlKRwywd7qf5kLvvqqw9GkNrMFd7ULnhyL
kK0olMyifZLV6JuQ4CdDUvmNEadHoGMzIq8rIt4oSrDqrONwF6M+zwwEFbpmDk93CrhZav6S/kKr
8fvxCRB603xbU3+ze8OgE6QZGt0bLO+XQ93CyGIGamxAFdhrD3uvSVYdyXG0hdJMihQh9sj4BcTl
PLwOWmSkY2ZTvXmBxBqc1I7BX+H0i9F/zJm3oOM3LVYG9gk/+ITPEmLK8qAabANGp1hxh8TZHj6S
bYMZvl5QfZn8D+d53UKpxut9nFvDPLa6Ft5maAzoTzw7qDaFABwQqD9RyFrRkHH+tFX9fYKploYJ
ULq+JbfX+aDcha/mkJ+7fJMYHNkQrYHGBW/CIJD+QuBpxMzG8Rzl5+PSAze7MFk2AyM2o9K+/rpS
3wvWfMbHtp7p0xy2riczDQlYj0dIVY4VcIxcIlIGGGNbrAzS2kSUMp8M9c8HtDma5qDL7KGMwB/i
HcyQGrXAztJ9tvIthlCsMsEI/ytqLEbuDn63wWTiTIXfI4UPROFbyqQtoPlTLpARPt5nUTttLePh
TmKMN4HqLG5CHxNMKGZ6rNi1kYi+rOviWhfyKooVXfUEejgIl3ynppkjfbxkOVU4wV5405OACkv8
GU7QslBI1M+tPLBZ7K4LakXZ7w02Etg16Wx7UvktIhvbNQksB97cT/XYF2ocdmWqQLydnGO8sAtr
Ei2FIdRfxSt1+krPB70fqwLbf8y/PNgI7wD1tVHMSer1i61b/FK8O0o0kiU7vsH7YEJx0GNpl7ma
jHBzdSpd+RgOVl3qoMlW6baRzqpxlKXQrsg78tsfW/mpzVq4cG0BecerLx3AWVL3SBXgWlkzwdwh
XpyinEJIRfCKAKQ2leQtUgwU8V1M1THP7nqCDCIdHegioQUI9bbhEVHjeE0YiwmdxFckf6CHqh37
JbyFtixpyJhoYNZVcswUdD+et/UBcNrPwEE6T85iOgFK0q7E7yTm5kvyZdHWnWemENqrKdv8rB1E
DOrjjbmTfHkFMdE9S0MBjno94PZEu+LAu8SHZcZuE0mphVIrqMefRss1TT2hobtfdxWOqDDmOv4F
UcbuiD4qMiZVGChzXKuC/5ehMzNIL17pj0/zRAWPL3P0yifvPmybOlX81LdoeveW2Cp27mdazXpY
nj24awf9O74lZJhV0mugPd10jHGmEhLlzYPC09mRn0+i1OujDfKnJ9L7j8QXt9oKaaunYMOQrdcv
fGBlEcfBz5kCUrypLNgC7idFtqTS25V4NUf5ePhDtqSRofXVNCIRMn6q6vRId6der5FvE5ZjFkAW
8hhw0iKV6D3q6IKTLo+GjEVjIhU8pC2krzRnM1qTHG0z3flPhUIl+l2o1IzuNDYP1Ukk20JNOcfy
rFV7OcG4jLMy9TYOA7nrJgQRTBZUhOoZ24fuwQKS1jeypH+ffMQniZFKY77ReDNTtJwzFRTT/ums
gZ8Ft5AbhIB4ey+nrJRknuNIzctG4O70g8dcSZvgtbwdAbPTO1rCY8CpObu0N+twDGE/dmZ/H5nt
kDEhFzS637IvBMSH/2KNEj1TFtddTu4xQQdmBixU58YhNmfpYW3KR+UxPk4Xk9IFv+0c04189i7B
1LDt/JgVnn2CESOR/wSX+9MZODNrfsZ/w2gtuEU4NYrOgws1YOgR6BkbEF5Z1VfPHay2HKtwBtyx
3E9s0STGnwMsl2TOr8HbhVYxozQViLQ+kbb+F+SyAOqSM94rpy9jsptE7R3Xl19qgj8h3Ovp3hDJ
JDSlIVvzU75EbZau90gMBWkN+pcaE9Fge9o2EvIDoUABQB0VzYMiq5K0e5c3mAhro1u5b4bO1mFN
efXEifpikdeUVwVMPl9VleIEIfjBcdBzvHSAYa4R/KPsq5/CKRnC8+KaU4qugu+W2haQ2YcWBXuU
S1IJmhz65EgKax2NHHLj7tpPVSlZAjrMd0RHNdTG7sumap9mOBb+XOQisDmaJWRBYmqTw/DO3JMh
WDzwjYkCwHOjXAJLwWJ4YlyTdDW0Js/DzRdvqk4+4511+9T0L5UWenoFaKl1LtxLscsQ7qQFM9En
WnUTo9/KpOXJgnMfSsa6TEoHcraIjCGUvF7uwc+BxJoxo5W/Zvj59N+ZItVn7J5LgfWGpRVJcrI6
mA3jYK+Qc9vxUw2ZtIq6vX+dnwo8WkH1cygBhZlo0rtN4V5Pf+B5gyzKOT0gnjmAaFAnAX2VA0kr
C+RqTEbtsxyH4VSV4k1gP47tMLCdf8d0PwWMQXTBVa4F67FrBS/jviH1KMtTmXwdog90ZUQV4t9b
HJIWd8n2g9oa0FYBZZR1z+SlwbJwBq+2JbIvwdnLWatDVI9Qh6tVhRP+5D8oh44CZRX6q8TCvWfS
feRFP4ZwAK+OyeNnjm0y6AGIcJtMFhhfJ3Jk+xGfTuDPtze3A2UlBbLyyRXs7LlJYekM++nzw57A
XPS/70AqrdcMnevWU0pxXBUmZnseKZWXffrqSQgyUuN+w5MQHFyUuFQ/u8QdPY0LblTL9JbZhAgI
vbb0vFPRXjSPBfHx0QoaPaM9wHKPLWx6yRVE1ToD45WNPw+oOSfaL68gRJgcbFGVttWWX3Vcl3gg
dVtAov+h1XFYafbXOCTlzfkav4yr9lCMgldNMHOzP/JjsLTbTBMAGqCVOGy+HWt41Gq9x4s4rtrD
U/4I9z8JFzPea6Mi1pfqjUSXVH1S1UV3s5wbVO9ZL0fCD2D6aYI48jNPdfUxHVpvDn1/6/RMtVF/
/BvmFK5kf8plESaYq2UfL7OXHwMGuLpArXoj/mw1tX6/JCXLB600864K5tagb5gCjKpLFhukshw4
2BnjKVs7igI9mcycHp6brPoRzdwPvGB+YEWBi+hc3EbT12XfNpCCAomSg+JuvgYE0rMZRpDN7p1z
wINhZeRNCK7kxsXT6oab+FMWfnNF6fKF5AwWRTIrjqw/egFYXRd/J9+QH1t6k5Vw5vT7zkS5xH0r
UDBjlIHBp296wZVd41dJRtGXDB+kXffATD2ovNObuibF0MpGzW2p0l150GrFUzJqt0nRGV4LoCuV
MIrkr6Z8N8kbd46ci60N3e1qY4F4libSEWMB8poBxZ72AFFYDWrkqGNrDhT3FXBfMyaJcYmuagR0
SISSK9B4IQh0rgZt4n2chf3pMuV2tQxI1D+rfqvsJphkdQDkfKws8B/bgWXscEO+TC9vutrlt7CY
2z1PKU5Jo1rhMoaVZlkrvEIeX46V3NyPiPSEVuibe5MkgKVbVJNpmfI60X8Fq1L3ArkjvFsvxMp+
0FH8VF3OsL87WD/+za6ZxtBM5+28e8/WIibAIo8XvtmpuxYlB2p8xb5adpiFH3FNpf/I3W+FFBZk
ljkpVZWkvTowqpeJC+iEtluMS4mDH/a44De1S4QioFSjFWBLZaeizJUCiz9IAXle2rk9e8sRHwkG
iIhbBgNE8f+W5ptnQh1wAKN2XW3qtACo/eDUf7zUvAGqBGpRJNfQF0iVXCNUM+nqi7P9v9CSxJiL
Gs1Y1O4AmR6zr57YpupCnJ1elmIRJ9DtzEkveMmg0DJ8pv9IvpXBFrYOnbv/mJlC7x9oDXrxqpxY
V4vQVaoN9a1HNSKeYDNH9rwFhLIXOHdVReeMAxT9TavQ+tLyD1dFFS9AuGsrXQE4DP8mlRGlnh2O
g9ap+DH9OE4mzCtiXe4/r/1JlcuTrJRp7PN4CzmCjsTFo9D2NafhIf7dr5WERS9hb/Bjd5pTb3kB
vAHulNSQgMMVvE6JsFwGNJD7A2GMAn4bzCP+iaDExDTApT/ZD4XUytushEUux6PNnkkT6PPb0kP9
SHP554bwHkExQCEXUBQkKdr6xGboGeVvuDOghFvVEYYqw3DUS36h/JGlsbmnDRTgdkdFAmjbaeht
RyWqedo0fzWPttAQTzT5iIe56Lmx6Hi908QHgaFYqbyGD+PiKbhBi3R13uj6zgFisKdM0R4yoMTg
3d7IeuyQODgbJbHF+KIXFhJd7Ihlfeynm0OM3iNYmJHkV7hCCdl4tm/35dnUgYJnpYFqmApOt5xx
Vcb3FB8Ws14rU6ksguDeW3v+tEOiv2BC6mtx3X5chIh7AgbEzyoN/JzPm5NeY5iT5aK+AZ2NeE0t
D/Ptgvmt7L9FmLYSH5DlnGeiJ3rQVN4qI95yUUuj0AA1ExRU+Tf+k3tzKMR+anFt9BvvZaMU6V9Z
x7mtWDBbQu4bnxn/IIUA46DcaFvmTl2fszwkLqDvx5I8rx3XnIbzllERJFJ4gqIp4YG3otgT+4tq
3uTG+gPpRDrXu0Xyfn2WomIa8HMFS5c6kuTy5UyIwIwf+vZB8yC3JHraNZJZnf8G0n7lThbmfQJG
9rQWVpNVI2Cv+7+RtO6qypUcT6IqhfFmXJG2xi2Jv4RYmmNgLWJvS8QH11Af59IK1R/DoHNziyED
Zsu6e0Pjv9dQVfwG7EzwNeu4Q9y5uc8H8a+B6KdbBbQCUQXt+sVdYGQ5pAQ8j3gdWhE6hdbEoyET
FnqLiresV0SXof8n75zC/bxVfPZYfOQt5pYRr1eivWb6D/nG/8Q5FiXT3vCVJqg2obW1oeoP4dvB
tMUa7TZe/HMMYerWPc+o6nvv3vt3RcL/8YXU+9FTQJ17zX3C5bP2Soe+I8C+EhHWGXo7HS/syPZg
d5+J64o4iAiEpKb+UoA3TSH3VX2qph1YrFkJGGzgCSeREm8zJynp9XcCGZko1MDVWK9mna01gpdp
icePJdzPPTmjd+kz58/WiKVaqt44sRJzBvm66lb/EaKfEoFz+YEvrhllrpqZU/SnC2dR2ypYPQDb
vAbKe1666njJq5l0FLO3hBCyBBt/mCsiEQYamCsjFc3ecIhqxVBY4tdHT9TZ09ljKlaIDWTm0bY0
GHqtnq1R80Mz5eMy4I7yYXm6+1ArRVZ9nVaaeZEF+TWjBu5eNYClFyaIFdzSkcWZwkYe7O03QSfb
nCboT74j5MgoDi2XJDWWT8e6ub8Xf2h8nywjTZKSGaXgaFPLr9R7309WCTWwCT9SjFPho1eTklIV
+5ClKJzlHKO9Xv7BGDYbIxbWpUdqbt1/oDcKVRoiWRlp3zQLsePQByDeo6Eul/6BbxVB9HyXJx7S
gmaQVera35x2E10hPkIFannT+RzZ8QCt/Iobx0wv2ZwX2qIZAuRMERpmXTjiAViNhEAOtanEAZv9
QC0Voy4sgQ7X8ywFXKkB/0oWxzYGfEK4pk5DR/no/oo0r/9fjDUoBMAjaNatyGL47VkArQH9xqN4
pAyRmlC2Ti3Xi9ShKtT5IuRF+Tu+d7SY5+2KQdCbW++7B+aEwcw6X1XaonGZgaB9Cjyyvu42jBI7
Y42sigAHK+/QUtwmtpZPf7ZDPolPngRjC1gtczLsJjbFglE9aaZ2byMWvs2dai6WAUwskWmwm7yv
An+nGAAAAACWtOTqvI3UfQABib0Cs8swg+t7cbHEZ/sCAAAAAARZWg==

--nextPart2316939.Dv9FyvaXUK--





Acknowledgement sent to Pavel Raiskup <praiskup@HIDDEN>:
New bug report received and forwarded. Copy sent to bug-automake@HIDDEN. Full text available.
Report forwarded to bug-automake@HIDDEN:
bug#17811; Package automake. Full text available.
Please note: This is a static page, with minimal formatting, updated once a day.
Click here to see this page with the latest information and nicer formatting.
Last modified: Fri, 31 Oct 2014 17:00:04 UTC

GNU bug tracking system
Copyright (C) 1999 Darren O. Benham, 1997 nCipher Corporation Ltd, 1994-97 Ian Jackson.