GNU bug report logs - #20115
11.88; Preview images get mis-aligned

Please note: This is a static page, with minimal formatting, updated once a day.
Click here to see this page with the latest information and nicer formatting.

Package: auctex; Reported by: Dylan Thurston <dpthurst@HIDDEN>; dated Mon, 16 Mar 2015 05:16:01 UTC; Maintainer for auctex is bug-auctex@HIDDEN.

Message received at 20115 <at> debbugs.gnu.org:


Received: (at 20115) by debbugs.gnu.org; 16 Mar 2015 14:42:43 +0000
From debbugs-submit-bounces <at> debbugs.gnu.org Mon Mar 16 10:42:43 2015
Received: from localhost ([127.0.0.1]:48711 helo=debbugs.gnu.org)
	by debbugs.gnu.org with esmtp (Exim 4.80)
	(envelope-from <debbugs-submit-bounces <at> debbugs.gnu.org>)
	id 1YXWE7-0006p7-5c
	for submit <at> debbugs.gnu.org; Mon, 16 Mar 2015 10:42:43 -0400
Received: from whitehail.bostoncoop.net ([74.50.63.164]:51469
 helo=bostoncoop.net) by debbugs.gnu.org with esmtp (Exim 4.80)
 (envelope-from <dpt@HIDDEN>) id 1YXWE4-0006ow-E5
 for 20115 <at> debbugs.gnu.org; Mon, 16 Mar 2015 10:42:40 -0400
Received: from bostoncoop.net (localhost [127.0.0.1])
 by bostoncoop.net (Postfix) with ESMTP id 58FD61C1693;
 Mon, 16 Mar 2015 10:42:39 -0400 (EDT)
Received: from tulip.bostoncoop.net (localhost [127.0.0.1])
 by bostoncoop.net (Postfix) with ESMTP id C39531C1691;
 Mon, 16 Mar 2015 10:42:37 -0400 (EDT)
Received: by tulip.bostoncoop.net (Postfix, from userid 1000)
 id 70252261F1B; Mon, 16 Mar 2015 10:41:01 -0400 (EDT)
Date: Mon, 16 Mar 2015 10:41:01 -0400
From: Dylan Thurston <dpthurst@HIDDEN>
To: David Kastrup <dak@HIDDEN>
Subject: Re: bug#20115: 11.88; Preview images get mis-aligned
Message-ID: <20150316144101.GA10853@HIDDEN>
References: <20150316051122.GA9397@HIDDEN>
 <87ioe1gwga.fsf@HIDDEN>
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="/9DWx/yDrRhgMJTb"
Content-Disposition: inline
In-Reply-To: <87ioe1gwga.fsf@HIDDEN>
User-Agent: Mutt/1.5.23 (2014-03-12)
X-Virus-Scanned: ClamAV using ClamSMTP
X-Debbugs-Envelope-To: 20115
Cc: 20115 <at> debbugs.gnu.org
X-BeenThere: debbugs-submit <at> debbugs.gnu.org
X-Mailman-Version: 2.1.15
Precedence: list
List-Id: <debbugs-submit.debbugs.gnu.org>
List-Unsubscribe: <https://debbugs.gnu.org/cgi-bin/mailman/options/debbugs-submit>, 
 <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=unsubscribe>
List-Archive: <https://debbugs.gnu.org/cgi-bin/mailman/private/debbugs-submit/>
List-Post: <mailto:debbugs-submit <at> debbugs.gnu.org>
List-Help: <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=help>
List-Subscribe: <https://debbugs.gnu.org/cgi-bin/mailman/listinfo/debbugs-submit>, 
 <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=subscribe>
Errors-To: debbugs-submit-bounces <at> debbugs.gnu.org
Sender: "Debbugs-submit" <debbugs-submit-bounces <at> debbugs.gnu.org>


--/9DWx/yDrRhgMJTb
Content-Type: text/plain; charset=us-ascii
Content-Disposition: inline

On Mon, Mar 16, 2015 at 09:47:49AM +0100, David Kastrup wrote:
> You should have given more of a description than "mis-aligned".  One of
> the most important features of preview-latex is that it aligns the
> baselines of graphics with the baselines of text, and I was looking for
> that at least 10 minutes.

Sorry about that!

> The actual problem is that images and previews get out of synch.  In
> this case, it would be interesting to see whether there is any
> disruption in the _region_.pdf file that preview-latex generates as its
> image container.  I suspect that there is some page inserted or deleted
> that should not be in the file.

preview-latex doesn't leave around a _region_.pdf by default. I've
attached the _region_.tex and _region_.log that preview-latex leaves,
and the _region_.pdf created by manually running pdflatex on _region_.tex.

--/9DWx/yDrRhgMJTb
Content-Type: text/x-tex; charset=us-ascii
Content-Disposition: attachment; filename="_region_.tex"

\message{ !name(t.tex)}\documentclass[12pt,draft]{amsart}

\usepackage{tikz}
\begin{document}

\message{ !name(t.tex) !offset(-3) }


\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\end{document}

%%% Local Variables: 
%%% mode: latex
%%% TeX-master: t
%%% End: 

\message{ !name(t.tex) !offset(-160) }

--/9DWx/yDrRhgMJTb
Content-Type: text/plain; charset=us-ascii
Content-Disposition: attachment; filename="_region_.log"

This is pdfTeX, Version 3.14159265-2.6-1.40.15 (TeX Live 2015/dev/Debian) (preloaded format=pdflatex 2015.2.2)  16 MAR 2015 10:38
entering extended mode
 restricted \write18 enabled.
 file:line:error style messages enabled.
 %&-line parsing enabled.
**\nonstopmode\nofiles\PassOptionsToPackage{active,tightpage,auctex}{preview}\A
tBeginDocument{\ifx\ifPreview\undefined\RequirePackage[displaymath,floats,graph
ics,textmath,sections]{preview}[2004/11/05]\fi} \input _region_.tex
(./_region_.tex  !name(t.tex)
(/usr/share/texlive/texmf-dist/tex/latex/amscls/amsart.cls
Document Class: amsart 2009/07/02 v2.20.1
\linespacing=\dimen102
\normalparindent=\dimen103
\normaltopskip=\skip41

Class amsart Warning: When the draft option is used, the \includegraphics
(amsart)              command will print blank placeholder boxes
(amsart)              for the graphics.

(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
Package: amsmath 2013/01/14 v2.14 AMS math features
\@mathmargin=\skip42

For additional information on amsmath, use the `?' option.
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
Package: amstext 2000/06/29 v2.01

(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
File: amsgen.sty 1999/11/30 v2.0
\@emptytoks=\toks14
\ex@=\dimen104
))
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
Package: amsbsy 1999/11/29 v1.2d
\pmbraise@=\dimen105
)
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
Package: amsopn 1999/12/14 v2.01 operator names
)
\inf@bad=\count79
LaTeX Info: Redefining \frac on input line 210.
\uproot@=\count80
\leftroot@=\count81
LaTeX Info: Redefining \overline on input line 306.
\classnum@=\count82
\DOTSCASE@=\count83
LaTeX Info: Redefining \ldots on input line 378.
LaTeX Info: Redefining \dots on input line 381.
LaTeX Info: Redefining \cdots on input line 466.
\Mathstrutbox@=\box26
\strutbox@=\box27
\big@size=\dimen106
LaTeX Font Info:    Redeclaring font encoding OML on input line 566.
LaTeX Font Info:    Redeclaring font encoding OMS on input line 567.
\macc@depth=\count84
\c@MaxMatrixCols=\count85
\dotsspace@=\muskip10
\c@parentequation=\count86
\dspbrk@lvl=\count87
\tag@help=\toks15
\row@=\count88
\column@=\count89
\maxfields@=\count90
\andhelp@=\toks16
\eqnshift@=\dimen107
\alignsep@=\dimen108
\tagshift@=\dimen109
\tagwidth@=\dimen110
\totwidth@=\dimen111
\lineht@=\dimen112
\@envbody=\toks17
\multlinegap=\skip43
\multlinetaggap=\skip44
\mathdisplay@stack=\toks18
LaTeX Info: Redefining \[ on input line 2665.
LaTeX Info: Redefining \] on input line 2666.
)
LaTeX Font Info:    Try loading font information for U+msa on input line 388.

(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd
File: umsa.fd 2013/01/14 v3.01 AMS symbols A
)
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support
\symAMSa=\mathgroup4
\symAMSb=\mathgroup5
LaTeX Font Info:    Overwriting math alphabet `\mathfrak' in version `bold'
(Font)                  U/euf/m/n --> U/euf/b/n on input line 106.
)
\copyins=\insert233
\abstractbox=\box28
\listisep=\skip45
\c@part=\count91
\c@section=\count92
\c@subsection=\count93
\c@subsubsection=\count94
\c@paragraph=\count95
\c@subparagraph=\count96
\c@figure=\count97
\c@table=\count98
\abovecaptionskip=\skip46
\belowcaptionskip=\skip47
\captionindent=\dimen113
\thm@style=\toks19
\thm@bodyfont=\toks20
\thm@headfont=\toks21
\thm@notefont=\toks22
\thm@headpunct=\toks23
\thm@preskip=\skip48
\thm@postskip=\skip49
\thm@headsep=\skip50
\dth@everypar=\toks24
)
(/usr/share/texlive/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty
(/usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty
(/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty
(/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.tex
\pgfutil@everybye=\toks25
\pgfutil@tempdima=\dimen114
\pgfutil@tempdimb=\dimen115

(/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-common-lists.t
ex)) (/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def
\pgfutil@abb=\box29
(/usr/share/texlive/texmf-dist/tex/latex/ms/everyshi.sty
Package: everyshi 2001/05/15 v3.00 EveryShipout Package (MS)
))
(/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex
Package: pgfrcs 2013/12/20 v3.0.0 (rcs-revision 1.28)
))
Package: pgf 2013/12/18 v3.0.0 (rcs-revision 1.14)

(/usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty
(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
Package: graphicx 2014/04/25 v1.0g Enhanced LaTeX Graphics (DPC,SPQR)

(/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
Package: keyval 2014/05/08 v1.15 key=value parser (DPC)
\KV@toks@=\toks26
)
(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR)

(/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
Package: trig 1999/03/16 v1.09 sin cos tan (DPC)
)
(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg
File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live
)
Package graphics Info: Driver file: pdftex.def on input line 91.

(/usr/share/texlive/texmf-dist/tex/latex/pdftex-def/pdftex.def
File: pdftex.def 2011/05/27 v0.06d Graphics/color for pdfTeX

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/infwarerr.sty
Package: infwarerr 2010/04/08 v1.3 Providing info/warning/error messages (HO)
)
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ltxcmds.sty
Package: ltxcmds 2011/11/09 v1.22 LaTeX kernel commands for general use (HO)
)
\Gread@gobject=\count99
))
\Gin@req@height=\dimen116
\Gin@req@width=\dimen117
)
(/usr/share/texlive/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty
(/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex
Package: pgfsys 2013/11/30 v3.0.0 (rcs-revision 1.47)

(/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex
\pgfkeys@pathtoks=\toks27
\pgfkeys@temptoks=\toks28

(/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeysfiltered.code.t
ex
\pgfkeys@tmptoks=\toks29
))
\pgf@x=\dimen118
\pgf@y=\dimen119
\pgf@xa=\dimen120
\pgf@ya=\dimen121
\pgf@xb=\dimen122
\pgf@yb=\dimen123
\pgf@xc=\dimen124
\pgf@yc=\dimen125
\w@pgf@writea=\write3
\r@pgf@reada=\read1
\c@pgf@counta=\count100
\c@pgf@countb=\count101
\c@pgf@countc=\count102
\c@pgf@countd=\count103
\t@pgf@toka=\toks30
\t@pgf@tokb=\toks31
\t@pgf@tokc=\toks32
 (/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg
File: pgf.cfg 2008/05/14  (rcs-revision 1.7)
)
Driver file for pgf: pgfsys-pdftex.def

(/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def
File: pgfsys-pdftex.def 2013/07/18  (rcs-revision 1.33)

(/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-pdf.de
f
File: pgfsys-common-pdf.def 2013/10/10  (rcs-revision 1.13)
)))
(/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.
tex
File: pgfsyssoftpath.code.tex 2013/09/09  (rcs-revision 1.9)
\pgfsyssoftpath@smallbuffer@items=\count104
\pgfsyssoftpath@bigbuffer@items=\count105
)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.
tex
File: pgfsysprotocol.code.tex 2006/10/16  (rcs-revision 1.4)
)) (/usr/share/texlive/texmf-dist/tex/latex/xcolor/xcolor.sty
Package: xcolor 2007/01/21 v2.11 LaTeX color extensions (UK)

(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/color.cfg
File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
)
Package xcolor Info: Driver file: pdftex.def on input line 225.
Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1337.
Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1341.
Package xcolor Info: Model `RGB' extended on input line 1353.
Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1355.
Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1356.
Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1357.
Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1358.
Package xcolor Info: Model `Gray' substituted by `gray' on input line 1359.
Package xcolor Info: Model `wave' substituted by `hsb' on input line 1360.
)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex
Package: pgfcore 2010/04/11 v3.0.0 (rcs-revision 1.7)

(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex
\pgfmath@dimen=\dimen126
\pgfmath@count=\count106
\pgfmath@box=\box30
\pgfmath@toks=\toks33
\pgfmath@stack@operand=\toks34
\pgfmath@stack@operation=\toks35
)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code.tex
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic.code
.tex)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigonomet
ric.code.tex)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.random.cod
e.tex)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.comparison
.code.tex)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base.code.
tex)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round.code
.tex)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc.code.
tex)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integerari
thmetics.code.tex)))
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex
\c@pgfmathroundto@lastzeros=\count107
))
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.code.te
x
File: pgfcorepoints.code.tex 2013/10/07  (rcs-revision 1.27)
\pgf@picminx=\dimen127
\pgf@picmaxx=\dimen128
\pgf@picminy=\dimen129
\pgf@picmaxy=\dimen130
\pgf@pathminx=\dimen131
\pgf@pathmaxx=\dimen132
\pgf@pathminy=\dimen133
\pgf@pathmaxy=\dimen134
\pgf@xx=\dimen135
\pgf@xy=\dimen136
\pgf@yx=\dimen137
\pgf@yy=\dimen138
\pgf@zx=\dimen139
\pgf@zy=\dimen140
)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconstruct.
code.tex
File: pgfcorepathconstruct.code.tex 2013/10/07  (rcs-revision 1.29)
\pgf@path@lastx=\dimen141
\pgf@path@lasty=\dimen142
)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage.code
.tex
File: pgfcorepathusage.code.tex 2013/12/13  (rcs-revision 1.23)
\pgf@shorten@end@additional=\dimen143
\pgf@shorten@start@additional=\dimen144
)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.code.te
x
File: pgfcorescopes.code.tex 2013/10/09  (rcs-revision 1.44)
\pgfpic=\box31
\pgf@hbox=\box32
\pgf@layerbox@main=\box33
\pgf@picture@serial@count=\count108
)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicstate.c
ode.tex
File: pgfcoregraphicstate.code.tex 2013/09/19  (rcs-revision 1.11)
\pgflinewidth=\dimen145
)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransformation
s.code.tex
File: pgfcoretransformations.code.tex 2013/10/10  (rcs-revision 1.17)
\pgf@pt@x=\dimen146
\pgf@pt@y=\dimen147
\pgf@pt@temp=\dimen148
)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.code.tex
File: pgfcorequick.code.tex 2008/10/09  (rcs-revision 1.3)
)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.code.t
ex
File: pgfcoreobjects.code.tex 2006/10/11  (rcs-revision 1.2)
)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathprocessing
.code.tex
File: pgfcorepathprocessing.code.tex 2013/09/09  (rcs-revision 1.9)
)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.code.te
x
File: pgfcorearrows.code.tex 2013/11/07  (rcs-revision 1.40)
\pgfarrowsep=\dimen149
)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.code.tex
File: pgfcoreshade.code.tex 2013/07/15  (rcs-revision 1.15)
\pgf@max=\dimen150
\pgf@sys@shading@range@num=\count109
)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.code.tex
File: pgfcoreimage.code.tex 2013/07/15  (rcs-revision 1.18)

(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal.code.
tex
File: pgfcoreexternal.code.tex 2013/07/15  (rcs-revision 1.20)
\pgfexternal@startupbox=\box34
))
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.code.te
x
File: pgfcorelayers.code.tex 2013/07/18  (rcs-revision 1.7)
)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransparency.c
ode.tex
File: pgfcoretransparency.code.tex 2013/09/30  (rcs-revision 1.5)
)
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns.code.
tex
File: pgfcorepatterns.code.tex 2013/11/07  (rcs-revision 1.5)
)))
(/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.code.tex
File: pgfmoduleshapes.code.tex 2013/10/31  (rcs-revision 1.34)
\pgfnodeparttextbox=\box35
) (/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code.tex
File: pgfmoduleplot.code.tex 2013/07/31  (rcs-revision 1.12)
)
(/usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65
.sty
Package: pgfcomp-version-0-65 2007/07/03 v3.0.0 (rcs-revision 1.7)
\pgf@nodesepstart=\dimen151
\pgf@nodesepend=\dimen152
)
(/usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18
.sty
Package: pgfcomp-version-1-18 2007/07/23 v3.0.0 (rcs-revision 1.1)
)) (/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgffor.sty
(/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty
(/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex))
(/usr/share/texlive/texmf-dist/tex/latex/pgf/math/pgfmath.sty
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex))
(/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex
Package: pgffor 2013/12/13 v3.0.0 (rcs-revision 1.25)

(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex)
\pgffor@iter=\dimen153
\pgffor@skip=\dimen154
\pgffor@stack=\toks36
\pgffor@toks=\toks37
))
(/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex
Package: tikz 2013/12/13 v3.0.0 (rcs-revision 1.142)

(/usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers
.code.tex
File: pgflibraryplothandlers.code.tex 2013/08/31 v3.0.0 (rcs-revision 1.20)
\pgf@plot@mark@count=\count110
\pgfplotmarksize=\dimen155
)
\tikz@lastx=\dimen156
\tikz@lasty=\dimen157
\tikz@lastxsaved=\dimen158
\tikz@lastysaved=\dimen159
\tikzleveldistance=\dimen160
\tikzsiblingdistance=\dimen161
\tikz@figbox=\box36
\tikz@figbox@bg=\box37
\tikz@tempbox=\box38
\tikz@tempbox@bg=\box39
\tikztreelevel=\count111
\tikznumberofchildren=\count112
\tikznumberofcurrentchild=\count113
\tikz@fig@count=\count114

(/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.code.tex
File: pgfmodulematrix.code.tex 2013/09/17  (rcs-revision 1.8)
\pgfmatrixcurrentrow=\count115
\pgfmatrixcurrentcolumn=\count116
\pgf@matrix@numberofcolumns=\count117
)
\tikz@expandcount=\count118

(/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tik
zlibrarytopaths.code.tex
File: tikzlibrarytopaths.code.tex 2008/06/17 v3.0.0 (rcs-revision 1.2)
)))
No file _region_.aux.
LaTeX Font Info:    Checking defaults for OML/cmm/m/it on input line 4.
LaTeX Font Info:    ... okay on input line 4.
LaTeX Font Info:    Checking defaults for T1/cmr/m/n on input line 4.
LaTeX Font Info:    ... okay on input line 4.
LaTeX Font Info:    Checking defaults for OT1/cmr/m/n on input line 4.
LaTeX Font Info:    ... okay on input line 4.
LaTeX Font Info:    Checking defaults for OMS/cmsy/m/n on input line 4.
LaTeX Font Info:    ... okay on input line 4.
LaTeX Font Info:    Checking defaults for OMX/cmex/m/n on input line 4.
LaTeX Font Info:    ... okay on input line 4.
LaTeX Font Info:    Checking defaults for U/cmr/m/n on input line 4.
LaTeX Font Info:    ... okay on input line 4.
(/usr/share/texmf/tex/latex/preview/preview.sty
Package: preview 2010/02/14 11.88 (AUCTeX/preview-latex)

(/usr/share/texmf/tex/latex/preview/prtightpage.def
\PreviewBorder=\dimen162
)
(/usr/share/texmf/tex/latex/preview/prauctex.def
No auxiliary output files.


\hbadness=\count119
\hfuzz=\dimen163
(/usr/share/texmf/tex/latex/preview/prauctex.cfg))
\pr@snippet=\count120
\pr@box=\box40
\pr@output=\toks38

Preview: Fontsize 12pt
Preview: PDFoutput 1
)
LaTeX Font Info:    Try loading font information for U+msa on input line 4.
 (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd
File: umsa.fd 2013/01/14 v3.01 AMS symbols A
)
LaTeX Font Info:    Try loading font information for U+msb on input line 4.

(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd
File: umsb.fd 2013/01/14 v3.01 AMS symbols B
)
ABD: EveryShipout initializing macros
(/usr/share/texlive/texmf-dist/tex/context/base/supp-pdf.mkii
[Loading MPS to PDF converter (version 2006.09.02).]
\scratchcounter=\count121
\scratchdimen=\dimen164
\scratchbox=\box41
\nofMPsegments=\count122
\nofMParguments=\count123
\everyMPshowfont=\toks39
\MPscratchCnt=\count124
\MPscratchDim=\dimen165
\MPnumerator=\count125
\makeMPintoPDFobject=\count126
\everyMPtoPDFconversion=\toks40
) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/pdftexcmds.sty
Package: pdftexcmds 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO
)

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ifluatex.sty
Package: ifluatex 2010/03/01 v1.3 Provides the ifluatex switch (HO)
Package ifluatex Info: LuaTeX not detected.
)
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ifpdf.sty
Package: ifpdf 2011/01/30 v2.3 Provides the ifpdf switch (HO)
Package ifpdf Info: pdfTeX in PDF mode is detected.
)
Package pdftexcmds Info: LuaTeX not detected.
Package pdftexcmds Info: \pdf@primitive is available.
Package pdftexcmds Info: \pdf@ifprimitive is available.
Package pdftexcmds Info: \pdfdraftmode found.
)
(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty
Package: epstopdf-base 2010/02/09 v2.5 Base part for package epstopdf

(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/grfext.sty
Package: grfext 2010/08/19 v1.1 Manage graphics extensions (HO)

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/kvdefinekeys.sty
Package: kvdefinekeys 2011/04/07 v1.3 Define keys (HO)
))
(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/kvoptions.sty
Package: kvoptions 2011/06/30 v3.11 Key value format for package options (HO)

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/kvsetkeys.sty
Package: kvsetkeys 2012/04/25 v1.16 Key value parser (HO)

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/etexcmds.sty
Package: etexcmds 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO)
Package etexcmds Info: Could not find \expanded.
(etexcmds)             That can mean that you are not using pdfTeX 1.50 or
(etexcmds)             that some package has redefined \expanded.
(etexcmds)             In the latter case, load this package earlier.
)))
Package grfext Info: Graphics extension search list:
(grfext)             [.png,.pdf,.jpg,.mps,.jpeg,.jbig2,.jb2,.PNG,.PDF,.JPG,.JPE
G,.JBIG2,.JB2,.eps]
(grfext)             \AppendGraphicsExtensions on input line 452.

(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv
e
))
 !name(t.tex) !offset(-3) 
./_region_.tex:10: Preview: Snippet 1 started.
<-><->
      
l.10   which implies that the sequence $
                                        S[\phi_{k}]^{1/k}$
Not a real error.

Preview: Tightpage -32891 -32891 32891 32891
./_region_.tex:10: Preview: Snippet 1 ended.(678606+196608x2633546).
<-><->
      
l.10 ...lies that the sequence $S[\phi_{k}]^{1/k}$
                                                  
Not a real error.

[1{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}]
./_region_.tex:13: Preview: Snippet 2 started.
<-><->
      
l.13   $
        S$ does not behave as well under covers, but we still have
Not a real error.

./_region_.tex:13: Preview: Snippet 2 ended.(537395+0x519368).
<-><->
      
l.13   $S$
           does not behave as well under covers, but we still have
Not a real error.

[2]
./_region_.tex:14: Preview: Snippet 3 started.
<-><->
      
l.14   that if $
                \widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:14: Preview: Snippet 3 ended.(775509+152916x455742).
<-><->
      
l.14   that if $\widetilde \phi$
                                 is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

[3]
./_region_.tex:14: Preview: Snippet 4 started.
<-><->
      
l.14   that if $\widetilde \phi$ is a cover of $
                                                \phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:14: Preview: Snippet 4 ended.(546132+152916x455742).
<-><->
      
l.14 ... if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

Not a real error.

[4]
./_region_.tex:14: Preview: Snippet 5 started.
<-><->
      
l.14 ...detilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

Not a real error.

./_region_.tex:14: Preview: Snippet 5 ended.(775509+196608x9067912).
<-><->
      
l.14 ...e S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
Not a real error.

[5]
./_region_.tex:18: Preview: Snippet 6 started.
<-><->
      
l.18   which implies that the sequence $
                                        S[\phi_{k}]^{1/k}$
Not a real error.

./_region_.tex:18: Preview: Snippet 6 ended.(678606+196608x2633546).
<-><->
      
l.18 ...lies that the sequence $S[\phi_{k}]^{1/k}$
                                                  
Not a real error.

[6]
./_region_.tex:21: Preview: Snippet 7 started.
<-><->
      
l.21   $
        S$ does not behave as well under covers, but we still have
Not a real error.

./_region_.tex:21: Preview: Snippet 7 ended.(537395+0x519368).
<-><->
      
l.21   $S$
           does not behave as well under covers, but we still have
Not a real error.

[7]
./_region_.tex:22: Preview: Snippet 8 started.
<-><->
      
l.22   that if $
                \widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:22: Preview: Snippet 8 ended.(775509+152916x455742).
<-><->
      
l.22   that if $\widetilde \phi$
                                 is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

[8]
./_region_.tex:22: Preview: Snippet 9 started.
<-><->
      
l.22   that if $\widetilde \phi$ is a cover of $
                                                \phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:22: Preview: Snippet 9 ended.(546132+152916x455742).
<-><->
      
l.22 ... if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

Not a real error.

[9]
./_region_.tex:22: Preview: Snippet 10 started.
<-><->
      
l.22 ...detilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

Not a real error.

./_region_.tex:22: Preview: Snippet 10 ended.(775509+196608x9067912).
<-><->
      
l.22 ...e S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
Not a real error.

[10]
./_region_.tex:26: Preview: Snippet 11 started.
<-><->
      
l.26   which implies that the sequence $
                                        S[\phi_{k}]^{1/k}$
Not a real error.

./_region_.tex:26: Preview: Snippet 11 ended.(678606+196608x2633546).
<-><->
      
l.26 ...lies that the sequence $S[\phi_{k}]^{1/k}$
                                                  
Not a real error.

[11]
./_region_.tex:29: Preview: Snippet 12 started.
<-><->
      
l.29   $
        S$ does not behave as well under covers, but we still have
Not a real error.

./_region_.tex:29: Preview: Snippet 12 ended.(537395+0x519368).
<-><->
      
l.29   $S$
           does not behave as well under covers, but we still have
Not a real error.

[12]
./_region_.tex:30: Preview: Snippet 13 started.
<-><->
      
l.30   that if $
                \widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:30: Preview: Snippet 13 ended.(775509+152916x455742).
<-><->
      
l.30   that if $\widetilde \phi$
                                 is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

[13]
./_region_.tex:30: Preview: Snippet 14 started.
<-><->
      
l.30   that if $\widetilde \phi$ is a cover of $
                                                \phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:30: Preview: Snippet 14 ended.(546132+152916x455742).
<-><->
      
l.30 ... if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

Not a real error.

[14]
./_region_.tex:30: Preview: Snippet 15 started.
<-><->
      
l.30 ...detilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

Not a real error.

./_region_.tex:30: Preview: Snippet 15 ended.(775509+196608x9067912).
<-><->
      
l.30 ...e S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
Not a real error.

[15]
./_region_.tex:34: Preview: Snippet 16 started.
<-><->
      
l.34   which implies that the sequence $
                                        S[\phi_{k}]^{1/k}$
Not a real error.

./_region_.tex:34: Preview: Snippet 16 ended.(678606+196608x2633546).
<-><->
      
l.34 ...lies that the sequence $S[\phi_{k}]^{1/k}$
                                                  
Not a real error.

[16]
./_region_.tex:37: Preview: Snippet 17 started.
<-><->
      
l.37   $
        S$ does not behave as well under covers, but we still have
Not a real error.

./_region_.tex:37: Preview: Snippet 17 ended.(537395+0x519368).
<-><->
      
l.37   $S$
           does not behave as well under covers, but we still have
Not a real error.

[17]
./_region_.tex:38: Preview: Snippet 18 started.
<-><->
      
l.38   that if $
                \widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:38: Preview: Snippet 18 ended.(775509+152916x455742).
<-><->
      
l.38   that if $\widetilde \phi$
                                 is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

[18]
./_region_.tex:38: Preview: Snippet 19 started.
<-><->
      
l.38   that if $\widetilde \phi$ is a cover of $
                                                \phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:38: Preview: Snippet 19 ended.(546132+152916x455742).
<-><->
      
l.38 ... if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

Not a real error.

[19]
./_region_.tex:38: Preview: Snippet 20 started.
<-><->
      
l.38 ...detilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

Not a real error.

./_region_.tex:38: Preview: Snippet 20 ended.(775509+196608x9067912).
<-><->
      
l.38 ...e S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
Not a real error.

[20]
./_region_.tex:42: Preview: Snippet 21 started.
<-><->
      
l.42   which implies that the sequence $
                                        S[\phi_{k}]^{1/k}$
Not a real error.

./_region_.tex:42: Preview: Snippet 21 ended.(678606+196608x2633546).
<-><->
      
l.42 ...lies that the sequence $S[\phi_{k}]^{1/k}$
                                                  
Not a real error.

[21]
./_region_.tex:45: Preview: Snippet 22 started.
<-><->
      
l.45   $
        S$ does not behave as well under covers, but we still have
Not a real error.

./_region_.tex:45: Preview: Snippet 22 ended.(537395+0x519368).
<-><->
      
l.45   $S$
           does not behave as well under covers, but we still have
Not a real error.

[22]
./_region_.tex:46: Preview: Snippet 23 started.
<-><->
      
l.46   that if $
                \widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:46: Preview: Snippet 23 ended.(775509+152916x455742).
<-><->
      
l.46   that if $\widetilde \phi$
                                 is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

[23]
./_region_.tex:46: Preview: Snippet 24 started.
<-><->
      
l.46   that if $\widetilde \phi$ is a cover of $
                                                \phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:46: Preview: Snippet 24 ended.(546132+152916x455742).
<-><->
      
l.46 ... if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

Not a real error.

[24]
./_region_.tex:46: Preview: Snippet 25 started.
<-><->
      
l.46 ...detilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

Not a real error.

./_region_.tex:46: Preview: Snippet 25 ended.(775509+196608x9067912).
<-><->
      
l.46 ...e S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
Not a real error.

[25]
./_region_.tex:50: Preview: Snippet 26 started.
<-><->
      
l.50   which implies that the sequence $
                                        S[\phi_{k}]^{1/k}$
Not a real error.

./_region_.tex:50: Preview: Snippet 26 ended.(678606+196608x2633546).
<-><->
      
l.50 ...lies that the sequence $S[\phi_{k}]^{1/k}$
                                                  
Not a real error.

[26]
./_region_.tex:53: Preview: Snippet 27 started.
<-><->
      
l.53   $
        S$ does not behave as well under covers, but we still have
Not a real error.

./_region_.tex:53: Preview: Snippet 27 ended.(537395+0x519368).
<-><->
      
l.53   $S$
           does not behave as well under covers, but we still have
Not a real error.

[27]
./_region_.tex:54: Preview: Snippet 28 started.
<-><->
      
l.54   that if $
                \widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:54: Preview: Snippet 28 ended.(775509+152916x455742).
<-><->
      
l.54   that if $\widetilde \phi$
                                 is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

[28]
./_region_.tex:54: Preview: Snippet 29 started.
<-><->
      
l.54   that if $\widetilde \phi$ is a cover of $
                                                \phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:54: Preview: Snippet 29 ended.(546132+152916x455742).
<-><->
      
l.54 ... if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

Not a real error.

[29]
./_region_.tex:54: Preview: Snippet 30 started.
<-><->
      
l.54 ...detilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

Not a real error.

./_region_.tex:54: Preview: Snippet 30 ended.(775509+196608x9067912).
<-><->
      
l.54 ...e S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
Not a real error.

[30]
./_region_.tex:58: Preview: Snippet 31 started.
<-><->
      
l.58   which implies that the sequence $
                                        S[\phi_{k}]^{1/k}$
Not a real error.

./_region_.tex:58: Preview: Snippet 31 ended.(678606+196608x2633546).
<-><->
      
l.58 ...lies that the sequence $S[\phi_{k}]^{1/k}$
                                                  
Not a real error.

[31]
./_region_.tex:61: Preview: Snippet 32 started.
<-><->
      
l.61   $
        S$ does not behave as well under covers, but we still have
Not a real error.

./_region_.tex:61: Preview: Snippet 32 ended.(537395+0x519368).
<-><->
      
l.61   $S$
           does not behave as well under covers, but we still have
Not a real error.

[32]
./_region_.tex:62: Preview: Snippet 33 started.
<-><->
      
l.62   that if $
                \widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:62: Preview: Snippet 33 ended.(775509+152916x455742).
<-><->
      
l.62   that if $\widetilde \phi$
                                 is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

[33]
./_region_.tex:62: Preview: Snippet 34 started.
<-><->
      
l.62   that if $\widetilde \phi$ is a cover of $
                                                \phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:62: Preview: Snippet 34 ended.(546132+152916x455742).
<-><->
      
l.62 ... if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

Not a real error.

[34]
./_region_.tex:62: Preview: Snippet 35 started.
<-><->
      
l.62 ...detilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

Not a real error.

./_region_.tex:62: Preview: Snippet 35 ended.(775509+196608x9067912).
<-><->
      
l.62 ...e S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
Not a real error.

[35]
./_region_.tex:66: Preview: Snippet 36 started.
<-><->
      
l.66   which implies that the sequence $
                                        S[\phi_{k}]^{1/k}$
Not a real error.

./_region_.tex:66: Preview: Snippet 36 ended.(678606+196608x2633546).
<-><->
      
l.66 ...lies that the sequence $S[\phi_{k}]^{1/k}$
                                                  
Not a real error.

[36]
./_region_.tex:69: Preview: Snippet 37 started.
<-><->
      
l.69   $
        S$ does not behave as well under covers, but we still have
Not a real error.

./_region_.tex:69: Preview: Snippet 37 ended.(537395+0x519368).
<-><->
      
l.69   $S$
           does not behave as well under covers, but we still have
Not a real error.

[37]
./_region_.tex:70: Preview: Snippet 38 started.
<-><->
      
l.70   that if $
                \widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:70: Preview: Snippet 38 ended.(775509+152916x455742).
<-><->
      
l.70   that if $\widetilde \phi$
                                 is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

[38]
./_region_.tex:70: Preview: Snippet 39 started.
<-><->
      
l.70   that if $\widetilde \phi$ is a cover of $
                                                \phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:70: Preview: Snippet 39 ended.(546132+152916x455742).
<-><->
      
l.70 ... if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

Not a real error.

[39]
./_region_.tex:70: Preview: Snippet 40 started.
<-><->
      
l.70 ...detilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

Not a real error.

./_region_.tex:70: Preview: Snippet 40 ended.(775509+196608x9067912).
<-><->
      
l.70 ...e S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
Not a real error.

[40]
./_region_.tex:74: Preview: Snippet 41 started.
<-><->
      
l.74   which implies that the sequence $
                                        S[\phi_{k}]^{1/k}$
Not a real error.

./_region_.tex:74: Preview: Snippet 41 ended.(678606+196608x2633546).
<-><->
      
l.74 ...lies that the sequence $S[\phi_{k}]^{1/k}$
                                                  
Not a real error.

[41]
./_region_.tex:77: Preview: Snippet 42 started.
<-><->
      
l.77   $
        S$ does not behave as well under covers, but we still have
Not a real error.

./_region_.tex:77: Preview: Snippet 42 ended.(537395+0x519368).
<-><->
      
l.77   $S$
           does not behave as well under covers, but we still have
Not a real error.

[42]
./_region_.tex:78: Preview: Snippet 43 started.
<-><->
      
l.78   that if $
                \widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:78: Preview: Snippet 43 ended.(775509+152916x455742).
<-><->
      
l.78   that if $\widetilde \phi$
                                 is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

[43]
./_region_.tex:78: Preview: Snippet 44 started.
<-><->
      
l.78   that if $\widetilde \phi$ is a cover of $
                                                \phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:78: Preview: Snippet 44 ended.(546132+152916x455742).
<-><->
      
l.78 ... if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

Not a real error.

[44]
./_region_.tex:78: Preview: Snippet 45 started.
<-><->
      
l.78 ...detilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

Not a real error.

./_region_.tex:78: Preview: Snippet 45 ended.(775509+196608x9067912).
<-><->
      
l.78 ...e S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
Not a real error.

[45]
./_region_.tex:82: Preview: Snippet 46 started.
<-><->
      
l.82   which implies that the sequence $
                                        S[\phi_{k}]^{1/k}$
Not a real error.

./_region_.tex:82: Preview: Snippet 46 ended.(678606+196608x2633546).
<-><->
      
l.82 ...lies that the sequence $S[\phi_{k}]^{1/k}$
                                                  
Not a real error.

[46]
./_region_.tex:85: Preview: Snippet 47 started.
<-><->
      
l.85   $
        S$ does not behave as well under covers, but we still have
Not a real error.

./_region_.tex:85: Preview: Snippet 47 ended.(537395+0x519368).
<-><->
      
l.85   $S$
           does not behave as well under covers, but we still have
Not a real error.

[47]
./_region_.tex:86: Preview: Snippet 48 started.
<-><->
      
l.86   that if $
                \widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:86: Preview: Snippet 48 ended.(775509+152916x455742).
<-><->
      
l.86   that if $\widetilde \phi$
                                 is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

[48]
./_region_.tex:86: Preview: Snippet 49 started.
<-><->
      
l.86   that if $\widetilde \phi$ is a cover of $
                                                \phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:86: Preview: Snippet 49 ended.(546132+152916x455742).
<-><->
      
l.86 ... if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

Not a real error.

[49]
./_region_.tex:86: Preview: Snippet 50 started.
<-><->
      
l.86 ...detilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

Not a real error.

./_region_.tex:86: Preview: Snippet 50 ended.(775509+196608x9067912).
<-><->
      
l.86 ...e S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
Not a real error.

[50]
./_region_.tex:90: Preview: Snippet 51 started.
<-><->
      
l.90   which implies that the sequence $
                                        S[\phi_{k}]^{1/k}$
Not a real error.

./_region_.tex:90: Preview: Snippet 51 ended.(678606+196608x2633546).
<-><->
      
l.90 ...lies that the sequence $S[\phi_{k}]^{1/k}$
                                                  
Not a real error.

[51]
./_region_.tex:93: Preview: Snippet 52 started.
<-><->
      
l.93   $
        S$ does not behave as well under covers, but we still have
Not a real error.

./_region_.tex:93: Preview: Snippet 52 ended.(537395+0x519368).
<-><->
      
l.93   $S$
           does not behave as well under covers, but we still have
Not a real error.

[52]
./_region_.tex:94: Preview: Snippet 53 started.
<-><->
      
l.94   that if $
                \widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:94: Preview: Snippet 53 ended.(775509+152916x455742).
<-><->
      
l.94   that if $\widetilde \phi$
                                 is a cover of $\phi$, then $S[\phi] \le S[\...

Not a real error.

[53]
./_region_.tex:94: Preview: Snippet 54 started.
<-><->
      
l.94   that if $\widetilde \phi$ is a cover of $
                                                \phi$, then $S[\phi] \le S[\...

Not a real error.

./_region_.tex:94: Preview: Snippet 54 ended.(546132+152916x455742).
<-><->
      
l.94 ... if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

Not a real error.

[54]
./_region_.tex:94: Preview: Snippet 55 started.
<-><->
      
l.94 ...detilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

Not a real error.

./_region_.tex:94: Preview: Snippet 55 ended.(775509+196608x9067912).
<-><->
      
l.94 ...e S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
Not a real error.

[55]
./_region_.tex:98: Preview: Snippet 56 started.
<-><->
      
l.98   which implies that the sequence $
                                        S[\phi_{k}]^{1/k}$
Not a real error.

./_region_.tex:98: Preview: Snippet 56 ended.(678606+196608x2633546).
<-><->
      
l.98 ...lies that the sequence $S[\phi_{k}]^{1/k}$
                                                  
Not a real error.

[56]
./_region_.tex:101: Preview: Snippet 57 started.
<-><->
      
l.101   $
         S$ does not behave as well under covers, but we still have
Not a real error.

./_region_.tex:101: Preview: Snippet 57 ended.(537395+0x519368).
<-><->
      
l.101   $S$
            does not behave as well under covers, but we still have
Not a real error.

[57]
./_region_.tex:102: Preview: Snippet 58 started.
<-><->
      
l.102   that if $
                 \widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[...

Not a real error.

./_region_.tex:102: Preview: Snippet 58 ended.(775509+152916x455742).
<-><->
      
l.102   that if $\widetilde \phi$
                                  is a cover of $\phi$, then $S[\phi] \le S[...

Not a real error.

[58]
./_region_.tex:102: Preview: Snippet 59 started.
<-><->
      
l.102   that if $\widetilde \phi$ is a cover of $
                                                 \phi$, then $S[\phi] \le S[...

Not a real error.

./_region_.tex:102: Preview: Snippet 59 ended.(546132+152916x455742).
<-><->
      
l.102 ...if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

Not a real error.

[59]
./_region_.tex:102: Preview: Snippet 60 started.
<-><->
      
l.102 ...etilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

Not a real error.

./_region_.tex:102: Preview: Snippet 60 ended.(775509+196608x9067912).
<-><->
      
l.102 ... S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
Not a real error.

[60]
./_region_.tex:106: Preview: Snippet 61 started.
<-><->
      
l.106   which implies that the sequence $
                                         S[\phi_{k}]^{1/k}$
Not a real error.

./_region_.tex:106: Preview: Snippet 61 ended.(678606+196608x2633546).
<-><->
      
l.106 ...ies that the sequence $S[\phi_{k}]^{1/k}$
                                                  
Not a real error.

[61]
./_region_.tex:109: Preview: Snippet 62 started.
<-><->
      
l.109   $
         S$ does not behave as well under covers, but we still have
Not a real error.

./_region_.tex:109: Preview: Snippet 62 ended.(537395+0x519368).
<-><->
      
l.109   $S$
            does not behave as well under covers, but we still have
Not a real error.

[62]
./_region_.tex:110: Preview: Snippet 63 started.
<-><->
      
l.110   that if $
                 \widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[...

Not a real error.

./_region_.tex:110: Preview: Snippet 63 ended.(775509+152916x455742).
<-><->
      
l.110   that if $\widetilde \phi$
                                  is a cover of $\phi$, then $S[\phi] \le S[...

Not a real error.

[63]
./_region_.tex:110: Preview: Snippet 64 started.
<-><->
      
l.110   that if $\widetilde \phi$ is a cover of $
                                                 \phi$, then $S[\phi] \le S[...

Not a real error.

./_region_.tex:110: Preview: Snippet 64 ended.(546132+152916x455742).
<-><->
      
l.110 ...if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

Not a real error.

[64]
./_region_.tex:110: Preview: Snippet 65 started.
<-><->
      
l.110 ...etilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

Not a real error.

./_region_.tex:110: Preview: Snippet 65 ended.(775509+196608x9067912).
<-><->
      
l.110 ... S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
Not a real error.

[65] [1]
./_region_.tex:114: Preview: Snippet 66 started.
<-><->
      
l.114   which implies that the sequence $
                                         S[\phi_{k}]^{1/k}$
Not a real error.

./_region_.tex:114: Preview: Snippet 66 ended.(678606+196608x2633546).
<-><->
      
l.114 ...ies that the sequence $S[\phi_{k}]^{1/k}$
                                                  
Not a real error.

[66]
./_region_.tex:117: Preview: Snippet 67 started.
<-><->
      
l.117   $
         S$ does not behave as well under covers, but we still have
Not a real error.

./_region_.tex:117: Preview: Snippet 67 ended.(537395+0x519368).
<-><->
      
l.117   $S$
            does not behave as well under covers, but we still have
Not a real error.

[67]
./_region_.tex:118: Preview: Snippet 68 started.
<-><->
      
l.118   that if $
                 \widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[...

Not a real error.

./_region_.tex:118: Preview: Snippet 68 ended.(775509+152916x455742).
<-><->
      
l.118   that if $\widetilde \phi$
                                  is a cover of $\phi$, then $S[\phi] \le S[...

Not a real error.

[68]
./_region_.tex:118: Preview: Snippet 69 started.
<-><->
      
l.118   that if $\widetilde \phi$ is a cover of $
                                                 \phi$, then $S[\phi] \le S[...

Not a real error.

./_region_.tex:118: Preview: Snippet 69 ended.(546132+152916x455742).
<-><->
      
l.118 ...if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

Not a real error.

[69]
./_region_.tex:118: Preview: Snippet 70 started.
<-><->
      
l.118 ...etilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

Not a real error.

./_region_.tex:118: Preview: Snippet 70 ended.(775509+196608x9067912).
<-><->
      
l.118 ... S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
Not a real error.

[70]
./_region_.tex:122: Preview: Snippet 71 started.
<-><->
      
l.122   which implies that the sequence $
                                         S[\phi_{k}]^{1/k}$
Not a real error.

./_region_.tex:122: Preview: Snippet 71 ended.(678606+196608x2633546).
<-><->
      
l.122 ...ies that the sequence $S[\phi_{k}]^{1/k}$
                                                  
Not a real error.

[71]
./_region_.tex:125: Preview: Snippet 72 started.
<-><->
      
l.125   $
         S$ does not behave as well under covers, but we still have
Not a real error.

./_region_.tex:125: Preview: Snippet 72 ended.(537395+0x519368).
<-><->
      
l.125   $S$
            does not behave as well under covers, but we still have
Not a real error.

[72]
./_region_.tex:126: Preview: Snippet 73 started.
<-><->
      
l.126   that if $
                 \widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[...

Not a real error.

./_region_.tex:126: Preview: Snippet 73 ended.(775509+152916x455742).
<-><->
      
l.126   that if $\widetilde \phi$
                                  is a cover of $\phi$, then $S[\phi] \le S[...

Not a real error.

[73]
./_region_.tex:126: Preview: Snippet 74 started.
<-><->
      
l.126   that if $\widetilde \phi$ is a cover of $
                                                 \phi$, then $S[\phi] \le S[...

Not a real error.

./_region_.tex:126: Preview: Snippet 74 ended.(546132+152916x455742).
<-><->
      
l.126 ...if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

Not a real error.

[74]
./_region_.tex:126: Preview: Snippet 75 started.
<-><->
      
l.126 ...etilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

Not a real error.

./_region_.tex:126: Preview: Snippet 75 ended.(775509+196608x9067912).
<-><->
      
l.126 ... S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
Not a real error.

[75]
./_region_.tex:130: Preview: Snippet 76 started.
<-><->
      
l.130   which implies that the sequence $
                                         S[\phi_{k}]^{1/k}$
Not a real error.

./_region_.tex:130: Preview: Snippet 76 ended.(678606+196608x2633546).
<-><->
      
l.130 ...ies that the sequence $S[\phi_{k}]^{1/k}$
                                                  
Not a real error.

[76]
./_region_.tex:133: Preview: Snippet 77 started.
<-><->
      
l.133   $
         S$ does not behave as well under covers, but we still have
Not a real error.

./_region_.tex:133: Preview: Snippet 77 ended.(537395+0x519368).
<-><->
      
l.133   $S$
            does not behave as well under covers, but we still have
Not a real error.

[77]
./_region_.tex:134: Preview: Snippet 78 started.
<-><->
      
l.134   that if $
                 \widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[...

Not a real error.

./_region_.tex:134: Preview: Snippet 78 ended.(775509+152916x455742).
<-><->
      
l.134   that if $\widetilde \phi$
                                  is a cover of $\phi$, then $S[\phi] \le S[...

Not a real error.

[78]
./_region_.tex:134: Preview: Snippet 79 started.
<-><->
      
l.134   that if $\widetilde \phi$ is a cover of $
                                                 \phi$, then $S[\phi] \le S[...

Not a real error.

./_region_.tex:134: Preview: Snippet 79 ended.(546132+152916x455742).
<-><->
      
l.134 ...if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

Not a real error.

[79]
./_region_.tex:134: Preview: Snippet 80 started.
<-><->
      
l.134 ...etilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

Not a real error.

./_region_.tex:134: Preview: Snippet 80 ended.(775509+196608x9067912).
<-><->
      
l.134 ... S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
Not a real error.

[80]
./_region_.tex:138: Preview: Snippet 81 started.
<-><->
      
l.138   which implies that the sequence $
                                         S[\phi_{k}]^{1/k}$
Not a real error.

./_region_.tex:138: Preview: Snippet 81 ended.(678606+196608x2633546).
<-><->
      
l.138 ...ies that the sequence $S[\phi_{k}]^{1/k}$
                                                  
Not a real error.

[81]
./_region_.tex:141: Preview: Snippet 82 started.
<-><->
      
l.141   $
         S$ does not behave as well under covers, but we still have
Not a real error.

./_region_.tex:141: Preview: Snippet 82 ended.(537395+0x519368).
<-><->
      
l.141   $S$
            does not behave as well under covers, but we still have
Not a real error.

[82]
./_region_.tex:142: Preview: Snippet 83 started.
<-><->
      
l.142   that if $
                 \widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[...

Not a real error.

./_region_.tex:142: Preview: Snippet 83 ended.(775509+152916x455742).
<-><->
      
l.142   that if $\widetilde \phi$
                                  is a cover of $\phi$, then $S[\phi] \le S[...

Not a real error.

[83]
./_region_.tex:142: Preview: Snippet 84 started.
<-><->
      
l.142   that if $\widetilde \phi$ is a cover of $
                                                 \phi$, then $S[\phi] \le S[...

Not a real error.

./_region_.tex:142: Preview: Snippet 84 ended.(546132+152916x455742).
<-><->
      
l.142 ...if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

Not a real error.

[84]
./_region_.tex:142: Preview: Snippet 85 started.
<-><->
      
l.142 ...etilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

Not a real error.

./_region_.tex:142: Preview: Snippet 85 ended.(775509+196608x9067912).
<-><->
      
l.142 ... S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
Not a real error.

[85]
./_region_.tex:146: Preview: Snippet 86 started.
<-><->
      
l.146   which implies that the sequence $
                                         S[\phi_{k}]^{1/k}$
Not a real error.

./_region_.tex:146: Preview: Snippet 86 ended.(678606+196608x2633546).
<-><->
      
l.146 ...ies that the sequence $S[\phi_{k}]^{1/k}$
                                                  
Not a real error.

[86]
./_region_.tex:149: Preview: Snippet 87 started.
<-><->
      
l.149   $
         S$ does not behave as well under covers, but we still have
Not a real error.

./_region_.tex:149: Preview: Snippet 87 ended.(537395+0x519368).
<-><->
      
l.149   $S$
            does not behave as well under covers, but we still have
Not a real error.

[87]
./_region_.tex:150: Preview: Snippet 88 started.
<-><->
      
l.150   that if $
                 \widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[...

Not a real error.

./_region_.tex:150: Preview: Snippet 88 ended.(775509+152916x455742).
<-><->
      
l.150   that if $\widetilde \phi$
                                  is a cover of $\phi$, then $S[\phi] \le S[...

Not a real error.

[88]
./_region_.tex:150: Preview: Snippet 89 started.
<-><->
      
l.150   that if $\widetilde \phi$ is a cover of $
                                                 \phi$, then $S[\phi] \le S[...

Not a real error.

./_region_.tex:150: Preview: Snippet 89 ended.(546132+152916x455742).
<-><->
      
l.150 ...if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

Not a real error.

[89]
./_region_.tex:150: Preview: Snippet 90 started.
<-><->
      
l.150 ...etilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

Not a real error.

./_region_.tex:150: Preview: Snippet 90 ended.(775509+196608x9067912).
<-><->
      
l.150 ... S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
Not a real error.

[90]
\newlabel{tocindent-1}{0pt}
\newlabel{tocindent0}{0pt}
\newlabel{tocindent1}{0pt}
\newlabel{tocindent2}{0pt}
\newlabel{tocindent3}{0pt}
[2] ) 
Here is how much of TeX's memory you used:
 12537 strings out of 494977
 243774 string characters out of 6180184
 279934 words of memory out of 5000000
 15360 multiletter control sequences out of 15000+600000
 10630 words of font info for 42 fonts, out of 8000000 for 9000
 197 hyphenation exceptions out of 8191
 55i,6n,54p,616b,259s stack positions out of 5000i,500n,10000p,200000b,80000s
</usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb><
/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi12.pfb></usr/s
hare/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi8.pfb></usr/share/te
xlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr12.pfb></usr/share/texlive/t
exmf-dist/fonts/type1/public/amsfonts/cm/cmr8.pfb></usr/share/texlive/texmf-dis
t/fonts/type1/public/amsfonts/cm/cmr9.pfb></usr/share/texlive/texmf-dist/fonts/
type1/public/amsfonts/cm/cmsy10.pfb></usr/share/texlive/texmf-dist/fonts/type1/
public/amsfonts/cm/cmti12.pfb></usr/share/texlive/texmf-dist/fonts/type1/public
/amsfonts/symbols/msam10.pfb>
Output written on _region_.pdf (92 pages, 94391 bytes).
PDF statistics:
 341 PDF objects out of 1000 (max. 8388607)
 235 compressed objects within 3 object streams
 0 named destinations out of 1000 (max. 500000)
 13 words of extra memory for PDF output out of 10000 (max. 10000000)


--/9DWx/yDrRhgMJTb
Content-Type: application/pdf
Content-Disposition: attachment; filename="_region_.pdf"
Content-Transfer-Encoding: base64

JVBERi0xLjUKJdDUxdgKNiAwIG9iago8PAovTGVuZ3RoIDgzNCAgICAgICAKL0ZpbHRlciAv
RmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnja7ZtLb9pAEIDv+RV7tKV6s++Hql4qNVV7qlRuaQ4E
TEAl0GJo+vM7613AJk4gESVqM5dgNrPzXn/akWDkhjDy8Yw98Pm+d3Z+IRThnHqtBemNCBeG
GiuIMZoaqUhvSC6zL4tcs2xe/xnR/Kr3eaPi/ILr5n6pqbUO/lVvvBtPBrmw2TgvpHTZ5PbH
dFJW8cty3F+GJw9PZVyqyp+rcjYogwVwzLYcM5Z6J9eav0aZtnFLnddricsuLZIKeEgS35g0
ScjBXm8ZDzKGevhecGq9jILfu4xpygVpCF0lVbqhKpjjRFGIMgrxDnuKCkh08uldpy0uqSJF
Q89gPgt5/ZULl5WLm7KieaGsgJA0+7RM2U6JHkznVZ1SUggFKVIcgpPUKxd1LeewV4usHz54
NiwHi7JfTWY3cXldFAq6eV44zrKL3PFsvojy1Wox6g/K6k1XvgV31D9eNHBFbKs2BGcgsNAk
wfhsvoxWruPyuJ/ChufkdRUF7uq16TQFKgUV0NkFD/2Y2ng1G5bgtHQa8rfVswDXC8VYdr0K
mXMm6HJBf3iulhNQWm9qGw8rqYdBbDKKsUnZCp8J6qDYknKtoxOdzQ3NxrknRUNu25w76eJU
S7tOV11jcKQfvdiEFboiLs1HXQbDYRL6/kFo24onIQmlJMFhnXWeLE0Vs3/neD7iVTp1krUN
WdsITqjOnEvlqdSm3SMHO94uNBxNe1iV3UFV3h+jodqK+zHuNIugBvoqSd32f4f3A+/MvKDc
b/S9zQt43z54Xrn0xy5j/XKJYZrWCdIhUL9VxuQOf9r82lZVKIjIPQ9gFgG2CzB3JIC5XYCF
lynPnsqwZyEM7Gwoxp9KMeERY4gxxBhiDDF2aoypQzCmjoAxvRdj0vuXBxkFQwgyBBmCbB/I
1IEgUycDmTiYY/y/45jH69hp5olP4Jg/KsfsP8gxVwf8PJRpRBmi7LXeyV4zynCyeKLJIl7J
ToQyvJUhyhBliDKcLuJ0EVGGKEOU4YARB4w4YMQB46tHmToQZQpR9hIo03grw1sZogxvZYgy
vJXhrQxRhijDASOi7IgoazSqEgS8MEbVja41FSz8oK72oFGdzY4PvbM/UzFjyQplbmRzdHJl
YW0KZW5kb2JqCjIwIDAgb2JqCjw8Ci9MZW5ndGggNzc1ICAgICAgIAovRmlsdGVyIC9GbGF0
ZURlY29kZQo+PgpzdHJlYW0KeNrtmc1v2jAUwO/8FT4m0uL627GmXSaNaTtNGre2BxoCRKVk
S8LYn79nHEJo0w5NrKvWd4Fgnp/fp3+yw8iCMPJx9H4yuhgrQVLqjFFkMidcGGqsICZ1NHUp
mczIZSTi68nnEWsnXYy5JpxTp7XwUxhJhKZW2iC8Wc/yKk5kqqOsjIWNfviPvKrfxIliLLrZ
NP5fE21jkUZ5eK6bYrUKk5bTw6Qw0iyn7ZRi7i25GEvZN0AwQVPhiKRc62BEHuSE7cslnHLu
SNKTu2LSBNFjn+BRg0MsSBV1MGQarOjcAvOrMFTOhxY0ljqh9loeW8uAkNsLtUFqlvl6SKPU
VLHOrq9D6izkTe8lLgeVUAEPJ1iV7oWu27Cz44Ws1Qc1Qg3GXCpHpbYQfKgRq35juLln+HGi
FYWcnDHLR5Ef9NFQbcVDH+8Vi6CGd3rupj+vmGZ8MPKCctfpexsn3NjhYHAwX7pzpxEMa+2S
5qiDtHfUHZQxea/loYwHsyokVVyEaV+qWLOo3H3M6ZN7hvTF0Nm1XRaZb6klNJNMo+Lu26rI
6/CjbX7pfE+EoTr/vsnX2WD2ue+5VP6dDoFIgnbL+CGyUG3WtVV9O7SYphCenlBbZkL3VPnl
uK9u2W64fGA9RYXs9pJ3t48UjSJJT09Wrntb1SKvKWwvVkS+QD81bbTbQGerst6FFJKqIESK
g3OSOtXqakqYq4XfBJXm0SzPqnxaF+tFGN4nhe5qLEk5i8ZxyqOyCvL1pppPsxwoMBBvwYFA
TycNTBGu838GxnhA1GHxddmEVW5gGFz1DEk7huysroPAdjcGrAmOQkMKKO2jzQkBhgBDgL0q
gMlXDjB5CsDkKQBzZwKYOyPALALsGQGmTtzaFALsXwBMI8DwBIYAQ4C9RIBpPIEhwPAEhgBD
gP0xwPAKEa8QEWAIMAQYAgzfgSHAEGAIsBcJsDNdFCPA8B0YXiHiFSK+A0OA4TswPIEhwP5L
gOEJDE9gCDC8QkSAIcDwChEBhgBDgCHAnhlg++8Pk9EvzIuJ/wplbmRzdHJlYW0KZW5kb2Jq
CjIzIDAgb2JqCjw8Ci9MZW5ndGggNjEzICAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+
PgpzdHJlYW0KeNq1VU2P0zAQvfdX+JhIZOrxR2wLcUGiCE5I9LbsIZumbUQ3gSRl+fmMY/cj
u9llD3BpHXfmzXtvZlLOdoyzj4v368VypQSz4PJcsfWWKcvBCJZbB9ZZtt6wm0Smt+vPCx5z
Tt/LlVAMEZzWwmdmUivgyrJMKBAezed+6VLNk3b82MIEaLlCfQ0gNRhj6acx8WFfl6kwyT7N
pLRJff/jUFd9eBj2xeBPjk5VuOqrn8eqKStfgZiZa2DMDTgrT8hfQ8y0uCG5+hRxM4ciQdAh
RnzjMo9BlnKd4ehjcnD0nCEYJ0Pg97liGlCwq6DbCKWvoHw5ZApIZQjCmXpktFQnTu9ma6EE
xbIrnLJtvK+/UmGTqttVPaSZMoIkaf5piG5Ho8tD24+W+qaSRYREeE7FwRhaStUiKfwXJpuq
7Kqir5tduD73BBMgdEwzi5isUotJ24WU/thti7Lq38w5LpDmUrgX+0Z0xKVxGyJE2vyceAJN
O4Qyd+F6X0TldI7M+xDwMN4dDlGrFCCEF+tHMk7ysdlUxFpaTRZecDrininOk7ujN8/mHst6
fH/uh5pAx6RpcX8Tx5jC6m3QJuVEPxdgqd8SUOtAYna+ad4QHS3gJe4yn4/sQtDSnOwa20xE
isDiLMsPRrhqt3MF/T4J/XQXprXCMsSgaBLtazO7XBoUN/9nQ19gFRdP8mkhY67ECTXruVQO
pM6nM/Jq4tNG03aa13XZvqrLf9eYgzbiqcZHwyIgx/P63Re//SsCZ50XgO6M9zbN6JX77L6i
dP+6jePbJcjMJxukvVB3AePz/2Uf1os/PaSjJgplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2Jq
Cjw8Ci9MZW5ndGgxIDEzODEKL0xlbmd0aDIgNTkxNgovTGVuZ3RoMyAwCi9MZW5ndGggNjg2
MyAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+PgpzdHJlYW0KeNqNdAVUlO3WNt0gLajA
ANI5dHdKdwvDzABDzMAw5BDSjUgrXYJ0I10CioKAgKCkhLSggCL1jb6+55z3/P9a37dmrWee
vfe1676v6+FgNTQRUIYgHKEaCDhKACgoLANQ1VO3BAoDhIVFBYWFRUg4OExhKHfo334SDnMo
0huGgMv8B0IVCQWhMD41EAoD1EPAAfd83AFAUQBQQgYoKSMsDBARFpb+G4hAygDUQL4wCEBP
EHAPAYd6k3CoIjwDkDBnFxSmz9+vAG4wDwAoLS3J/zsdoOwBRcLAIDhAD4RygXpgOoJB7gAT
BBgGRQX8owS3nAsK5SkjJOTn5ycI8vAWRCCdFXj4AX4wlAvAGOoNRfpCIYBfKwP0QR7QP6sJ
knAATF1g3n8FTBBOKD8QEgrAONxhYCjcG5PiA4dAkQBMd4CJti7AwBMK/wus+xeAH/DncABA
QeC/yv3J/lUIBv+dDAKDER6eIHgADO4McIK5QwEGGrqCKH8UPwAEh/wCgty9EZh8kC8I5g5y
xAB+jw4CaCgbAUCYDf/s5w1GwjxR3oLeMPdfOwr9KoM5ZnU4RBXh4QGFo7xJfs2nBkNCwZhz
DxD6c7lucIQfHP235QSDQ5x+rQHx8RQyg8O8fKDaan8wGBfJv33OUBRAXFhaRFJCAgD1AkD9
wS5CvxqYBnhCfweBv9yYHYLRnghPgBNmDWgwzAmK+SNBe4N8oQAU0gcajP7PwD8tEiAQAIGB
UQBHqDMMTvLv6hg31OkvG3P/SJg/wEYYQz8gQPjX719vdhiGQRBw94B/w39fsZCprp6alQnf
n5X/FVRRQfgD0AIiYgABEWkJYQBQTFwMICkpAgj+ZyFDEOzPIP+RrA13QgCk/5oXc1B/z+z7
hwTcfxTCA/hnLX0EhrpQAPe/mW4rLC4MxjyA/2e+/075/9H8V5X/len/PZGGj7v77zj3X4D/
Jw7ygLkH/EFgqOuDwshAD4ERA/y/oRbQv7SrB4XAfDz+O6qNAmHkoAx3dv/XQcK8NWD+UIgh
DAV2+Ysxf/nNfmnNHQaHGiK8Yb++LgABoLDwf8UwAgO7Yb4g3hha/g5BMfr5Z0t1OBgB+SU0
EXEJAAiJBAWQYK4ZY4kD0ECMIiFQ/99EBggJwhEoTAoAs14wwAmBJPl1p0AMsYRQMHcI1A8G
gf6KkfyjPtgHicQI7TcHMM3/tn+rGgr1h4JJ5mcRYNlI18bIrh/1yrf9BDbG5d9xbFhk8wig
55HdPj8pCDN46nLDl5GnyhmvBigX1tS5T5Q+sFyid9ubCWM60ow6z4Mu7B8ZT250ksxN0A+/
Ld1VbhpiIr4jYKq0GXTpFWQe5obbjt17j6PQy0eKwrCY5offC03/pqHKj2+iZzeMNuskdEgv
KqcEkswSbcPKpzmKHPNmGNgIUAJMRLzUh/43pk9O31EXvL1mufeIjyR4L0m0DG29IpJ8NhO4
WG0q4t3HeJfRmoEJ94T6zSQnWmUr897N9+iKsqWSadZkJ89rTUWbU9MwlJtPLpc4vQGZIQD4
dcxGsFbllUrGngpCOH2M/I05guhQUzas5Ktfwe7tk2pVPYgO4R3caE5bK1M0u281uccrQBeB
urhkh2bIchEZX7iozVBZ1BPJRNGhPHoZTh/9IjuVdeJ7UCrS0vEr3/MBbupPsTiS97C0KTQM
hPDdrHlUcZ66haUFVj3mlSyz9PH1e/KCPLF8PvqHM+dsQrXZxQEtn1qNhXLZ0MrydBPzPtP6
yIxhnr9sCYcdMo9KqXQFm/A6uYCqSJMwo3blwf5GiNPPe2KRu1JzZ2jfdA294+IfoT8+tbHl
hFR/xk/d8XviW/1pZDrmig7Ysnv1YlcbC4vM456l2y1iN7xk2pntIXEgnVp+UuwSw7DNawuE
p/vafe79L7J0U37hq3IWlwaWC5TEFfSeD6yeACIJPtL7FY28X1VKwwVnPePSppvcT//ZS10c
0BbWMMSz5OCjXUKlnDFJ6IzY4yA8gWduPGTnuGDg0TWsqxWhj33uWG6/x2CXBTfnn/75neZO
RLerzTSdVuN0k3mUXqqro1TZmEHoXAjqxFpl4wn3jy3YaplTrkBXWIuNIbFmKU//gx/yePYk
X5JWAo0neza5RllclRUobDUIZo9fawd+14p6Vh9wN6v4LhKfrPn2vKBQg7/rmJRoDiXhyceD
VYWIQIVbm903pL/rT+b6Cnz46luywnNhalqixsvUqa0bXNDqdaf+U8VHR//3Ct9PmXwogrtT
ajm3ZcZ35d3tZpj3Hk8iZNrammN2StXTEmpgH8v3bR4q3898e3lKHjtikyV0Y0PdeEz25ZHx
dpJsOgXbsAT30LMmnduKqqxjCrLOLjw9M2SaoPYvxNJwo2csi31y4Uo3Nw+j87hpWOQ+YMcm
5dwO4ovmCZ4xHH4dQyvC+awBwpzp5QG+WGZf06ZwaWzdGtzQOIVqnwvEmjThMeXPk0WywNc/
vwlCl4FZYp0CfJPEhGvPB3btfA1iFI8WE6yp38aN6rNrH9RyYdtKL/i9Oh+MMqzF9Xz47Qq/
w2GnG1azh8e9LvJaH58RO9CprPhrXaJy1+gjG8VHoWej18FZoe8k9T/yDAmgTnhK71epa3Pf
X0jVs7mxDJjqfr5r6lRh07Pbe/t14OI2unCBFEmpOitS22v1DfxJdah0BL9sqJq5BufMaePy
5pnva3iN6YGzqYrz/H2njkgD2lKLatIoyh5RnUXnz00wn8OtuTSowu3TM/32qJT3GT+oq5+y
fPeqAM6ZCL6eLeZ72CX8Mi5UbvV7uV3rG9/82lkPQuvvB2WFr8hy6ljO5bstzF2sbnAaX6Fr
WEVCPy50bXHt6iMlmF41PHRMKnQrtY9g+PBsco1ou/6KvuBm37NbY6u7XH1KsYzAYbpV0RY0
xaGezmLKA/vTc/v5F5qgRdNeZVxH7NH4MWHrChX0emkROWR2o5tA5N5pZu26wjlA0vgdUdy4
TrVk4ipe9vuHKUSTczf7TSllX9Zv7dXw2YilqHzjxbqT0UvkJRYiK1nYpAYQx42yUMQx+d7J
+V40o2Jy6chGd2P/rOr08D4XOvHCkMf8TXNIkQp/DlDY2o7J9DxpRlWEFiorr/ROcgn+s06C
JIix4GSGeYFfnSqssOVnON9oJ0fdN3sKFfLxDkluHtLo8yh/Oh2Jx+kXXgODRpeHNO6LMjdr
iZ++cvDanw74Aiv4Zm9Q0oMnuU37SU+HtVe8ntt7h8FJblRdmKhTy2/JelfBubn8xZgWQRm9
EZBFP0GadUNWilTpw/JjmQdvqzl3BB5yq0UIC7cdVhw6uakyEdLahBXUZi74MyYucsn7R/db
hGp9fUYKCyHxpiiPp6a7rPaLOUtKKmkyKO1+YL5TGxsFy5m+F627wvDuJ0dqBiN6JmAxG0cD
i/GCTYakdg5os3A1+CXvhg05fNY7Cpq/aiegtiGY+TU7F4zitM9UHbqbv5anbac2lz1cVclV
/DDy0fiXUzXNGBOCF0Z3px54Yt+unInsJZSQu/78oz6E8JBNbbvXeSYfSLtCj5jGE+KT+lYb
tqqwYJXXHY5zyzKXr/btxE59zelUVE9cT7+M080qSyq9/oU9iqJwburyEBRBiH/ii61jcAVf
pYMW+NG6Ly1bLt8ELuum81oyLpM7JYMsh9vWeDs5e3jiE989NuLw5xwf9Z4N4CmnSsxG66ND
o15ydGTYJTGonTc6yG4qaO92NW2WDG84t7LmFqmawLbmBrMRThMjzjfj3Rl8ZBCihQGZTGaH
i8XvD21BBfj0/bL4e1xpK3FOVUqrOY995z5Vx19ZX9a5kuqrNNpFlNEeCgY8h51YiA6eE4uj
YxNf3mXDopG9vf3e6sKuKtmhkBUGPEJfNDZYR9bDbwR9w6qONDfh962TWBj6JDgC8rgbtMZB
O68wOfVpn8c0VLX3c+a0G1vJI1EW2jVEoxKvsdl7/uRZidh1udvsYgNiRA6J/mrDhy+wETLq
s6iPzGi9SAl2mZis6Nondn6fl/JPclSVK/MzuFztiuTPz3XEYvGPmQ7UlQflSxvGZV7rGUyD
hqf4zC1f2aw9deRfZPIAzfO2xzOkjklIZ1nH19uNlnZ2xUYE1Tkwj75VpKVPQPkeaWwV+82N
I0V4hieYWOKYZ4XWBdZwDXwbxHGHqPqVAkKfJYRLA+w62Ceusd9Pvjz7hu0fEo3G+sJK/Lok
8JWcNdYJIlkQ5Tii4tRx69CodSUkf3SguJ5jqto4NsiWTAWmw6vPcRiyy0RRhbaf4nScz3dC
yt1ZR+KE370NcjJOSRt58bPxA0k8QVF+rzSAhJSdJfl5+zFywt1i9wF9V4eFMCP+peyD+vP8
JkWtJP2bbeiVkf1NXJfbBcPaWQvs7rDmL1sBTWk354nuXiNpluWaUYw58TBLbNBg4f5bWgKR
ArnLpsxU6MjHJ+EPxuIeaq9HTZI/W3lPl5i4YUfA9IGhvp8fV+Pbd5l6raK51Fl3K3KNTC2T
0AM62J2Xj27F9zHKZGjSWq0dX0Z2fNVswg7cx4pDW1hjmQBt1l+0EluyVVBFmn4YpWv5KQPp
fd7ACm3Xyw9/v183Wueri2dK+pSROqPXlmr9QQpjgBDW9sK3HXOvWYRFoDX4U4h4MOvWY1P6
jvYm/RZiIvXUyuQZUnPPxym74x7fjgXWiVdfF2bEJN1ev6ke0zydWCOdMkPfYCS8lsxMHcwv
VMyW3mCxMOHu2EVWWkDtZMwolTcqxWieqEhnqmcra2bfv6GbFTq0R+pqh5iPcmYqfoEkOHg7
xVsa9KO3y5X4iXM6WZhsAYyPO8BphebAxVoNiwzrEBLWntkhfMi2v9lJ5lOSB+F/5G34ocKJ
x/lAKSYcR9NAJ/Akg+TB+mZfO7FJ8f3D9JOpVH4W4xmnlL3WK/UB25za6yIYdj2b7zOzrNey
MhtfbIyOjN9tSM/dccOC9ESf+fVljNp9hvnRzDJ+krwDNOy+bGCHZOtDPrS87lOslgwvqVcJ
yrrYyfwy/Srcr0vZx+elAtp0SM1OsuN699UhZHUPnXZWQzTFuGaBovsaoedJE10I+xDGTVP0
nc+W/ya5p7WdVFvvYHF7jR/Y3V791t7cRd/z8QeaOOy3z95Pv2voH2il3ql5Im9nJUnNm5s8
i4wwugKwWhgtvItEDp1Unjpjr0D0pJn73sFv8XYaNgKae+4k4+SuxDsui0ZWbat0+OPdgFKS
nSoBjV0MXPF/RNETRZ3Zfs8eUwkA+1FkB9LnUQyPugIooS0t795pvVdMGdqmbibOMMsgCqH1
3H6jHn7nxtb6UzrBarfQEe202hWwmLPc7HbnzfWPKjsdZ9a7tr04KnTMVVHiLuF5yNboG4zq
JYWRdJD7NEN+lQPxOPOwljYPQLEs4YkIGQOb4tAOiZ2DfQP9M2sAA6GUITO27fb4sV92Lk/Y
nQhpDulCqpvfciCRJhKh04yWSYrB0Yl8a/m6r6wq7r29H6AEPBvdomAB7HK7oM0ab11MQBsZ
Par2+TWEIOvZTPHTTGxakrcUB1zJcs2Dw08zRUg23UkMmt0duTWspMY0qX4uN+yL1QsOkUNN
KIiwGu0q5BoaU2kdldBvXpUqs2ALmsSSv3JSSET0neqWDBdJZAktfu5NHxyiMdCqhSqvlsbg
jRyPs1PKuB5skDRLkpb1SbTcuGO13jdx39iXCdm8rYjffFP/x6z5lPbkfCCw5an//TxD5e3x
mevlkOrNH/k6eSz4PqhUk+tHDtYRK5rGDsymGc6ie1r9Yqt577kmoTrG5A6VC2FueXxtVUuM
q0uUVK5Bq+2SC4iVTi19QwIv6rgUqnvOEwRiU6H72ysl6DO2xM84+kRHhIv3vnyYE9w++oaP
e7wywaKJsDkNoPFteCSonWfSxZcyIk1J5zpu1qwL4YttSXPySe96XfYixMOoqMGJedBb80hv
3HGCZ8fYSmT1hUJtgAgkTh7vecQ4Y6fZjYwjvCLo/u7cxdd2LKloJV45XsWW9U3Wk4cpgnsB
BXaGLsk39WcnqiaBNG+8Hgx+2URa0TgfNNbrJTcbj3wSSqCg3uknOba3fDU3vt7Zs4v04VJe
9vSB0vC9vuVgRajgFQ2w+Gqp2SUB+RL7vceaMpW894i+igJKnrtBE3NNFJ5+cvQz17T9R/Gr
/S/2MVEDrvcTBDYnuWzgpfAAOgPrEhmD9atpRbPk9MrQ8pQe0UBZDSRotZISrzw4RciePEdg
ZUKtgAvRyHrHYN2IK2G0QXf8VCmb7NmcIKuZ/8TXkBtQY1d5M/nxMjWvzQadp8upnPk+0tvn
eGNeOeNqcjLLgJa6BKpVXcduQdGuo+vQSPD6FT7HB3+7qvdxsni1Nf0vcMkOb3ZvgPZbs40D
ogvIP1p/kJlJGnR/lNxzej/sDP4+kJKC9bUQ8sIs8SnOzNMDMZ4hF4O2VD1CPciLMcr2zdTQ
q1myXaDYSbOQ5XlcmzeonkGY7QBPuWq3umXkBIp8vNqa6p6Mq6J/I74QWSCVN7lYb/U5BBkg
neCSMKS4A3aZz89k/RnJAiahtcL7nBhlkEjZ/fEnuJT6ZCHY60aPOH5BVqZt689M7o6AGVb6
h5dP73+a38Xl1i1vJQWKi867+sYEHrvET92Z2Zbebkuvjd/Mui05S2N9omp1SoC9kdT0oP2N
Qf9KpQw/a1vqpRltlOpd3g8uNpphAxzYYklbBtHHPex8pQFpmRJsEwrGxgJUMuyvLHU5eq3y
6YpTXqnFQapq+G2WCC6qa2tjNIpNdwpLw2KdX1uCwycaertlShkR0iMxGbbog8iaw+suFw5f
6RMuFD3hohmzCm1Zc5nRUAZnxE+Na8+h6bKP0/xSFgkbu1mtp7sa7W81CsKy0/oEjErVLbom
1NQbAyfFvfPZBU0J1ICUxsKRi/HVDTLndxeD+SKQvNs1Fumh+Tmn+A+Was0ce3Nt7dQrfL0J
gwYVdd0QjaXJBrWl01ewEY2kuHj/jDFuqbhA4OoZHSRi8KeUHyGxYN6tQ8cHbLn1HDpE92Hi
UYPS/apB3+2Y7n1ex7kpVuSJch2KH3ykmp79MiY9LGGM5EXNrWlNFuhW3IYQG4AZL4z9Ky3x
shIriE6PJdrxq3qD8FFNfw7OFKGZYp0tYNXRqvRd927Md+2IUo/RrBNB6hEHf8avfHM04Wki
XtYyeK5rDU+3URZ6DN31OpWyw1J1w0+Vc8m89zi9LmwRXhUdyeau+EYADlitqFtYKtZd+Mm3
EwYu2kH5RHV23kESC3Nzsu5C7RVDI6ldhgfHa5e4CtMroTCyGTEGRw/iAapSD9h56MaT0Z5J
QUOHRgvhsUkukW/RwpuzC1jjvud+7oJ20AT3xxPhoftMZ4tMQ6y1VllZgTmzbK8vIzSW3YzH
HrfOjG/w1zxxcFvlSMjW9nEEXcBtr4w/xPgwQBiX8MnHZFALim31e1ZPTZJ/nhcJWVi60xts
P6SotetHV7imkPQ1OGVlxNrHeQalb+zIWxvkjHB/4au8dNjVIibpECcPeZI7yRwjCXEheonT
O1tlZ/4R2DwzHbmXK1JMNaHGPW5hMyhEi9IksQCkc7eQ7wUWFuj8wKubTdrqp6oUtWZNYFI4
TtYtT1i2eA+i0CiXrQ33KxZeWgf3Nm0xKWfWpy+E740t6FKBwzrVQbJr9WRyyDmT+3gUj/Ge
kSzMgvgdmlJw4l5QZUdLl9rutQ5U0mzm3JrGKWxPkPcNHRf4yrWtpkHp7Cjvzvjy3ODOJrHf
aKDsQzmd/aeW90kmQig+cT600joTGrnDXMV6FX817KPxdq9ybQD7243GUBuWsSEeUu2ktyoP
BXCUOR2T0SrefYLb+AtLFjGDA2itvKUAkRDKrpmD8pq3/QuCs2eeKT2t19inb4XSXgxkizDB
7AWAqkeq/XuDGuoJviPB4y3DoNBHiQdtEq/Mqcd3Tonpt5olgy1QVRtX5UmSHsen80FmavFL
j8OeToXAQryrjg9acuKkQHZrDiFtMm53D/NiOgNSuvhQMbbh9CB9EHyag1g2XzVIemZTy1ZX
1fez9layW/RBhKB/z148wo7hLoU+vEB11iOIS5frsy6PVwIX1gZu9+elYzBV/sItcaPOeXys
mwwtrujKAHWhXXalyZDFAioEdfS5Dj0OVPk2cKXwG0P745jmhIJYlB7ou/trUixL8LXAgWI/
mNGNmmLVUOJxV6iUA8v1WzGoERZH/svnZ0XrDnMTnSND5oqCJkZ7R4etLDE0WBWb6fUa4Cdy
ztE792Y+1ZgzIH88nJyyc/n+YXUZtextKPod4VB+eUOiZEn0IbbARmU3+Y8mFuHuudGYJUmx
Lt0rvS9ZK4xAXgXeMDXNFvEHWpSWU5zD3s8fMfi95D36kVWUOvB6Xfb2zro3d00Su6HKfA/A
BWGA4oi/97BzkHiQwWcS65RiSVDm4ug4M/ZjRAT5NSd0bcOb2btOvXR4QxT0JoP38ZXhTo5v
Om+Zmx2R+CmW2rnEZpJitf+m6Ar6I0fbRJ36t4oWmPl1X+G16/C7irr28nTDkghmfX+bJ6ek
XyaewY9DqQzffwAysVsQTviW5ShLLfVKFEEC057n6e4foTQPHMUNL/L8+AXzuh+yO3cSVEUl
Xk1oyMz3HeAeil3K+NComH9XAt0x2MgQKQt8AmftJ3Xw7HQ29QNFai5IXqUvypM7bgfueE9P
lHaXZlopVSW1BuMKx6OlL1QOJO6OZk2Xy7HGJ++3rq2MyKfLrkQwmISA88YNlNcXLZdrzjUN
+o7GsoPN8co75Kmw3HwVJhIUqkbp4WLy9OxBFS6XIWdLGWJfjQns5eumNt4QM9rsXCoi89aD
H9fmlc92rLrUkH+qCh4yHQgljYOK1aBH2WUur4easIrqJOnTrCwpKrYIDKVFFioz8PRm5Uff
5IZ8pXVNc6Zst/Ym8e/VFrgCKsYhUi+e3uMLsSyIWBblG06Y8U7vNNG8y+GO3UU1KOkeMOol
VxZA/MWy/O5LIZVSN0YifN534IgcD36qT9bNOrIWJjZtpTgVnGKWoq6XFOxlX2zjefj7Cj38
NdmtmU2d1jWJrdMC4CGNG3SC206fdttmtxzemkt2FsWz7Elzct+SW+B7nCefdlBQL1NAGDTB
6N6U7rf5pN+SQwGmz+n+1JZUwfSRY6EcntgO+a5tzU5SLe5z1bf/A0RRM7sKZW5kc3RyZWFt
CmVuZG9iagozNSAwIG9iago8PAovTGVuZ3RoMSAxNDI3Ci9MZW5ndGgyIDYzNzUKL0xlbmd0
aDMgMAovTGVuZ3RoIDczNTAgICAgICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFt
CnjajXUHVBNa0y0g0pQu0iE0pUPoTZoUkd47EkIgQUiAhA7Su/QqvYYuTbggVZAiCgJKr9Kk
d0SK8Mdyv/vf77213ltZKzkzs2fOzDl7n3Cw6OjzKdgibCAqCDiKD8gvKAV4qKmpBhQCCAoK
8wsKChFxcBjAUI6Qv/1EHEYQVyQMAZf6X4iHrhAQCuNTAqEwQE0EHPDYzREAFAYAxaSA4lKC
ggAhQUHJv4EIVymAEsgdZgvQ5Ac8RsAhSCKOhwhnL1eYPRSF2efvJYATzAUASkqK8/5KByg4
QVxhYBAcoAlCQSFOmB3BIEeAPgIMg6C8/lWCUwaKQjlLCQh4eHjwg5yQ/AhXe1kuXoAHDAUF
6EGQEFd3iC3g58gALZAT5M9o/EQcAAMoDPk7oI+wQ3mAXCEAjMMRBobAkZgUN7gtxBWA2R2g
r6YB0HaGwH+DNX4DeAF/DgcA5Af+p9yf7J+FYPBfySAwGOHkDIJ7weD2ADuYIwSgraLBj/JE
8QJAcNufQJAjEoHJB7mDYI4gGwzgV+sggIqCLgCEmfDPfEiwK8wZheRHwhx/zijwswzmmJXh
tg8RTk4QOApJ9LM/JZgrBIw5dy+BP5f7FI7wgPv8bdnB4LZ2P8ewdXMWMITDXNwgakp/MBgX
0T8+ewgKICooIS4sIQaAuAAgnmCowM8NDLycIb+CwJ9uzAx+Ps4IZ4AdZgyIH8wOgvkh8kGC
3CEAlKsbxM/nfwf+bREBgQBbGBgFsIHYw+BE/1THuCF2v23M/bvCPAHmghj6AQGCPz//WVli
GGaLgDt6/QP/dcUCapqmGrq6PH9G/k9QURHhCfDhEwYC+IREBQFAQSExgDhm4ffvOjog2J8+
BP/JVYPbITAZv/vFHNTfPbv/IQHnH4VwAf5dTAuBoS4EwPkP0y0ERQXBmC/g/zfff6X832j+
s8r/k+n/3ZGKm6Pjrzjnb8D/EQc5wRy9/iAw1HVDYWSgicCIAf7fUGPIb+1qQmxhbk7/HVVD
gTByUIDbYyjNBxThFxT57YchVWCeEFsdGAoM/U2b337Dn4JzhMEhOggk7OcTg8kSFPyvGEZl
4KeYZwSJ4ebvEAiJkRzq10X+tCEYUf27D2U4GGH7U31ComIAkKsryIsIc/kYSxTgA8TI1Bbi
+YvdAAF+OAKFSQFgZvYD2CFciX5etIQwQED/p+uXJSoJEMAI2gn0H4+wIEDAGQr7Zf9rY7Cb
qyums1+MwXT1t/3rDYBAPCFgoqlxBFg6xKEupPV7jQK9B9/qkMzNvfTvJkJ8Q0VWBKge5dEn
XxL1s7Om1ctVpt4CVawcOrQUXb7nzE8c+azUM7/yEvnGx6yybs9sEz9+/Q37c5LPKQPrOGkT
Vr5xqiKTVIlrD5YOYzRZJ6GcrX2PPgep7/267skkj3t3SlXEH4e2arV31pRmadxlkDTaXtJD
Ndv0G6yKHtPcz11yigtefm4RmaaVwaou035GlOhRTbbYN9A/S/6W8U104GP3oNV99jAUubJ0
P4OSCH610WwByWVuiftWBoWPjSrlw7v6mvksejRE/Q8Lkpv3aCwu2fBNHLIioUlEWzSkbQUZ
X4uhiIC0M2HRrmCJtNzPrOH2UT62MnMqegHtzRPhA6PUp1M3FwdWHG91DrdwZrH5QitLD/2f
vVfQj3ZIfwk24+M3zoOMU+a/peD2AAveOm1WBabJeOb0FB2mt4dKGcJGp5Kk2Tv/qummX18h
am2r39OdBO16f7aor9cDxIMoHJ/2pRHZG67Ku0RJDVWItyAlk/GTU5Kpl3bjfAWsGuWS4qCE
OVm3CEaQtBHf1zYPxV3cUWS3Fb2+Lqx8NW5YGR0mtltcoboVWuc9jEp71j7cPRhrvvX9hcRr
CoMThQgRu+q1QMrmnKLBUdoBmtzDGfVo8wfs4SLKhBqv0fc2L8bsX4ythoTcExejuid7eNVw
rsSZQeiXKMFoarvez5tvfJmiiCz4i3W6dUQOPiVZo2K0ENLMckY1bNLos8ZiZe9b5X48D/QJ
avUUTiSvfpv0RMmZ+TWuVKV6ESw22wMLJ6Mv94WAzSPrGDswiDWn/X2KCNjKg45AUrkBCThV
JjXcGiaY8o+pxmnT305DqysLdC7c2dijUEuT7rI1mJ9MlSm0vDrxFXu5qnwG7J0qVJPXvlEH
41JDtymIzUQ+k1v1D7qaoZEYfcGgQck9ubjq28QAeksoPwfjN7u3R584Pfi8EEYPNuSL4hj2
H5PwFfZjsXwmnyL9oIjOHuXcqK0wMfmIDi5/yDbpWVTBhDSodfGsQGsGuRDhE7xqiN2QqHi9
GZJAREOBJnLISLcTr9fiASTWEB+1kgh3VyTHtqlJ6A/zRs+s5Zkh28nTqZUNvmqet/Q81saK
e7HpHrm+r/N1Wok+JbhHjYKxOG14H9twbkri2y0KZp76Tu8nMRwDggLQgVWGrotZB733d1ij
yVIgvsAGPW0xQ04j/DG99MlHo0KHm4VKjNXX0w6FXNG4Y3cu+l86oHnpcgIlVla7NnovQIWc
8n6FdU7pNwAlQ5/aRUbW0QSHQ9jcNrG4tkP2KFWa3DcXR6s98/b22ZIEZ0JjI0KRJCHGfyXb
OGkO8d6QyOKo5g/xenEnYH5ErsZ7jEkezU7eJWPyMHFzNvgQwKCbWuSqZdyuCkpdIqZdU1vH
Yx8u4ozu6mPNDqMoreG6orsqnY54UWOBW45vYFZ2lLi8vkyfe9F+mdJ6bxph2yjrPlYhX/GA
dlJLqnuHbV964fJOBP7krO1U3AuN70tduSSSeOpOgYOEHqrLtNsGnwlel2Yw7ivvquLRD9BV
8cyq5hwSCi7uHh0RzXnguE6DmcXLq33LatMHILvM73opbopUPlxhgPtqs0becvpotD6QWad0
e1rhh0PO+cAGARPxQeFJJnpWsnWyI3C6+OlBi+k+RRXPDQK8ellXZMxbTru52dk6X0liQC3U
lptDTGGm+UlkJ4KDq8pMdZQ6czGq5mHS2y2HW0N0hH7nFUi6TKfNmUCeizHOZUQiBJmmaDbi
Wp8oHFTLnEx06xMih1KWIHnK/iON/VOBpwRa7aKPdMxXBAeNndNRDJX4Aat6Ix7XPGI2TXtd
DD01B/6D73IGzSv53nE0Wj6ADpe0fVRnqUF32JZGd6XrLxgP1V+6XCuE1Q0JhydRUivtELyH
lYxCL5W+kezrBB6IOmOFSUnPv4tsHzbXvB/mRo3KudC80o3xZ7gUV2Q+H9t83tbWsH+l4+NV
R8+v2tRwV/UJ9R2D+A/lxkeenmy+AZ8oehzaJ2UhbkCiwqbMrTgRcJNhUU3mEVSzlxvRdzyT
rZfVta1lLi+VL/RVmYbOf57VV3w95CZx+65lD/TQxFVYN15DVvG6lEPxQknMPnvW5GlLxga0
mPu1AUw7wmFybDYh7222FkS6bqmcgjrdH+vJUF1YedI8V3zm7p2102eWFK2NZ48KQta191cm
VUQ2KziaD9F43xdwb8LltVLQFacWjaX63dC+djBoZvVRxeabZXH7oB8HvU/Cttca3SmAj1bq
DQ6ToJn28Lzrhu2CodeMHHMhT7VgvKOhT8mAYoefrceUsdaPZmSzqjunvc5aZEduG7jeIBUm
pbLOYbfooSmOGx/orT1ueLxNEuqHEzxgT+qyhC9v9NYmeylKDcHF+6VGbTnH55zQVF5Ilrky
UMkj/AX8FfP72ouEE7CpxJMHCWr3uefm7RO3v82lmTVbNIe0fkBtvGNQ6WXpGVhOxcOlpp2Z
EnssUeo/Un9M6zGW4kTLFjjzGCXnPeY1OCNXAMk93Lwab5RkXfrufDuc7bvykpeeN7PeRJf4
AnUS/UmpVwxvssjd1S7C4F5jkb3haSmHMp1ET7PsOH6Gj4lnikt/1XQ6dRA+ROr1YPstmG2E
n4KpS/IjyennDVvTDy7G5e+iKV6U4ak4fhE4dkq9fUeDWHSGoKGDo3sInUQlc7y45aCaeq2h
rlF35n48Y+oX86E+oErlQpl2cNzUdIzw6K0Rry9s6GrlU1CfwTQwL4AOZAh2r2S/8cEzeM9l
LZF/x5q5Ri2m2zD9Yi2U7DUeZ6JJsLmZS7HvsoYUui+xuSq76b4POsQgOllN/TsnqbZnInGE
vdiDTDdCXryvhedTAdtOunqC8r1L8jYG6vQ1ji9er4W+Hy9LuaT3OkHU22NL7Vcp70EFx2sW
lRGkUTu8W+LvWAqfvOZ6KTjlOO3OaigUe2tTfPHKJpiM/0Tq2REXn6Ztl+v513iiN/Ylo4c4
41b3gI2rRUqUXtQaF5947kbBD4u5cUVzLRYIUfm7LOpJJ5TjIdlfi3J5Ezjay/dhr7RHGLji
flzx5ssrQNrklfTdxPvNPpY/H+llobJERTLtve4e15WvbY3gq7WwdsQulFoLXWa3QX97RbTP
5IutY/5GV2qabr9NYFmA2FiBtq9WNK40pDunWkpES8WqW9l0kvIzchQmTmu1EjtmWMRkGYPe
Dfj8nI36vVBDg75Lbxzv+tO2uN6xqi6rla0TJUqbS/Ui0dx59tH0HHCpYOY6rewJNA+nPQ8Z
3EHM2pyPeN7Gcvn16u0UASO5CcxOaUA75WYja6CYQZHcN3Qpjgm+rrzeG0c3G2x13NvD4mQP
Xr/D9xnFcaNaIZ7WJTgZsqSIjXjoOEjEOu5XVSiuPraZAcgM43xhPuafFs4+b/giTPsx7Qnx
OBPxgNv2D0/UmjcFEtJKFdiVb9qgwqhNul+FylSWtZVanJ1PTOjlxrfTy0uReUwvRq5S/rKu
4eD8fILs+SDdbXb3HyKiQvjqfi27PCfJIauepXkNPAPTCuNk2UtFWHiTx1PoZAdcrR/OJEEq
bHrdzR/UBQdo18FoPIXd45VHd0HT3jDUXpoO2FjtTvNE61ASNlRx6D20ryvoJcXdR999+qWb
3lPnq2hGBUB4PS72aszkPM9xKCXXB39859T4VEuWgksO0r1PdGjCyR+zmUwFbxlFohf73knD
GRC1L/frHuoGh8Z4pBXf7qx5Te8/98XjXbFaJK/ZCk1XxyoKBRN8QA2XMhler2C1sVTPcap+
P7o4Hbk3onQ+tVrrWQj/OLm+62zREAQcQcKTuzugQJZEd/q8ovkN0SL+hKp47tWkwgOLvp2b
np+AWbMWXSTeW0XMyt9IJP0E9vYiQoj7o10D9WChyTW4bm833yqq6g0w3+0YmSimeUVtsF3p
GnDlMLJ30vPRdMJn22w6FmvdGy+WOVDq/ixeJvq0aqrCwZnel+R7TAG9PIMhG5mkaXdfmRy3
1j7M769yP2EOyIerO1ODAVUgtntnNMpsaGsJh3td8wdMZgXRwXJ6pu/IMq/Fst+vs9XEHnzb
4D0QkC1SnSC2PCUXrY14LW09uuhFZkFxIrkulVi+0XW4h2b/MMhHPiQ/dhSbyO66vndeu/Qh
Pb189nDPcLvvYAS2+PKC07U3ZjdX8zJmaq2oqYR9+fj5Q72FH1PllUgCpKXavRcDj3m2ry0D
HzXzX2X1fSrjFg6qb7MbmrGm3+qcV6TPj4hX2eHwn6YcI1KbOPnxF6gXyCVHVKrss7IxOY9n
d8TpyOQVLXT8WCnt0KlldFpwd1rKXrDfUWS9U9NVUwHpFm8tc9vqZTmj3cu6gQTKmBm9Rwyz
8hHmAY2Wlq88jbiDw0o/EHfh7rCGRREHz0kdqIoFM+kOLl55dI4ZC30iNXtAVA/xyQRnzZcW
lHhfnuppNRRSQK3vBGH70ifOC906xdEILyo/1vDQpqfx6GwKzfzubDyaG2JdTxkWEyLhSkb8
1A/fmk+r/NhR9nIwupg+/ubXu1Op8dDphMeCxVpD2lm1PR9uYHM8wQoOfXuVTKBS8Gz+1GEy
YdVqn0yL+nAVUMFkd+6xDB1PFsq+yS6iA96tuVDzXMrCuwu9jHnMDSe6uamgb5kCDWkbnRd+
UlOxmFXSs5kUK+pxRpHy0PvdeKX/mhSzy5XK9IjpBjc78/Mfs/bXDo2hxXD1GjX6lG1L43pI
H/VJbkkgGwPL+4Y0HtaklQBHf6j4y7UwkvM9UatdlmLsuYeGo82ElU9udrEm0k+i3AQ8bFbF
NTK/zDt8FOUOHPQYmGrgLPRWYBpMaTUbUs4/7vHsAdHdX2FSOlxv0gCvlDYHGjsv+JWTWXUo
vJ74FHi+n5NRj6bVk00n3EGitpjawJ2fqLlrm+y8PpcpFheF9BEobKxKxAsrmLOm2jskd0AD
aKfs306nFS0Pn3gWgMIl4CT+5NvFc6Fi4hWOgcEvE/fx8c44+WACX56Q27oSSS709S/zrYpt
O/Ermy/4BiYkvaPUD/F8DW0QbTG4pB9sJWilvhLJGpX5ohNXf4uKCurJcjVSFeX5TO4Hq47q
He1sLGVfL+949WHFnItUXN0d9rRY/clFH/T2YY9k2D3y8sXIElkxtaa8U67rDR2H85mcrT08
vUjFZq4gRbZJhunhNySI8YgHVj8WGLMPQEDiPVK06lpQVnolme79XZK5qMfksBJbpFpjOom9
zUu6sgFPO4Yzctl9lADdNzHpyHeGBliR+U6GfFODnDdGHK/lP9+lC8uJCM15o1lvSt9bONqX
QhTCeGOsV61l7eQwJ0a/mmkr2dyfU2L56b3010q8p3hnMJus4MBgmBtMlsA6F5HusjHLXhbH
UdFxTBYTcUWWQMxgvykBnnYYAGbV9qU92b459lDCIrXGEKBaklbd0OVbI5Qto+IS9QkiLPUG
CD7EWsVrNrYsv21Vtb+hFlDyFbt0+0Pt7N2jDV+CM3oQ8k7pLafRZ8iuKrEdRixtqEhX150c
x6MO4KR6feN8v/DeUls5cefwDlFhfZlsl8zNcM+tKWO+ifAtNo6aSvUNdBVtdQVhCT7svvue
gV6/oo/PG6wSHecvBBOa8qFPu4nPDdsPZPbdC77t3fA630U9j83Z9h4vw+e/x8fEkz7DQfpZ
VQzGlbczwxZagMUKckYYj1aGL7JpJBmHETAFHcWqHQpU9554oPcyWu5Zh06LZZ73UvtFREvq
IullpixUlY+fh5tsGPaY4hy2vgNeJNDESb2ZYxzUqq0Kq9qqmThO1cHXm197Hc3LJELpgNLk
eWyzQN+2JT68aD+mYs+uv2Ln6JamdHO4/NU+/wuSsXasjMmAiJYosB/2HSyPU6mjG2uddaqH
lcUcY218TNIiupuGw7fFCVuXKfh0LE6vFrqH65BfJ+6PKUl/+XSYAQurdSv/6jqG9YPvlC04
hI3Fru0IjyxmEevbROlO642ZvXIJIvOPHwnC5SlHgxzJn9NyWjrgzrkUk3dv013DA5Vp5N+F
4siJ23UmfvpqEdd7kEKOdc3BQ5GdV714JyMRK3xKOQLyF7YPiRtAJIPJRM8a71Bg/ZZETl89
T+rY2PRiSWP/5gyvSYPmyu2q5nbmALrqET9uHhuI0myA4JfIOrYd98+V13SiBz4tFDJ6U8ZW
Q/QrbXiZECPcY7QHE7bf3UlDwPOuRkimqHKq7aeaHyzNkkFtH41p5Z+GpdY6T/hzbaevcS49
Y/Ri/bRaPEmXte/bi2zvKiwu5zV+1b5inHzTLOYvleUWcqgjuziC3Be7sTu2KGRFx6q2NDh6
2sSCR/F+Htyjl9VPXoYvYIoG5s+7Wb76Etcz7JVC6r5wny2XwqxqYWc+ePtTm9/umnGHJt9M
x+ONDJ9qS4UPRWEeuQUjMgEVaUvK4BvkUzWXn4DkllRoUeHEVKvrtRZgDsXitfF2ivm62mgg
W4RC8YbiTczshnhzfI9iTPr1jr7GlPqvx8cCAZ/xSB0v7a8zNUFlxvvnqt1N/Uryz2mNr0kK
ZarxeGeNuekWEWud0hPKNXFDoiSMe6612M9SPyjaoTNMT8Tjbn82ZEUgtvMBUoZBOr0jd7e7
z8jVLGvkKF3E2U9Zk3u3WepSrj/afT+lK2yd+xzEvyyU+AJLbiO73mQnzbWjOO3lCzwcUx2J
FvPj9cv7+9NqmiFFkeglp683OKg7kr+Ss3opXT2x+3zF47XB+KrIjfFBY97V+hzOyYN2E7+K
U41I26jFcZ90n04X2d7mj7oVayNsHJaB5lu8ThbItRy3YG8XPwHPcbHhVPbeQhomMgK2dg3W
FOAeY5SXXZUGqYW3cBw9jHYjj+aLydi80+ixsG5oXK1wmg1Lv/nlpMn1Tm7ednJQF+MuzXtD
rAQfPJuXzp58nNy9j1iMTmcDbRtZGgOkbUXydNHTZhwBA2XJD36AHclK52bEtXKa+ueuSVGL
/m/oLmVssKkuErgg25lVZ2UsJHm4YanyjbCHm0+fmQ/CDV8QU/Xms7+gbEIg7/q+OqhsNxXo
R0W3bwscNj15UviA2sg3voD9dZ2W1CeKrf2/tCOrv16Gk7i3nX250h+Yp/VhOJrhg09wxbQ3
F6SspPb6dqROH1rHBmktUaJ5ElJYU1rd30g/M5stuadDmFWpxKLPEBz7QltwlPS9aw+eP6Et
T8Gc3xA9zfh8YMtkgkueRJBU+RFiWOiVgb5UupiG7aJK4lXc09cf5/Mfs9Hs7ls8X8H2nT8b
4g5peFeV/6AEMneJtu0KT11X1szhzRovomai4QrckbT19lh2EZm+QWCfvzgJoOeXtOPuH/kR
DHX3k7zJSasacFe7grVtJFriHK9S3PmsoPQ81enG5VB45YaEdMNCsYvZkpDtdSj5KxwIgW/D
wdG5dF8M3e5GtqomVtfQDqHmSyPJCNe4PDW7ayv3RIjBR3ONQOm+gfesEgkGdhlI2LHuCm4Z
K+YfjgzqvRVZj2PERSBgBEe+7e7BenTrTVznwyTij5KTCXL1wpS8kIR045TCZ5vVmiFbro4W
WQuFWmLtTdbWCjtP+qhubEZpomZRgllRrjW57+Gk2ARmBcvPjOs45MACG55z1VZEzl2Uuupj
QtUacjxJ8w+KCSkqEZQOD7Byt8Ka5a/2s+wLHTM/5rQZH1jWN5Te22RNsdafx7MVc9+o06dx
eTpG0124Dk3rheFMk3xLYtLhw3lgRWokaHqWwq/r2No6S9rO3LWLI6PENqN6+Wz4R3zZc1m6
u2dveuZTXM5ubcLutDCo36uZe8VoedODcT6BxoCeeOq9wvSRxW3DifHJohElzu9hyUXzBmEL
lujc+1HsS5un7b5LpcUbflFcgverH+Werh0RMFLyM4cD+zvfPJ5nt/yCRllcR95i6kvJVcJN
W91nftPRGUIzNNa3flBrc3uoZYTXlLhC/Rj3DZVuL37Ue1kpbK1LXbEIIlqJaAWeLBELM5xG
rI+4uU0WVZxeWzux6UX9aFCv8Wy3dUiodJPcvY4So1eB+Kvrx56tMb2O3CDqnZ6Gl2lPbU6a
qO4gqGRTj68Du6l/JMizxX9W4awVaeBg346Vsg5Te+rIT4XsQZNQcD1kETHjjVN8Nm4Q/x7X
iqj8rQXyMrKNj3Tswi6hb9MqIzSz4JSpfjklVJbH9synoqC9M19x1S2qjzOO8URU+kaxHZWW
A4kNegtgks7dgh1lcFXWx7Q7LDYwUhu3/plJ+oqhjtXoQZtX7KBV3Kw433KI/xcIn7Cxcc8S
9NV4/o8sG1WjMrIORQDfqPxa86erFvzh+Ny34iPJIaFRGQ1Fq98EnTpM50SEdgWQtmBRGyok
A32Tadoj3Ybn7asGOzzk8039BGmyTLRS1XIo2BOn5zvaawfa3xqTpJeoikoXxtUjSaao0wD4
RyZvjXcJYpQ9HVZvGz3eW/F8iszc/RIvg3ProoeL1RAug/6smAShXJF8M1bOdfSxzaXU2nNi
yLOg0GCJ/ZkIrnf7nsHtwLEBIRdONOUR41tmNzUL/LKN8BY28dFFEavEcL6sehLhlQfBxPm6
0f8DzfFh4gplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8Ci9MZW5ndGgxIDE0MDQKL0xl
bmd0aDIgNjE4OQovTGVuZ3RoMyAwCi9MZW5ndGggNzE1NSAgICAgIAovRmlsdGVyIC9GbGF0
ZURlY29kZQo+PgpzdHJlYW0KeNqNdAVUVO/2NqJIGJTS4IGhc4aSUrpLOiQchgGGmAFmaOmU
kA7pBgEFAUEF6Q7pFJAWUEC65T/Gvff/u9+31vetWevM2Xs/e797v/t5DgvjIx0eaUuUBVwB
hcTwQHjBYoCsurqyCAAGC/CCwfxELCy6CIw9/K+biEUf7oxGoJBi/wsg6wyHYrA+OSgGi1NH
IQEVF3sAIgBAhMUg98XAYIAfDBb9FxDlLAbIQV0RloA6L6CCQsLRRCyyKEcPZ4S1DQZ7zL9e
AXYYBwARFb3P/TsdkHaAOyNgUCSgDsXYwB2wJ8Kg9oAOCoaAYzz+UYJdwgaDcRTj43Nzc+OF
OqB5Uc7WDzm4ATcExgbQhqPhzq5wS+DXwIAG1AH+ZzJeIhZA1waB/uPXQVlh3KDOcADrsEfA
4Eg0NsMFaQl3BrCHAzrKaoCmIxz5B6z2B8AN/L0bAMIL+Xe5v9m/CiGQv5OhMBjKwRGK9EAg
rQErhD0c0FRQ48W4Y7gBKNLyFxBqj0Zh86GuUIQ91AIL+N05FFCQ1gKg2AH/joeGOSMcMWhe
NML+14h8v8pgb1keaSmLcnCAIzFool/9ySGc4TDstXvw/dmsHRLlhvT6a1ghkJZWv4awdHHk
00MinFzgynJ/IVgX0X981nAMIAQWuS8gIgDAnQC4O8yG71d5XQ9H+O8g5JcbO4G3lyPKEbDC
DgH3RljBsX9EXmioKxzAOLvAvb3+d+CfFhEEAlgiYBjAAm6NQBL9pzrWDbf6Y2OX74xwBx6D
sdyDAOBfv3+/mWLpZYlC2nv8B/57v3xKhpqayupcfyb+d0xGBuUOePHwCwI8/EJgAAKBgIH7
2Bfvf5Z5BEX8bQP8n1xlpBUKwOJ/t4u9p3+17PqXAex/1cEB/LOYBgpLWzjA/h+Wm4CFwDDs
A/L/zfXfKf83iv+q8v9i+X83pOBib/87zP47/n+EoQ4Ie4+/ACxrXTBYBaijsDpA/jfUAP5H
tepwS4SLw39HlTFQrBKkkdZYNvNABHnBgn/8CLQCwh1u+QiBgdn84cwfv94vrdkjkPBHKDTi
18cFmwUG/1cMKzCYHfYDgsYS808IisaqDfN7jb9sOFZP/+xDHglDWf4SHr+QMAB1doZ6EGFX
j7WEAC8IVqGWcPff1Ab4eJEoDDYFwM7sDVihnIl+rRkCvg/w2f3y/TaFIQAf2h6Ktvnt+cdJ
MBdnZ2wrvwmCbeNf9m+9w+HucBjR1DgKJh5kWxlUf1whTevGs/JJAm875diQn+dTvhkBpl1+
2HwhTicjfVq1RGGqDaJgZtuoIeN0nDk3see1XHWv2kPwkOeewpr1PYuY8cvDK6PxXkd0TOPE
73ByDJJkGMSKnNtxHtFHkDQRSlpat+uwED9lq2ydjHdjvVOscF8luF6joamiOF2Ngk5U//ui
Nua9RZfuitA+FVvWokN04FKkybNkjVQmVYmGE6I4t3KS+c6erhnSNvrmCH8V14CVH8whGFJ5
8S46OUH8cv2Z3NvnWUWu31LJvCwUyWUpdNRzGLWpiLpkcxPeb1OZnIPwDW3Tn9nEE32jIv6Y
m/q1wAbll3wiINQSKJKcNcoUah3uZSkxq6Dt1/B+IrRnmPJoCm++Z9n+RtNgHXs66KlNWfGu
r0+vtE6EbcprmDEPr0E2fJw8p42M0w0GvnH0XhGSLOGe2Z6/m9IQLKZnAxyJPNA6E1ZL3vV4
wuBGV3w9mpiH1kXZbpVU2jWrOcolSidyoR8RkiP8qJiOQN8mgu7uUuh+CRnDs/ElajFW+Qm2
cWn2olCR6WKvco3wWJ/2m6P4B68Y7ojeQ99+oJRpSe/kZbEodW+JzMgvC6cP5Ayfj5cniD6+
x8zpiRzjKWutm3TmIUGCCh9qTARnrD1Dh7Ft+bPiGYrs1dHjkFLtn3/Grag8FPiQk5L8jq+x
8ckbWdIYgfv7+vZMPX7T6zGHJxZ4JWOUGvBH9FKqdfj6sEztIBE5GxHRkm9nB7nZjp5L2alq
22kKGb6mY8sp9fUOj2mNzg9z1k7Gqk1bE46AvcNw810b/ScTypBNlcPli/6pkkJOiTbHLC9X
yaObJnR1io3Jpsfr6+kP5QBCakz/Db1C0M9tkX7KQO7X02fwj7lrijwAxzhE9lIQtCa6OFYj
45NckrAmF6FsQfDz4Lr5DWHu5w/EZyJQ3IMaB8rq6bYx5ueu+iicFZYuUpucoi4txBXgfZqQ
ocRcR0mZfTw4VY02MKiNsPeQ9MPcdtydRTwJaNz7s0diadVnFlKZuA4gHLZjyqW9GauB6ohX
TPDlAyFGjl0EFXkSjYpY+g8BN2aSOfrTgtvo0MTV1Y2vt1me5vvtZw69fTFWwnJ5K02ThKn8
u5u+WyVY5cXPDBMC8+kK+foF2potq92gDuJHpITroB4tjFNTrctDGJiLuQeWJbY5JgjqE9Dm
svG54nFFQOjN64tFQX7VoJc1gdWHDisbswaevLS51iuMtlHS12hyno4MuD4XTYaTXnM67J3t
8FB47NQyRdzRkoxrbxtMtH64UoQTn75KF81hO/yiEH31oX1RBW1xEn9lifXXoRQ8R93VRikC
dT6vx3UWW6oQDYPMi4/0tKdmExhyP7ki+m7mz7viC22R3NwXwa82amSMtIQEUq57N2ndb0Br
A3W9TwXpoW3vI84YysMeiEy8hCRmG20HVANsu+L24wIgekfVZzRpV4doLFHkz6IBfnqv5kcd
kuMzdic9F1FvSVRd2vRYcKfvFvvWCUmZD8hAUzi38Ua99OLqo9MCyXg6383iKuaGlEKa1Wif
Cek1KYDXz4aDHm6oa1PevDJBPAjhsHTKPIJyS0wE3NNOShxukSky8p0yz6lMyq59P3oMEc/V
f9ltcPeU09TwpeTZLckjAiYcVeN3YYEhOLZSWiJsgfC5OsyiYd1b/7V3EjMUtydPPnxLtFsl
8TrsRvMY42blODg5BTu3KZM5zI464WD4RKFZIRp3Iq5bw4y3KUYVQq1e08s9tS/eUIsxOmmW
sT2yfnUaXJFW5P2k/EfAUnqFDTNl6ipzarSuUjsPGZtEq7W5gqGnmMPyUd/RWSMo+nEGtVit
D9EDk2L5w+WDkVKLTnw8YvxvUyULbtSz1c899nIuWAZfMHpZlfj4s7vR6HmrdwQJnxOQy9x7
Acadzt381j5XwZqL6lWvkAHL47jhUJa5Kz03p2Lhk6wdb42ACV3rdt9VOb061K88qHsh7pMg
zkpqchrLTqh+3XPGToc97MrJu3CVvCGImZ7tssUaPFCYP4Ceq1xM8t3erfIuAdbLZZ4f8h8N
d/ke11/kuTanedZKqe40RFqBNuoufPH3Z7jQCjHifd7gYlWtrHITqsaZXGOSdFrGPlmfNUGW
I7/PXy5J6OYVSC7PFF8NkWic82/Q6IX7x4kGKMeMynz1oxcS3gUtnZXNgYznhFiZ2EIOp8u9
SYObrcsef/3qc9t/oapuUekqh/emzkjg+ObmKK0HZ26HGiDRrNM92EX3lOOJX7u94oLh5En3
cuXhbnUWr3cznxeNaX7MuD3V6xpCyqEiUiYKZi1X+eER/Y908x1GWVK9my24X73puFhET0Yu
9EjBu9QdX+Yu1WGErYttdUEfIWYX5TcnSEctS+mMqJ6yBcafBJZKnO8bkWZRyJNo5ktI8zBf
q4xh656NbCbRNKEoPmmQUZa9thzgW/HULVJkoUovbaQpey9fW+qNFK9MlnfxtYJI4dxA/wD+
njzdIM3i9p+0AdS1O7dMV+P0NTqll1mVR/v4tSF7Z5M3oqZnpYqb8HtlsqiZJr7LxpkHpFNa
Z8+6yAZ2GsQZ2ii1h5ep8W4usujCnH3o0F2PZVOVtfuoasOre9jGDSctPwm/Zksy230YgRt7
GKs93+SiP+EO2k1/6OEQ8WE8jXX++oH7h+tZ2xEJeDHpDPsEHtkhdic1DZejdu5Kw/cFzCO+
TT4be2sGzjEOiNEZYJlNmi59kGx73V3I0MBILj13DZ8x7OCdBLv/CXzcplU46lneW5va7JoJ
mZozKfy71KHZq/yaG93ad9kZ16lU73BWzJQzPL9IeZeAae0x+4o/eXtnk0mcEcxJ20N0HQej
WHVG1HBJaV8uomJEHPM0bvoe0YdSIVXRiKBo+u0xspmdXYd0fKORl519yDuAQtfRQx5Jjhqm
rqLrtaL6CZ3X6UY4C6PcbG+NkvdaH/dOJ1InRaLS1VaaWYx8cI3Vey+aAbFbBZnVMe/6btZ1
fG3CAYIHfhx9zIm8k7lWz/iIsWHAPgoC9lJoxmywGW7kZ8bWfVXFbZNXvzohMrywgjkY7w1j
P8fJ0hK4Z2dcfIMwJWwubSNHsDJrEGEuSjHAwOqRF4busZce7UkW4AxbxJVyt+OWwn3q3rQ8
w5cdNDU00pM0waE5LiEd3EJNarivP6YfeU0sOMTe1LZF0F7bjuyU2N3fKSYz32T9gsSeayJQ
k7b+VFIhwagJF2rQv6XkEJixkVNpYp85Tnj/Iewl55kcXL6A4Smh1XlF9hVF19vC5CZ4QaGD
t5v1RL4xfWzLGGRwgBz4QtfAFzaf4dHStVayXWNcuOnbuTFC8997O4Xws1HrrRoNSW5k/WYR
dun1YuRfFG+dSejogJTcclyFO4l6O/ErP1QDkFAC/xuR2/VRijd24LOg/oBv3IDyvRbzvtif
oxblws14VO0MFwYTuLcyGyyCVVvvpi/blZ7uB+6DQoPfkhGdXcGcLPRtr84/qZq8OGI4JUc/
rymy4n1W2oKP/G4DK+u9LM5F7skLRRkLRoOY8c+9BdiaCmtftal/qi/0CdnNw7UePYRlpGit
FVevP+ZdiBHjZaIuC6qrKnAnogu3M27YfzM/ycKCQ26u4KhS9OhBydX3XfalxKEz/vPf2KY7
qC1jSbm+PK4KLrooCRQT38Np75XU/OAptHrniERzkAOtRNVxU2vQkWLl+k+zo7Za5Ce1Kkac
ghxLqmZPOokEgXstzydh9wN/NHxluU0kq/P42c5UKZJa7hvhbsQZ//1JVv4yJk9d0ae2b9R6
a746Upieak+/GaDKUVSbe8MbITLoYBz/w/wiVLrWm8dzZvdW9LTltri4O1byLxyTO3fFAZ/x
FInhge8sjYshzu68kw2ihVyzuv6ll8XfC6e9pDtwBKmPPKM4smCJ0ALfEDXAlkXsw1XuUEvJ
YhwUz0QKnjKy+56HCJORE3Kc6ZLgy+DxcS2t3OB44nGdutaY7e360MsOKlve50mn6YdS6Ymx
3lo/fnZyOWQp3BMdkxvL6X354/Uy4a0oe7zcRgrGl9MrRjpVFyFIjasFywGRq4tJIIgbM69w
tbJ7GunVPot7fn1ivXLdk0NBLx/Ub7BdalFsfg+BEYxz6prb+fJ/wWxUTMMrWJ762ioF5TN5
xMKnwNyxQkMGRbeOeHv3TvT6Mk6j00MlokxuF6oKrrV3K+/euaJvEqeXh+fjU2oYTnm5I8LY
fCgQ1ZbfdPQqL0JU1oWlxUfDr7Wrhl1rjcmT8dRq4XCx4D0p2leuSbmBejgDAH0sSNzhIy2Z
6hkxzkWPyRJZ3j0AvT9xH8mimVMfXGqI5w0Ur43n8iG0u0niUe65otn2ifjTZ9c34CWI1Ynx
GI/CoPmjedWCZ91qqoBUALNey3XF9yqMs5nqV5uOolZv5t8uopwvOnBh+/DJoeTsyoo1rlE1
He+6S3eeOo0rvXFk4fcCqz5WjbOZniDFqmMPHFyp9RlJubMdfZ+8DGoWVLlT/laSICW6Z+7F
iFbS6cqglGtDZwSzI+PoK0qdABHU6XAiSzW/JPSL7QjP+AKuj5hNwovUE0g/ea2gam8eq9xX
F7/Po/SL+Im41DrhRvMk88Q2XhOZwQMsjbvusaaBrrGcEglwPVknqfZI1vUlWd4zNqRBfiDN
rv5DE8ozMBSEQ5t5K6wxnHrL29T9PMBV26qWA5NHkodW+7SWfzYri86IMjeQ8gW1rb3NuY/Q
TGpo7DEsmppPwLB64ftZIIZz6+qMkPrNTtfeBfRlzzMaBlJHP0Zt9l/Lczs33wKYSqXml4fI
TYeIs1UEs0M3hp115N/03+TCec39lgyc1C9aVpgkZ/BToZIpJFT2sl8KMbP6eDSZUOrqpo+I
fwLNoTvGNSazhDec3EqvivnWDTP3Ni+HdZyqJyHPw0/vgdb8jT+vcPfvXGid/dSuzH41MF1z
rePWM78w4tdABos/Q5BOF2wTvFCnmJu7yjs9sir++cHRVsJGhcgh2uNbYw3bnrEpibR7VY+b
8fiGLa3i20xN5Y6Q++GF3H1CK6jVw5dfGt+0SAzbSRWyoJVNnjyRVvYleKPAk6j0DXeJnM7i
SdnCN6Tf0KkImKyhYIfls9b7KDPHtIGONpcAtGlClY5gGl8VLeVUtEujLP561Z4gV8T1yDs6
xn5OPxyfDL2mzvvhH24v93o+YfgFWJBH222GGZwodkE2udFyd/gnaMDzR3M4N5WiWr8aAYEb
/vlwTqqq2bjG4PPLEoudRI75xug1rRRUYo9Q5f6Snm/G/YDVpUuS3jDOAWnFYsEWiHOMw/P1
y1ub/ekPngx+DlSW2CPh1H/1gL1XJPcYxHXMteJxf10SKTnIIifthy5QfDWXIi6QeXfhp9BV
M07brnSlbyd64RB8HCRDO18KSYUbbtUTnZq0OOsSKVpoGRt6mE7Jtd6dUH61tX7ajCPxg2PA
teHokb30H8UczKfJVe30lOvGrjkKMh/Ubismi7jylzaCoEKGRF8HOgWngzL3RY8tNbqlBNJM
RA0wmdGp5eO6akekvj9YxDaXKYbTqCbzBkcNr4oekPKYRnuxmp+sQmgs7nt7soaUggRNrWju
dNMIsVfYS7y8eb2fqEmOlceUvOJK9oj4m1jN9hRt4d2G+IH95A0ZVIh4XlwKEJj0nIWMF3pF
kK+umeex566juWVy1aJO5zL/yhc76MdHz1EcnlDvkIe+01+DUuwUtyd95FKEGneERlEPcaVM
pZUbHMyHa+LLCLfbtujK80tU8isCUN/Dza51xznUDoQwoCIaIiQct/H9VQyk3r/uw2FpT56d
zbTDQd1x0Q1ZnhmJ8qPFOwhCzNwslefrqg5/t3LwWtAWuRKm1Yhp+zipqXD+ECRM+khP+gqT
4dRG2ru+s7AZPhmzk2b2q9GRiVK3kcyg8GFiym2l5rnZtfwEMMFSdZ1V87gz9/iyJQ7DQtRu
3wzTm6Bv204fj7lS0OeSN5D5xWQffSK7TuTiSFPUIst3CT3jZKeAV+kRZ4txzyM9imXle3/u
qHzJnRx0Lx0uT1VBH6UxFu2unbMP0ieOpjxcnLZGmx59EqF/Ip5Gdn30FYU+zoN3s9E2dpXB
GfHRuvgqx4eG6mSciSJ9ZlOe32DwF1FklUPB8hwl2ok3GxmTha+1u9Xs5AQv7tyjTRsVSCL9
yMYmzITubnBYD6RXfvIADGOxHnQ/DbT6QRnLz24N2ST5ibeqxUp5F0T6M9UxTDOyZu+qq5FU
thL15ahFrO/ZWJji46Nt5qFUEzWhntykO59Op8/GcMKIrApw+VqIhUk1Dw89EmKHngXqLvWJ
pjyNOjPVHMfrfJJg+2p9qgpCwhUWmmpwN5DNslAjdWmqlT2yyP5LO6TktUz3tByVmelCXr0n
wS5Xs5pgBSQ5JJdM64UemRNRJEPJwR3F1HgZKob6y1sz8frSbDlbOgdF504jpIk3bV1XjpsD
OZ5TVJEJblXs3B65PRhRT30D/nSMDtHeSGv/xIU0kC9iNQEPVefy0HyySheXw0wHb4iHIRjp
5n3BfSPMWOOd/N1B2Sv75Uc3jG5EaePB33q2jB7+EKg/RtfQO/oNnrYz39y64A/u11aSpOQF
chyDC7NAzVwaJC2Uyaez8IePdvOcqT7vKXexeFB9O5G6hvMSyVNaUfC6bVFH8M1US82oV+2n
8agCox+PqShbNbdsggrkX35BRGatm5BSc5LJuD/DlR0ffAF62cfuMwx60NFMMxB76yC+tcPQ
pKhr3GNe61ON0Pr3EvMLR1ZtoZZnOirjZkDqp+XRWuf9RMPGVZcJ6vDc53O30uOWMnI5Msk6
EiBl3DJF97eIFYPeaI7JdRLLAyuf7Bo+9ZpU9WkGdxXtGlFHSh3bIFMSxTh3ilarw6W0JFMT
A98+kqeS89PZMymPOH25AcxOZi9nFVQElctWUZ3uBe+p22hpxWcNu6sPJL+Qc500XY+sy544
PH09XFi6oFLC+V53MRc0w7Q3bPOZNnhiB2FgLkTe8yKRhgqq2q9bXEKzxzwBCsUJfc+Lt7EF
+Hck/7hhdBWK5/DVr/UBbsyA1a7BIqiNgjx6HdNhy+ppH6w8byhFjUnzb//ybr4mwZfGv4Lz
dHvrIy7bwyfOLXyGDPSpJG/12TevolElV4MVg1q0C3CCd5oIxuBs1S2Lp9n53JkpTsLP4WI3
KITs589+Dj3a+tjSd5s18f6zE767r9OpK1MPvxPJx7tzGqWR4R9tFzNPrrS0zxY2LUSN5BZm
b2bubfmWhGxDEoQuu6jSTR7eLRw5tKkArUKGFPqiTDKfSL+yw+/UkbR9p7SYNCnGpXNTrlbM
lEupQLddiPJOS4TV3VgT/Wgxkx7rVwfgru3XLxeBBOXhSow3UWs1Sq7VjngXffmQa7SbgqFN
bvJCZOZU6It3ov1C5GaADrfUdq4Jb/OhYfbcbNeG2PqAOFlYak3/jTlvEKFnsril5IO1dWdD
GeK03I5HLlkwW4svDzqWp/2Zo1JuynPDwlP5Y7w6Sr918qzWQqi5h/sw6Xp4tmUCgujN8qAb
kHk/yGcbB61X08c7go3txeE6be5qGU2DpGoRyqFaSV3qF6kENkEdr8jLxopjkw2pddNDBNgF
XqNKJ0LCwd158RmETfm7H8gLKJ5Nkxq9YXuQnBtr/ZZ/ksqX/H3SrLKBWiCHXsTnp9FDRvs+
kmw2nIQ7t0tcgT47/CTmvM6c1A8nHQ1ojG+wX+OV58SL+gFCch5wzRdlFTW8uAW9LE6F37+k
YVKWlNr55daUny2ekvYreVCXkl/IvbTW0pqSip4KTGS3sPZ7G1vrsZDV7yZV2jP3wctJDE3a
9UDgCwHXG724rxLQ3Jl7M4M8B9O5rtUjd005/GL2j5oVFLXS3heB10wY9iW/prFdBWmnhJY5
8Bnk3pP6uREloUBQmclQHNZl+rzwKYdDOMtFbOtT8eKf3VkXmxR6uYf3WKOQeEYt2SUvYYOV
lVsDHT1VDhuJ+YLkXMKm12Hxux21nfhxNLfeQ252dFZZHqivzZUbiAGt59dhdJM7e2JhE8Th
VFOA7XWEDU3lkOW8N8e7AxMuLY2TLOZ8nZEzVhEj81db/iZ1OBJAeb0Jzcv+NEIrGssFh0VZ
Rg9oEnV8Y2XkdiRyWC5QVPfzuYmGP+LNClUh0y1H8zuZ88RklAqu2t7nIKKpymetYQQrlHNl
wYawEaqEDPIoQNear8XntY9cPIdY7maO6CIFLY1Tn9DT2zIxvtMKGb3uigtveR6oSyo0LlSI
3eCNzF+i5xW9ZuUzjTPAs7CTp0id9XaIqy7j88Lcd3Jwo47vkkf6/wAZktsfCmVuZHN0cmVh
bQplbmRvYmoKMzkgMCBvYmoKPDwKL0xlbmd0aDEgMTg1MAovTGVuZ3RoMiAxMTEyNgovTGVu
Z3RoMyAwCi9MZW5ndGggMTIyNzcgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+PgpzdHJl
YW0KeNqNtgVQm2vXLoxT3B1KKMXd3aFIcStQPAQIEoK7u7uX4u7uxbVQtGgpTqFAcbdD997f
u/t+/z9zzmQmea7la93Xup/QUKlqsEiY2ZmC3thBnFg4WNkFAVJK6hycAHZ2LlZ2dk5UGhpN
sJMN6B8xKo02yMERbAcR/MNAygFk4vQskzZxerZTsoMAFJxtABxcAA5eQQ4+QXZ2ACc7u8D/
GNo5CAKkTVzAZgAlVoCCHQTkiEojZQd1dwBbWDo9p/mfRwA9kAHAISDAx/yXO0DCFuQABppA
AEomTpYg2+eMQBMbgIYdEAxycv+vEPTClk5OUEE2NldXV1YTW0dWOwcLUQZmgCvYyRKgDnIE
ObiAzAC/GwYom9iC/u6MFZUGoGkJdvxbrmFn7uRq4gACPAtswEAQxPHZwxliBnIAPCcHaMgr
AlSgIMjfxop/GzAD/pkNgIOV4z/h/vH+HQgM+cvZBAi0s4WaQNzBEAuAOdgGBFB5o8jq5ObE
DDCBmP02NLFxtHv2N3ExAduYmD4b/FW5CeCNhBrA5LnBf9pzBDqAoU6OrI5gm98tsv0O8zxl
GYiZlJ2tLQji5Ij6uz5psAMI+Dx2d7a/T9YaYucK8fwHmIMhZua/mzBzhrJpQcD2ziB56X9M
nkWo/8osQE4AHnZ2dj4BbgDIHgByA1qy/Q6v6Q4F/aXk+C1+7sDbE2oHBZg/NwHyBpuDnn9Q
PR1NXEAAJwdnkLfnn4r/RqgcHAAzMNAJYAqyAENQ/43+LAaZ/42fD98B7AZ4z/7MPQ4A++/P
f54MnullZgexcf/X/K/zZZOSlVKQVWT6u+P/6CQl7dwAnixc3AAWTh4OgAA/P4CPhx3g/d9R
VE3A/1TB/q+rPMTcDiDwd7HPU/qfgl3+OX/6f3aDAfDfsZTtnkkLAtD/y3F9dh524PMXx/8z
0/9y+f8j+O8o/zeO/++C3jjb2Pylpv9L//9Rm9iCbdz/MXjmrLPTM/+V7J63APK/Td+B/t5Z
JZAZ2Nn2f2vlnUye90ACYmHznzGCHd+A3UBmqmAnoOXfZPlbrvV7yWzAEJCqnSP4960CYOFg
Z/9fuufNAlo/3xyOz4z8SwV6Xpz/TikDAdqZ/d4wTh5egImDg4k7KvszkTh5eACeHM+raAZy
+4vDADZWiJ3TswvguT1vgLmdA+rvE+VjB7C9+S36G3EB2OT/gwT4AGwm/yJ+AJvpv4jjGTmY
AK1Bz5emudO/cq7/yP8++f8oBABswP8gbu5n9Ly8/4b/3Tyb2R/wOQHoD8gJYDP/Az6nsfgD
Poez/APyANjAf8Dnym3+gM+V2P4LOZ7zQv6Az3nt/q3z2fb56v5D/VwH9F/1sy/0+fqE/NcM
uDn+kf73BLh5n8XPjLf7o8vnlweb/R/wuQ+HP+BzH45/wOcATn/A5+Nx/gM+d+nyB3yu3PVf
yPlcqdtf8L/oA3R2eK7T6a8Ff+bW/+C/bmsQyA0ERF2cswMKBVnVBXVc10iQubJsfxGZodl+
l8bA4rno0Ol8i4mczFD9IWDV4VIieaQX+9umDP2F+BLlg+d+awNyaFuiWvud171RvPrUdjvq
wiTh4ETBvkT9AAUKOYum+I7Xg72Xtr81fCtslwJNjr0zP6ZqHt61a7+sW/1A2fJYyNy22k41
71u0+7JplmitKH3/4lmaXNOsr8SvkJxYKF4w4h67Yc1eXM7gZk88USrEM6F6H0RzFXrqrXHG
3Hz1WKnQ5HTsJnlNokdMAX+BOzZF6ym5m6JANO9ZUrjqMJb6lbBzfN02icNml95jW1n92mHv
1JCWZkKQnoSYDR5fPjJqtU0uwbaYKgGJO+v4m8Kqm/wpX6upI7NKAvhJxYavnkcdTWC75za7
3mMXmZ6gTocxVN2SILmeEtLHE0oBm11PixmWv20xdB9N9F1/CLgyuoLf2CKAaSxD0drpt2Hx
oc7Vf29Fk2rkm9uw/OyJgsd0mMveJqMN/vE5MNNusGtn3NHMlsQQNpmmsTFAZLemLTlbGo2J
LJKwPovC+VKglQyRNJo6+UNGTitXoyrakJFB3fY+GkNm9W77gCvqddjAz038Mq2yJ4nqyhz+
DzgFKHLIsTE3zXCh6+POhLKT64LS33FD1xXCYh7pQ/LO3lX2no1/OjsyyGdhF2Yts9CQxEJX
tknC0/uoEqd4NJMbw0NmKNDQh/8oWPy2jRHR69cb1ICgJ8++cMBSqF/ZnAzzKsnHO/sOOCLR
Tit2w1S3/ZQ6tYFHOp2+vUPfveDwDjAJ+ogQibveiOqFUwvCZh4coehT7cI36I+XHP4a2jWw
3rFDgkXd38tMzszYLfvnPX19hW2RvnK6Ho5lp9yGEARb8Az6wAekDB/BoN4EkpMJyAZY+kX5
TByezTIIc2lMEWMEm3WVwyn0wcwRKb60Z4y86KIhC94UdqXjyHH0PzNUlnbJb4r6iP2BVba/
QQPS4aZ39KsggdBjJvOONUsjMlHpnJIhZFl4pDnql8uD6oylH7Uwhzy1itG240pBe//wmysL
55q+zUNC0zWrZSYnpJDrp8SE3OM7jGxb1XIGN7rbzVhaTl5PY6j5nCVWONHVxD02cjQY4cHi
hEKpfEK/XRm54gzz5GWtmHZGyTSR23SmDugXkAwKLhp9i96TjrWXyvetV0wtjZYwkxuuX69/
liH1sYCJNNxWrZ8OT4B3fUGeDynPhH+bTvoD3NQrSh32/JPRlowbpp8TZisGknsp+NMYYkMJ
FsUm7k1HEkV1U4ZbzWXGSLEXAoQZPKx74GSmwKhPCohu1eiCPfk73yaOdL3Vf0xYDG0L+FRP
7jnt2WjdEnhQlRnQhTqI3YkxmlOuXnvFfb2cos+TOZftGewSR2xHx4FYZ/p47IIOlyIG8lUu
Rfu+byp8jKqXyGb4+CWtPPR9PwpSewV+BoVWeJ/IA6L7UTQxzwUBNOm4RT1b66rlFI92iL2j
rQQvLoAuhWUts7SOHy95ykn+ScKNcSz/9TrVNwtKdXhiOT8NGPJyIfUebZhDrTW/AzEqm6Jo
pcWKKU4LPJXdZVb8YM1+vkTi2ybXiURfBrFW+EKpF6s5Kdqm+HyGG9aZH0svFIQqgBioyt1J
jGcYi9Gy5N1FBWuLXpkJs30vw7QKnoDjVat5u5gjJTazvuuJvNOWGbyI71E4F1cbJ7PjXlLq
rblonWds2HSoetEwaA+1YNoet82XZ1Hg4orQdpig/qggPFeI6XNMCzKiyB+rS0hHdI/xXST1
8lQPyIvm7W/4OJoqmRrLZyV/RYrsTxTqN5zGmUr6UG+CH35fTIP+lCbOx40m/gRD8JObPoG8
g1UE9hdgnNL447QlHbRiepPJLdllXMc7pE4scgxHdo4LR5pCMDXAsCm2MXcmO46RtpX7BLrg
sOEWfb/OA4J/mRNraImVaS1+omE0FrNNKWVjaIg05r3UxGIvIN42tQp6+o4iXtv+WISc0+wV
4aoU4ZAIxBdYVSWg3/oobM3fjlwtlFzGNyTHlpjfzJ2qviRH3M7zqXLGD2luW6uRYJ75DbnX
OOO3wKggeLyKCBPKbWg4JnGgsgb65Hsq2kpEvDjy7YHXvl5fr2xp4EQ1Oyesa9Zf7Dk4B9fo
iitBIpqdv7wzphEjxVLjpzh3leWyoPB7FOpAMytEavlmM2qHMk7ayvmAnqi1fnbh3M27kSY1
F0lDOqCreUGnfh41RGo1DZNtN8dBoVQG8VZ8jGWCOU4UVHlsZBszvhIP/DGTPROzTQBDMMLd
EtNQroCKGSSJHjk2/Lpc1+RrjRwBikS8rwU7obxaEsmZ8HchpNQ7Fy/hQ17kWdnFLXGnaHud
kCjR9ZFYqDxRJU0N/Uudc5fk0R0+b44GAVibconqt0tVfrCUvIU4L1JSDBJ7sJkybtdqbeLP
jXgJzuhSSPYnub4ZWzNqojfRV5UafOzD4uVRX2B530MvU3kgoUDF5SiICGKUyPv5LX8MHVHv
sWxYxrFBeSrKtgE4WXbCyrp8I4oe2hs2c/pBVK0rlLaVLGXIrWp7f6zVA5KG2RUWYi1VUmNu
/45lMfkhkNc+3A6ZMQ3KxHppYWWjl+Pw0tKJLPaLGJcgZ6HT4smiOy3Zm3QqV+FLe8ojzMOa
9jesSjOYnsSl60IZEuyQW9OEKjGXfjxd5S9MCqmDm9V4A7y0Oa8PMu/ihNHccX9SQ7GuJmrg
IaSB51Y1rJpbyWgwF6HEu7TlOKH827PZHrUDWbJ2YQLdY7OvDIkqb/zUsQvw3EK99KgMB7A+
ucqYzJvXTv8aaQbbPn2I5uYmYzOtUn46oCNNv4R/u9zLtd2Jc3K6V+tfrmI5oSAxlJ5R3yFq
WIwr4JI9E+fOSIZMJ2/r1DJTJWimTH2UGpCfpDhDtmOi7pbTRxV8b0bVqY4Gm5TpG5bRyHiS
g+TftSWwk0OkUTUgbYZnvdBHmmD6uuZW+2QopMzQKYXb25IHFP9dTjnMoV+uUr6QWaUZmZdu
rZBkfQLHJq+eMiQTNegpRFnlJ/EStZsJDMqoiubHF9rbLO30zVQKjc16n9x1VlE6S6gMqj3m
v4nPszb5ld4QoPMchsNMsMQmSis28Bg5LMpt71XaWwQUV7O9dPhRHIC9azFerUqTGOkGqDD7
2ZXS7ZYzK/EA3B9IG22byM271zVboQ9iFPx4bRdtZhyWlyehdKtqGhQVwgIpiA/dq3ZCSDCg
biwMH7SxoB2ZAZWkVmLtppjymOFNMarIoPDEYdRqaVrekqzYuHQJtJMZMcDezJKMvYZKZWYM
7lNgM43RtyjFoHztWFK9045MUIHmjg45AaWM277mbLBnxvTX+VXx81ToStAP0O0lhHEoZKAx
oJNW4yXNiIxCxGSgMTHrJvY4eRH61Tc/6Rg+G3EvUnzyfqubW83UaDYnagj8rh3JO4jLLqM3
6MQ8/ICPR8JQAb6EB/kCVCjrK2eyeSA4RWRgfkmeR8adwaBUtzVIpzhlj8wdnLTqk2hbDug1
vvzF8oFhC2Sx2wRNt0yU4Do3z5p6rcpVrAfat97wNJ7Y97Du1JhFSLHcTWXEAeiY6TdzqPMs
vDdDT9hkTpwWPzVgWmiK74yQWsbyaL2A4Hgi7LGrH2hVdb09iSJnpv3qv7RHRlmjTzpYGfdt
azKPQ1GypnwCl1phqw628bj77LHvpIUCSkTETjAOwIf5ohOsgIsT/5ZPT1H6lUl+8rn5jjxH
CbnYrJVTH90IvyAbfZT8R9nc7CVkJJjRRt6IIQSS0DQM4UCm3LpSh0vA9Qe3jwtW/p9Fwhp8
q9sFurY9+uQ/USEUDTY54IBklbt0lKES4SncSFqOBqZCFvGwL6NZFAV/RF2xEVQsVY1B8UwW
Ul5gCW5OcrjdDCWdDm8ZxyNpdyef0MrIwGX7izUBsYkx567x0aWWU4fS+fjqWIyHFl8jVFcq
uawi/6T4SehVH0zr2B/1Bb2KV4eq34IaYjYR+j7RFWcryB9CH2S2GJNqN2tHeVVsFHyQZMeJ
uSm80l6GAhdWSz6E0YMF9zLUTSlOvssQtfO88v1rM2nNn3pz2Dfo031W/c1rAYlgLxXWHzIC
rqYacG2OA5LIHnHrcxnDDVSNGZwWx3AFc/f4vCXYa8vjpshAhzTK1tPl+HekHJi+Eq9WITp5
YyccjbDt3MGQeP+3FD0qUiyEyhKl6yICRBY8IofvDN3Gx+gR3fwb+p+WPsr4vqzpWXLiJ8L2
Vs4+n5OPkR4NSkpIC+8qzyik7KLyjyMegfuO6PfKwBu26Q1+10B3/KKMJh7nsK06WBilqNeB
y4SQfWh/gOql+UbC0C5ie4TGB9p3BJ7aZHMwVUjLRk8YZZhr/cWNbKnp74Co/hjbHIkLPNnu
8fz1ZGzobXNI2m2b1cXni8Wtfaf+AVnYjIZvvEkpqcXQVcl2Ylr8WJDuj3xSSG37fKyOkz4k
vHjjQq49CKAMf3u8wIqNrE+nm3c5GHOuFxCRjRdNER4257WDK0CL/KFzAPO7uQMf1nqTn1qH
D6SZBaDIE66Gu33I9j4CrpOc+H1igJ+KujOomOhedFu2fwKt0APmttpK9XM1s9W7H/5JhOpL
Vc58DfYYB+3XVrY2qCERGVzZVN+OSQQcEoL2SaPBKHvYxs79/FR1PK9J64EIJTdaWun3KqNC
Pt7LJVgtONdmokERw6QvRjHHUm4wKC3aPiEjwtpo3du5FD5EZDPh1L9So/EQ6X9dogUD6yzc
TKDAqy6bejna8G0s1MX2+1Y9Ec3FTV97dv00vkGFiKqUd9D9NyPOb0Oz1g8X+Hi0+4NwaHtC
oFpZvvkExEL5lOuoTnY18x62tvhLlIg7SpLVo8yPICqNDS/OmMQ3k0LRc3EQAj8uwQtZq7jQ
KwYf6+SMsUUlOonI4mV1USnytlUlQ+9bgxAzRUnnFnrXtOEBWsBXWQVGrKPZTxrR7F74u1Ju
g3ZdhWDlKL+34sriaVH7+GlX5tX9Wys3gZzfawp6wXMOuXxTiCE05Hl4bhFT49yFfJGH/J+b
D4P8akOH83isfb4KPnZmSbtCX5ULWZ3USCDcVqJ8MdZQ12/SRcCsZZ12VV4jepCqjbfedscr
9/nuLEe9R8+POaHMVw9wwVplkyd6iWYhtJvIrmRO6rmQcPeGiwIlMTpQw1UOAvWWrmU/RL7d
P3e/2DIxLwj0K/kgwSUmcxnDqo6dLYkJu4q47Z+KCJzQ8lI5LWFq1aJ43eAwJbIYGh5XRQaJ
e2j4wWM8lpzPvLbONnts6CDEI0YqMLpwjCWq9kF5XlYPjBxYsXr1Id4iNQQq4hkyY4Q1nM4+
KzcuSv+5wfld50yhh1em5ljDpra80ma1OeNqfhBvLwHyGPBH1ZKhcOoHdZ5xFxbXKsZtJayF
2LCbsxSOAO28InRwqNhWXoCCpHlwDknWPoV6ERwy2HNLjrqB2xKNPhg2h8xiwKcDlf8Ty1zM
/M/gznF88Wt674NM4vvwHULND0iaaEqpH4JUK2sDjI+gs2G5xh5Rno90mR/C3NDDjwiYMhJQ
PxMJ/xJ2mk8QUM5Y7BlbtZGXo8hZcczqEzlyBGHVjG2MIRBd+hZwKHwpK2WMnq/pKlV8n97c
H+3ICLS4EF/wsbU2dymR4l8ZHcILCsHAENCE6onHGuIEjg3CFwflgPmgzeWcTckBaorl9Xx1
BdBujGZCM/EfDOoGPU+WYkvvbYOhYtQHbvmp7MwIrjtidh71p5nN317IbzgrS8ph0R3A1h/H
EA1ovysjiKLS4Z0FZei0n7H5ejteu49nZRzSL3sLcIQfdrJ3bzkupoX1I105I4bvnBP9qHEc
ypfFcA/TLyCSOlWAyWHwp13ttlUKpyFD2MwZ60LO0EeQ6OqZHDvlg0pV5OQrFuMWKki2sl9c
4lxkqvvc5Ns+8QoFxlSiuKhuMODJVt9vbqsS02DVmRvQxKo4+fvGtm5vEtuYd0hYI2/k4oqO
zGUHrzdSejeJhxlNNNdtPiGWnr3Dp/1RwoBIffNl3q8mI2rujimX6PVIHOcO2Ci9VDLLwwXh
yJjcQGpvyADItOvnPxXVFtSAyBg4etNYta1Ext7aEXKVO68/PvyIZDdIuXwWc2bbpo1aylyo
+b7jDCl/cc4k6IhuwCFm6dNi8xcRphzWPSejxmlmOr+iXlWGpbPJ4o8OjDM469zvgqHzr3PQ
yLU8KViimkqmAiTDyc4A2VEhpPZLOel5qCbGKmNe9pvhZmmIud/Xv3DtkcLP9LW9Xv/JduY1
raR+28xiHEW2Vo1eKsS7o3TrNZDdZ+Fz6nelC3Aue19rc0pv17H4hDTrb0GabiODdeCa2NzS
MxfE5BflCz03W6rXscGPldZxpsTP+yiL1vrSlFMJDlSJsR3OCJqfv14Fqy/ruPG3SuymykA0
cJP11QlykXLcU2Vm1rH8M3vh03sDyawm7jUFOIiPVBOLHaqbFs8NNL36p5zZ0z3W3ilFaPwQ
qYlLhD+DkMGukAZOW2feZD72R78AzUYz70b3f72mlMife5O1YN3AZqp/sblb5yK/crUzAteM
Bp+rhvsd9ywLVrp29ufZnfW1Y0qepWhThnFwfLZJdKlqDb2PFY1qVUjL8IgoFmqj7DubZEX/
KTG49KzQrcbjm6JLhJX4UtqeCEvnCxjazpcSsCGvsaMComdpbmMEgPqq6K9k6V99Rx/YKLt5
uGgMWT9AHOnuwU+exobxCEYgj8pOZXqVuOVH1oK/1BJYpr0hF5GecLFE0hjNIbuUfSXnFrGh
i9Wxp1k3Pl0+AusYx9IH1YhCKu+Rqq/LsRdEDYAXEHADAZEM1Gc8PaRq4UPbxNxV2jTmWHeY
1jSpje+NXy0A/FEGreM/WHNKZIpu05IHGtat7JKoe0yJmOOE76UwXFtYSawk0rmFmkqqmglX
bxYaTscwz1Bh9eW6fN22XUBToIqvZRSuqmXTqIMb7oUTURoT8NaheL+szrV+K8HJpBxotv9q
wwXmDS+KzEXC+yNWrNwvM3rKygHSZBSbvT8oLYkJovK9KHGP3/4Q5ZmOZOWhf7t+SzAjyoQc
EsjE3e7+VbyE4DtiVsyk5Ndf73UpWzqSLlAqKFiM73GiksOT4k/G46kKi1m8Si/UtZUceFHM
XuNYRV+Vu1aBSLPbKqMP6WlYjVkvTzGcuhNRjYlPhn3DPu5eNsRCOLYtAVgQj6llkHrWmh81
5MZ2C/+7Sg3c42IIsWuvq4ozo/LQNaY1jBswIiv9STt/tkegQq7Xnr+Gc6RgAofrJO/L6em8
79fM87xAVn+NDCSmYSJxWqzOiHj9/imD7izTd6u5VHnK3wuhiwQmfb/YE8xjO2xiVyDtM6gy
0tHoDVDkXSkHwZOaMwqc7dkDNWwEkfwtmPhd/I2xrHeNZPCE/J4v422ltBaahZrVnB7JNrPe
V0XorZbh4lgNZjR46cKrcVMO70gJE+iBJhZ+Edltbd9KBzsFqH/Q5Z/ZXy9+qlffrNGmkA08
ITMiDidhH7Pf/EVqWnRBhOZCFjP1g1gukiiXRFBrytV8x88BVnqDX4VxBxezcz7BJWTkOs1r
ldZh1fQSvtlZEwhtPvrcYAlLlp/6WFSw2ToTlWG5wcuba9TCvIbEfuGasHQ6K5K+tw9MCLLN
qSHbTzTZKOHrk0C8R5s7RAgyttWQGFYdO4/JEqxITSsLeIGGJpxTc3UAN/8grnboDW5QhFaY
T4iceAvfRIrsz4ntWUSMkpQ/jb/XzfcbEw+akG3rXX+ZaGXyk6OiSKXAtgt+rNxZweXR6Fdf
nifxtmyzR80KQKjAx3yzJZHu2PqTDoKtdnh8dXefh5TiQYHQU7FjZindZFfft4azBskXlCEv
IXmiRrIzaYzkKmiJ6hBkTrmyq+nlFq75TKGoWCEBIfTx/LqgTRKUXOoK3jKycVLhNd1DZU0M
Yp9iuESYkR9LF7OzwV/oEHeamCcrNDHDb+5IZO5ygz22Iq/2WqzxMr6jZpC8onijFLRrDSVG
qhVTDzGBlcFvlJJxO1pv/V6Oj05rdSfbGoHKQmMaybU6nS33qjzpwiatXVhu/Fuf9le5DPpj
pgxt3PBO+2Gnr3VeqOo+BAWNpTw/3FUfKuW97Hr6FJjRz3OKNbbT9UbquJN5VwY6Q14w9Nzr
NT8M8TLJ8B0OUVZt77rPbQ5na5+9f5vlJqh7RIiF9CaTz5pjKKP6rB7JqtJWwm9WBRZykOve
+iJNUHTxE5W34HucYmVtT9W8X+Onmaa6FZ7Uvue1puDMi62SBjPv5ril0U5a4Z/QRw4iKWZz
8NgkXshR/fW1TNMnQxYfMWR1l/SovdMhtK6D8PNIS6ncF8JhCn5QBQW/gXwPrdBeTHgcySD5
voxDQmJzpWi6et333dtiMEXwBfMdQDxnQdf5z3xDOr4UmZYK6DmQ6nj6/Q25GfvR7y6F5SsU
26uycvWZn1xmuou/pmdJ/yhlXps9n1Bn7mFBey+6yM74sH014nDR2ZB8dJO1W4/mfettAPUB
LrGNBzRSNL/obn17t2eb7JYhza1rKm20Iq/9uPchQL9BS7z06ocrQq+KFYrVKg1xjF2WCRnp
mfimuFQVcrihDTajaDbwvCCbvCddeMXjpDqiv+FxbaKKTO49o9CKo7Ckh2p7kVYFZ5AcYhbV
C0R53BaE+PsKMRHYIHkzwogtLbvpa7Mv13s9TYR5BO29yjPF2TysRS4EcuWSF0kvE/kYHsRW
xQu1E26++hZ4XAaqjbMe2vQ4M2Csr72uzduMtQDtNx0t01AJILSf/lrPb+DrVEKvjRS14UBo
2CXS0aJ3RqBGgXHvayCtbT+XA4noVMUqs0A7vCRBH6bT56mTfWedctvWJXmcUjHqN7tiP6y+
UW2SUgCtHy8xGljEvp1j8nYtjRMQLvwMWQ/uZQZ+uqgYxIsM/Rz3ZuD0PgozxObK2vWLaiyZ
mjjzQ5pDoSvn+zob3bvHrz7H88YYQUVJEF0ZrMG5L4GL8FbKSy/Zexfgik7JaLjHUNBbUrbh
sR1y9lJplrHULpN1fuqs06BaVATqTIcQ21q+pjdxLZ3s/epdE/oTjp+6Oka92ooWffRaS9/d
+YNigfqIxeOmC8TZfD7QfrNRblNYc+KgFpsuE4aXSRfx9qi8gZdTZJyO6hitq7ijqPsaZC3T
wogyk/FCktLwTZykrU855PRFhNDX9w4c6rWLijZLHrEt0HahTDBKhW9vw6/whCXv0djoimNh
PG4GSj/24era+49kBkdy9Dfku0RHH+4UiVUI18SVYT+/HnLtsne7C3vIkqy92tU+gKsZ43wM
YgkHWWB4++9jj6JorQnB8qbzSTMh5e8rPsTxnrZAf+CNOIuyEQnoWorF18ca3BDtuQvpzq06
WoUpiyHmkrpC3751TMHs/LqWJUjI5G149MplsOa+GPyL3bLgwbUNtYaylzg+IaR5Vowfq0yx
FZ/MkwTTwTXJ9sPawlU3CHBhUlAO0b8a0oRyHbmacuVopj8Y4FlRuMMBSonJwZK32le7Hbn4
2eKOx/yWDuF9LMFpCJDLqVKuzMn8+mr5Ct+7N67TRabRny+7LLBfk17J5itr+zLtGtXJV+xy
LiMndYdjm9omy94TXcKv2aC9tVdVSp0pw0+hY+5UY90jyE/94Rnq15/As/jy4RapgHsAM6Q4
tnHtrSDodXnRT3Z87H14jd76RaoUkSylnFnWwzzU3fxOitO3WOQk5hfyJvX6hw67plbbLywy
cUBIqTz7pmMq2J7OMEnK2uuYCM9/zriryxuT1EZ5G+0xAjOeYMQ/Y+jEA2mN9EOZplFUx+/l
Dypy33DIJdIJ4begKfF03RY4w+H7vX2XAivEVuldbQ55d9imN55W3U/mceFgV3jMDbwjn0sL
AS4rVVgWADm1s8+MZYqkpbjvNKmuBXC3ILwa3IhkL7M8qskCfUUFPTR7DHxN5aw0LlpfINDg
vCSLFItvuRh1U00U9GJmBvRkNCev+LmXCyeNZusR0kh3/NLf4DiOT+t9oKGRKovmDfrxS8P5
jvrm4CSHvblatIAzG+/pU4mVzwtmewApT6ZbrddB0stO4LGd59xhsrAFscwGacocmdOnpQn+
6KRXzvGfpZo8E1DL7Q7IDGz29SOWct8y6FD8GGlJqoEI42TpnZnNpwijHCkZ6vTf+8F8uClN
Sz1h0rt1Ak5KPg/2M3vWHYCyBtCfMYUNG4Y79sVW+lX5kEkK8jpfLxUDH1qTtkBPWSPGR2I0
x7TCfPPl3LHS88gia0yDSfgXKlLb5bx5zfaU/V6TObXcjNgyrGcRVUJnI/WvdwWsw5qwFIbB
CpVruEw4EiZzWPPSBKa4Pd2DFG0BArhU822sj2VJobZI1JR3fp7E5zB8NlZBuCRk0XcPFJj3
sQRvdLTL8h/iv/GV36WmvYvPScS7iN+DxCJECe1dXDNu+56ZLsxsq4DWs7WMClQsHYsVsXNe
ZW96OtJnhWTvW6MfUZ9XkzmiiQrN/8yn6ofpZ3JRum/FpawzVQVv2zMMixtMwRYFCNMaK7ST
v92FpTQ06+2G8KnqO4OCXrKsahCk4SS5Wgzh7Lb5KyL7CI/18CcCrG9mmJFEKJxTcIeYwnEH
o8kZB18itBZx3empWVb7f7lSE2eNMf4pHw0nsPJUS4TFR3ih6cwNz/26g6yWVYd8uURKnul+
ZEcEdYekvhMb++RhPe78bmZxrYgsiCa9ihquL1gjDQPFIs3WUKUqW6F9QHPxK9Icq0JWkD67
Z/6VNi+3TPFQeafXvlRWzGUNsaFO6o6Tfi4bTGuasiLnFlnH0woKzxmb8hfUpkVGIg+qwrZL
hU9zXtW3jPUFVYyUJ9gvkjYT/fcNXcH0ao67zTM7wzv+6q04oAPjSOC1+HvyC209jFE32mOg
9ZntwqB/L75cey178+lepuyDsDaIB2GQUDX8bQT9h2N6Q2ecJn/9UaB/mOTnaOoq5IceMRH4
Oj31V0SoHdlUwy7MnzO71uQC/dH2xjlMv8YZTazh/jyI+k4f3BO5So7ZkvvxJsihLj3jBjt6
Su36qWsiNX3yI/KM4jQMvG/0u3400+/MShGveQ3aTNiks3guOOI8v5QQY6mG0V5iY5K352TJ
HmJVoIds4KcjasOebLsdie0HYWoduMBykw48HTKLCB6cMiHty+G1mqcvb4ff6Hwmgxjl5eyP
+YTqmdWyyGhf6GAc3711nlm+WisxVx4ZV2mUF4pZEMlLkJwU1t9HwuPdIhzGWPbK9V77tJFC
Yx2hjNoV9xTyIqvYhbVDu0iUZbwj+4XrWB52BeO+XfxmMIFa1sdgS1yzj9MS94J3vquZqSIl
xuNavjUFiBwWN1FdzBZF0REgpiLGCOXYK+GrplSncqs+ZaZJD5tbBypRszZoNXsj+oNur8Vc
eD0XFq/cRAZOW1F9fkZBmOgxRbDOCq4UNQq1KKZo06L4Fyv5nWI/poUbsjgnMcNHXnRGNxjN
fV5r/7KXpZ6MjcCv1Qdc33BKLipmkqES66wB1RdgbftwGnUYKIZ2H4o3I36Y0xXJ8A563+6M
ngVfm+E2JylQpn4fUDviGEo1cSWy8c4EyLf/FjNkkeTLp5fyJ3qdH5gcotJe+RXCTnoP96wk
8Hk2RgFIQW5PSAv+A5PghmRHhtEbYukR+KY7z1o81qjjOOhy+oXq6pBmb7P497lglMypNOaN
pcjBsKJznQOPKUrBHX4GGO4U8nJp74+iKpOaGMN4bHw5qjvnGUtWNTcbVQiT4S22mWY4jEEw
kkVqAfD1xvjWVuyz9hVSg2GaLeP3QB1Ds1IzAnVzxL6f8ql1PxDphhkiMKztH99vfJtyl1aU
5OA4438FU1d9/uK7mWHjoG2SjLWbco1GoHHNjOhGwioqr+ITz7Sp23YsR/v8/pt9xHATIvoL
tpSQsUY5f5KWeBQJ7j2KRBxl3fqcF1t52mtZRgW8v6xiKCcTWKrrvZk2mPT8h8aqqdw/cZ73
W2k8GNt+5xVVa4FivTLGa7N4H46B8NqyFi8t09GPjY2sanY5jU7o5EcmCqEnqpUW3nQocIFE
G2jaJe3zEpEU0lfKluAnVppXKe3g22FqqbmkUj7t5BWtuxk6XqniXkBXdiq3Yf19EL+6so5Z
brayFGEOd4RBb0D29tKMWadLsJCNdNDLa9W2VfRbcDbey0YFqwaMaZ7Cb6QSUH1jgs7y23IX
2Pb5BsV6p6x0n73Pl51bMHs3Nn3KPjE0fnMUG1vKjIZ76oNcsNOdUo7cs854G470peBDh6zg
8Vv/5jmxVujCVlQ1dJ+F3L3+57V61D3ADhk4lJXULOVZ5sfvlBYYVMk9U/KN1XQFbTH2V7Or
P6dTFFlPUNZ8+nxJP363KJ2gjQ2HX2r88XKIbLzlLxq/Tl2bq4uToWOONcYC2M2icj6k3duN
n+yGmvNqIH+shuUWLI97k/Wm1sJDEuKFGRSdYmZWW/b5qm5GSZuj9l0Tm+/v2mIgFiR9UvGN
7+NAUcnIJa3W9DnLHxgK8B5Z3gb1RCES+g32hCku8Pp8CSS+sCAoT9SKE+zsP1u/4q3PV9vs
WUqFZ0T0SbMIb/ictXSKZzcg9YrBsMOErVv4Y3PzScXKun/PNX8o/k+K9rzdNtCT1KDUi4rL
bXdWx5RXDnE8SVObmXiDUoHOxCt7ZHq7zF0BFKUsNKdrLSkz2nKr4AbqVlF2PTkcugmEU3kS
xH224no0eFSTidsHQL2VbGdGyc9v1WEohId7fSg6u5bGw9ZGsqKWvGIqWpQDRDA+vzZO4lsz
IvjnuAcEnNDIUCK+SsF6DrPVhWg2BTFHftgVadnw2SeUJzR0LZMcx9ayMtiyvQwLUbgAEd9o
pHHK2EkrMNvOvaCJVjoZoGCgmfwWGRO25el+Pyv02WpSgLWT/XCPm9f3hRhonDXgbXRlzPmC
mPBkcIFQ92p1UjtV5YI/yYM8i/jorpK7ahcsgrAfllxywOqPyTcMkbU7whFuG8ommJorItET
n7jqb4HHyS9aeAZFqdiihNTVwhfDIpPxvirqH7NxMZdWjNskD4/6xDaKK1F+4St+ScRtIrbM
rWpoeFbyUzz4ntksTPL2XBeI+8XGVFQuoNlLCAMBkXFrAZlZ4uPoPPxHIAaqZ+ue6XriBNxh
L4/DVsDmZHwlbJMXK1Ykszea8drsIzEL1DJ8Mvz0Hj3rq/7YXEszA3qI+xfy1lJrK9+mMREo
NSwvKoTTLxZH5J7je9fmB52h1Rcu6mJH2QkTx/3zuhkLWjTlb2Vw0H+U4qXx3ZFLkG6PHhQ5
i26wNKHKxq2Xdgtgra/qciyPSBS1KguwNxltsTrT4O8kmhu9tTG27SRwrn/zKbg3CeKFeLmz
1hjgWWQOPSSWtvW6cQwK7mCotrW8EMpUJbxDsxT0s0lRp7fX41F2E5+ipNPwRC4HyxwaI1Ck
j9kFG4K9eN+bO0Fc6TgK+bvncvArJ/WGCUmGCC0JMBMW0F8R8Ez/qn7NhYeolWUgRWcF2YwD
owOMJebFOdYHhybLDIRPQfVhje+8l+LcHwQ1VMxtHaOqOioi9JWJlkKcnWQAx0oq8Djl1V42
tEYF8jyiJE519G2bEqolUy01rIlUTFowgjoJBXtv1yMCfA5D4WLQA17pOpUaaRkZNfEWy0RV
X1Tdvlpafv/61IpHKO2OlaT6pJqSp7E9ZV6QV0qGHodNrfs9tc+vfpQ6+4/aNqsm+k3gnxaW
8HOM2YTzyj1qLhhEjaoj2uFmNLsDEey8F3xVLJcpDAqRHI7R4ZuZ19YcPWVsuxmoDeDEVWOi
ZjxTZTJHoa5d9cGj0M1OYpFcJSA5CAqDm9qj8fjaoDCD9s1eDKrgOZWryqcMbZe4cFfaLHLN
UzKPCkXDhASuy4/CPDd0lNmnXOszKRUz/K+YJSqZMZd/HJ7x9wLWoI8hXZfsr8i2RMEDJE7b
zprfT7J/6hTVS46VDnSqH957lPBNPNIYNhblv0r9XErW/kR45ybCerQC50RW9Wtx9Ka+ubRz
P7SLAHPJBsy96NvqaAfVZifROtuR3P9UywENZvmlRVSiXYlyYRhcpukjWidOu+8c1V5sBySd
Iaf5Dg3T79tMNulZ/bhwITPSFeZdc2YZXcdeHLCglgmr9nYe1lgoqpBEULTGXW4TXYgR/fLo
dQzMkcicMklgR6deeKICQEI4ThdgRS64IgejNMgfBkHIbrDofSPg7KQJopbXcy9yRsbCEV4O
CFe0a4jij83cyB1Z7DfIfDddpYVqMUuRlNL2hhT3iIvOwndaG/76liDPnoMt6UbZNJ5s5SBy
d9MUGTn9QxtrlGSb8c6En3oh0OU03F6HasYmI8ij4BcOMsKeXhXjAtbN/eZU1Yx3tyyCFHlu
dnIgLCynxnbHTPLysOxEX8U0tFFjiOmiXAHpSK9iRe6jLCeRrAu8pDpWli3+g7eMXie6Qkek
9bKK9Ia0A4HWK99LTs5HaWRXL8mALMjGvkmirZQDk+kKzeSQJs5ldg4Wr7JhrLgZISaOCM09
WlSmS/BPCc3VpRnFqtMpYR4Zpqj2MtCke7EFs9/YDN4T2ZRDDz18NxoMT3WZMsaua2cMIYW6
qfovFUsobmc5P41YNYu+wLhQzFgIpfcWp+0NmBAoiOtqSmkzvksY6nVzHOnBO8dWVJTEKPOk
aEW+pYr7ok1doK3fmUBkvirPTuhKcMv9ezeOgxmGYKwN8sish3emmHm6TX02j7cifDmaksf6
u+UVC+s9k+SAQlGy9AJRHKxDF8CrSnUE1APr6iG7uYWez2b27gwBQxrOfSLih48Bn98WXKl8
eSnUoF2CNqKNLVIccG4oHHXo4pw6OdnK9u0XMRLWy1RH1yodj0fhXIL07GVcy6cmpETu0ki3
qkYcrQH5YnKoypgcAA/3Myxc1NP2O5IwfNn7j57ybgyNBdQYFk3ae7ZTgpxR7ph2jUJW7Cgz
Ru7cTDdMy1wsliRUjGkzSv8Hq/unGwplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8Ci9M
ZW5ndGgxIDEzNTcKL0xlbmd0aDIgNTk0MwovTGVuZ3RoMyAwCi9MZW5ndGggNjg3OCAgICAg
IAovRmlsdGVyIC9GbGF0ZURlY29kZQo+PgpzdHJlYW0KeNqNVAVUlF23pqSU7pIBpXPoEOnu
FEkHGGBgmIGZoVuku0RSBKQRBJQuaekWkBQQEBCl+476/f93v//ete5ds9Y75+xn7332Pvt5
DhuLniGfvB3cBqwCh6H4gPyCUgBFbQMJgKCgML+goBAhG5sRBAUF/7ESspmAEUgIHCb133BF
BBiEQtuUQCi0mzYcBtBwhwKAwgCgmBRQXEpQECAkKCj5L0c4QgqgBPKA2AG0+QEacBgYScim
CHf1RkAcHFHoU/61BHDacgGAkpLivL/DAfIuYATEFgQDaINQjmAX9Im2ICjAEG4LAaO8/5GC
84EjCuUqJSDg6enJD3JB8sMRDg+5eAGeEJQjwACMBCM8wHaAX+0CdEAu4N+N8ROyAYwcIcg/
ZkO4PcoThAAD0AYoxBYMQ6ID3GF2YAQAfTbAUF0LoOsKhv1x1vrjwAv462oAQH7gv9P9Ff0r
EQT2Oxhkawt3cQXBvCEwB4A9BAoG6Kpo8aO8ULwAEMzulyMIioSj40EeIAgUZIN2+F04CKAi
rw8Aofv7qzukLQLiikLyIyHQXx0K/EqDvmRlmJ0i3MUFDEMhCX/VpwRBgG3Rt+4t8HuszjC4
J8z3z9oeArOz/9WCnburgDEM4uYOVlf6ywNtIvzb5gBGAUQFBQXFJYEAsBsA7GXrKPAruZG3
K/g3+NuMrt/f1xXuCrBHtwD2h9iD0X+EvkiQBxiAQriD/X3/O/DPHSEQCLCD2KIANmAHCIzw
7+xoM9j+zx49eQTEC2AuiCYeECD46/fvlSWaW3ZwGNT7b/ffwxUw0tHUUNTl+d3wvyEFBbgX
wJdPWAzAJyQqCAAKigsCxNEL/39m0QNB/qpC8O9YdZg9HCD5p1j0Lf2rYI+/ps/5lzC4AP/M
pQNHMxYM4Pyb4BaCooK26A/w/03z3yH/G7t/Zfk/CP6f9ai4Q6G/Uc5f8P9AQS4QqPdfOJqv
7ig097XhaAXA/tP1EfiPXLXBdhB3l/9E1VEgtAbkYQ7Qf18iBKkC8QLb6UFQto5/qPLHbvxL
YFAIDKwHR0J+PSgAPqCg4H9gaFXZOqMfDSSaj78hMFo0/zxSGWYLt/ulLiFRMQAIgQB5E6JH
jN6JAnyBaBnagb1+MxggwA+Do9AhAHR7/gB7OILw1zxFJAEC6Gfpl5HwH4lt3REItKx+Dx59
6r/2vzUMBnuBbQlnp+G20s+cqp81n1bJM3jyrQ/LTLCtP3rBxec7i2hxPyfGS+WqzHq6hDiW
T+3/QPr5izLnkdwc85Xvt4ZavPDGZP2mC79L60SDsfUmwk+j1D0jBd/ka7qZCBj5jOQ2/K7c
/EyCnbEbMNs02HLd3CWI9fIoTj27VL1qukvnB8Om1/U3KsU0b1+WjvPFGsdYBBdNsr2yyZ6i
ZcVF8THhc5Pve5FMHh1PkL8cuWHWSOQh9N+JFX7ta7YsFHc25bNQbiSEbKe7T2dGy4R9RD44
xu6rsPlcg2bGt/j1EmIwbYq6ZWjFJQUI3eT0WdcxOEVs/bRiZxuR4qSjFcCmVI+OWWpUS3Ip
YknCFcne/6yx5KX+U7zBBsmrmwS50YWKVxNbdx04jNW8aEGKSW+kftBLC8pOq62v8EeRe9Xy
tqt7aEQJdz3GyNn5WGaJ+5PwQubzbkDpe+Z0qq/ZaqsIqLQagdQgp1einoBe/0XKjVY6w8/e
oVjDU3UOpM0iQ1P+TEBgGgOun14btmsqtY6tLlX9mwr5oaKjo7cKVSY9XzpZuYwcEwtHrBTJ
SLywntNyGnzxTuVtR3LxqC1FS39xwfjATSP79aFaVgtr+CCbTmyTtASHzcEcviouRaxZZ2p7
sk2v3TKRFWTnfkX9fuNhAoQeRAo+TkHm1nUtroSocEGl/O/eVAqvmRIm3iJi0vY4xS5mU9XZ
b53ppuEdL2wRCHgyGnnCmrmDrXGLNEFXSFhiLgGCC4jhs1RXfWq71mIvvjYZVDj4U2hmiD5x
Lt/fCEB8/bWHqKRT7oCA3YuKkol6qYZcwpHwGdWsrwOoVpRxSSuod8qTIwBHRrfhUIvW1uFU
b/Xttkei5FuVgUyfcyo20qelp2TPwH5XEbppAhM2eyGVdOGtny62t00IyoI1iVaTrBrqu8Ik
JsObHnBpV7SHxoR9eYCP5bKEE1ssPfj1eSJjEkmFv64d0NLMcJjy610XvRD7IZGqyUYuphf+
2pGZeoX9mw5Co9VQoEPs4KrK0fBWBvH3xTxXojQTjDr/nzG+74semJNRMYpCNHQflz4cmhLF
JjeNIjdrZQy6v3O8CBRN+i6OuRzQQIu3aZaDgcVYMpc6sltIUsBnHKrUMeYiiyU8XLtT8owD
f+eMLqI1v2G1mMKEdITHYJYhUPXKNcdbiYZRbcTDy9c1iNxWixon7wTo2bz5oXVhnJy+iyqS
oF5lS1vHgdMQM2oVEC47yYWz0ygr3SynTTGYv6ugs1Su2mp6FK8EIdmGE2HD7hDpvZk1bP5g
aDqvdMvc+dtxTLxDr/keKquj84DirbEVnWzi/sf+MXuhqPqcgR/iJ8eR94K8do0xNjtbXBrj
Wo6eOL227Xeuve8uVY9rUEo5GxoFUf5q3EjaNPVqmPTlg53m1fdT/FaP2d++mA9jTIAvMkgi
HxYQnQ10NrUmNq4TVko4tfrQqU/MbymmscGbJi7L4jJ0YRIMPw0c7j2XVmp+PsCQM0oqlMip
wRMycOA3O9aBr5qVXLQ5tZv1jXLZWXKuejqE8gDsnUdPdlUs0CfJw8tnI+zZIPko4VQcyz97
ZnseQEy2+81naiW/gbH+9fXQRAm9sfeVket5O2rmoj4u8of1ZaqQSPFXkNg4sjgp/Cs1C+6k
bibg3iBkJub+Yo3FsvyBK+J+gqdoSrEFyYArNCI34jEM6F7game+N7ALde64xQI12Fnz+BkU
LRJj7RVK3rxpffc+Pa6J+fcL3GQ1s6ucE83KC4SF59Gr5qRAd7Y96+oMFSKr243YMvlrGImb
lKmT2X1himH2LS/Y+Gbm69pqDB42r0bpY2MNk6DkDgd6ux40hCsiai9pl/d88jfWkpXGQl9w
UhyD/Su3pWjxlUcwZJWDQluPHKjvyJAddMxtMtkcC7KGjla5GeliWmrhWgS1ElLKD2aejpXj
jndpDyUfacelhsLLmF96aTW2RkeOB7j337UMabIeG5v7SoRJKTnK318qN1F3N4MhulcAforZ
k6N+n8E87/NjXrWwKPLXrd3qcw+FMmbvcH3LvWwseUPT9rq2O8An2itGrK0w0CU5lBrP9FjF
JCrlWFFZ10sj7JzQScWl8JkjF51pfwv2K8ap0fBoifchvUzRc1vPfb+443USRYfa5nOvSxcP
gGXnbNaXejGgJuXXfifDZHIFXWN8ZHmMTt/k7Vcl37WaXNocvqohIJfAMrqYt6t2ohVh2TJp
bnyxBq4+QkSZeUya8YJNCsfDcGQFCc2wFnYfdasW4J553MxDaykCtvZ6ZiOqzEURWuH+bvhG
+x4uTorT62U22l3kUg45K7sdneHHBF0mut8oIcMbX5PnSknuVtzzG/N2OeETGeLjHfiRdds+
VOXY69E5cWxLWcu7WFdkvSlLrJgbX/wzbRKOPYqrV93xc0uswN4e3oNGpFf/O3XD/DSczK6s
U3KTG1arXSfxdeEs5Y8eJrjp6Zw4eUZWe5rHfHnOsjE/+r9nTCTxr0jb+XJNrbjiKzjS4POI
lG/GuxsT3OauLtvEWpE6d0l+Lf2AiQ359C0LH+Hr1X4J08whHld2kWOndKo1uvfHulbNwLev
jVw9YpVCrdISKLu68JhjMuaJDr3uv3i3y2MPPVzzSkqke7Uh3lEps0oHNBR7yLCPoDrXZgj3
AYgsLwla3hCl5Q+ZpocqFi4OfGam2O4gEKILvNXTaI28EXVXKrc655D9skRw5QR2oz7dxOs4
Pyq6daeqmZOCBr/lbCJ5Vl/Z3Z7N68MmpwsrPiamwm1OG4TbYzc6d0zL4TI1Jofe2S4M2gJX
8dzkvAqptzqz+vJUdpjNu2FTU49TfwR/13fm9KMa/WB9EmiYL9A3cCIBSjY562PjgM95sBoL
xbGU7xQ5MzmK6svGH7wq5dqISnVg13h1f4+5iJIsaHKAd7l33snQkor9I3BHxW10kLtvm3u+
3zSDOy4eUgoN/2lor5NCkebrZsZIUMmBLde7bIdzCoMy1ftesWp2KR3mYd50ZxBMi6DmjR7H
k9BIZtyY+os4gvXvQDusxeVSyMwYjbtKWgVey9s2co9SYJTId1iIMEnrTPjW4jKL3Oy+usQR
PSpfa9eq7JiVYTER5b/dmu2PwNRcuWCifu32dM0wHZubw+BcJoc4SKq1H6WCae0frGvCR7tH
FzRLepWhkijzYzWOSZrb7GVT7LPFjtwoUlV4DPiEUDluRolX/v4OYOTgxeTZ9i4JejSd3XSr
JB86M4hD8NWDJD9LMedWqoxE1tELsD3hdaEuq4Hk7JBuGC6vIoEYadoPoQdDCxsJ+edmq1Mv
qXF3rFEa2WVUbr3pHXgahzmvUpzd+xS8q+/xlFaVANV2tEDfbD5qxQFS1iPTM36EHK333H5k
w1xlyaUfSzbjZA/Dix9wdQwmXUdVpEsPWyR8jjmWkNrm9Y2orpa5wtYgUQ4RMn/0RqnRV6lb
/HMTk2THMQOHRtBizsno+sU94OEI0ClNagzGc3RLNY93pnuEN5VqnSIQirwWbl54qqJ+Y6S2
HK/GGPokCeM4wyOrNfVbyboM2wQ/aMMbUzMsPrLCW1vhDMbSYuju7O3BKvp2XsmHcLroMwOH
CH3/ydIwxjN9PyL26eLGvvaJukYDWlthZ/aJ5lmN3Nw7Ii7DRAfmn9rNk/sc/YYtmbIoRNeW
BgklNd73xTbc7Tuamp4gFKwgnvry0uHnGl2HNSGjJ2ylzXerWV++7hYMu6ikQdUhWV3teYwl
njLRWRXxQSI8sNsk+6ZuPahZRIozHH/A4otRwWNmPOSDtprc+uXnnToNssuE2i/77uwSbXFU
fbR+z5dhxI7jomjh4brCdFoq+r4y3XqaTp2I7IbfXV5ngOZDvMibMZTc5eZr94y8jSePlyap
+5o+yt+sBB3A8rvcVsrb49+oDn4vEB/hLXepxvqiXLRdLyb5MHXislhcLYxePm2KtgU8dljh
+2X0TW6srMnEgE4+r6vesVHyInT45W17hxxp9euWpY5U2TzW9HmFiekJJe/R6jtaO9oPCZUX
eLtFbAunO/y2COn9E4kjiG+ty5x/raJ8P+RFZaO5J3S5h9UcdWG1vmf16ATHWN5E/I2XfgCY
6t6essagvYAopoFQ0R2nzMVe4tpJmByWCslkhjo7lZ1fYyoP+kGzsQrrb9Qp5sw2BMw5kx1l
bHyifDBDF/UshKg8qDEDUO42JnCLtI46aVFYdia+JyOgDe/WNAVFAQMyoSq7K94w0N8kS5wn
6YL4/CDYYwRfYi18wXnlc8kPlr422pcfd/29ADLiZj/9Q8h7s2q3cixtnxd+Y5l2CiiNlfVn
pyS1MS14Ue82A1GOFqbBpvBKdLkajj+7MBObKlQ+FM+rUVznkdJMnNyOTH67crYQoGKHo+NQ
CsRXHW7cYDvGTsIYmgkuTnm3Mz+yuNY9HwL0Xq2hWVzHLaOMGAz2bFGE3trdKC1/mzPoBlTp
0LfPBeIsdzdFp0papH7flvvQnPmVGWtunbM7gvG9VUwGozITzmjNFVv9W8479ho+kYNfrO7e
zqzlSK2pxsfaryMyANQKDcWHgZ41U/eG5O09JieeDjOrf3V4ZcYYMjHmEGrXSWAsOSHwxe/V
4YTJSIuRNTn1Ajv9fevMcupQGWD6hQ/FsOqM6opX7+YdAaxI1ur3hZUqJ0fwW8U1D3i5E2Mr
aT4dk8zem3n8Az4jtQRiT3BSXKAN7qvsfu2+S3uk2fKktGrA/UPcrbkxALbAcZb7uSdIGRWb
0wy4B2UJ8n96kFB2e+UqpwEz5jLU6VN4WFYEdREHN9jAcZ2PJJb/riNlsXSsI672a3jPp3Lb
yniSkeNur3NO5n1IO22U5+16qjOdwXr31dRPRMd3jfaO8BNkijEbxawAJukvrgvuV+PG7Jsz
JtknrA3vTu88P5czR047YwSeiDhrNO3LCbwx1C0dgT3WsGB16aNf3/PxBb6qucUQm/Lu+lbW
Ojf2rQiNS8292SQ/HM7WPFirpyLFdD2gT6SfHcvJurVFtZxskb/ycVzFpY35foPGhkRRKu2+
ODcrOwtG0PBwdjn5aSz7/R++qmd7hfGyT6AtpC87S7lCYqTZ/TzCtIlpG/FO2ztzLI5ziA0N
8ZXzibXg+86b/FcRXWM6OQyx7HJPMEnHDTNiJI/A+QNHtc9/VIX1jY1EU6e9T7XNygxcgLTk
3O6F3TmMwmzFbG3ZY2XiProuxvah5NThzBnuvCjFTn+yl8FJhttUOu70/KFiVBqQW7E/o3hJ
nTw7AZ/SBnWBCHfCsk175NZ6ggqSNVeHMD9ws1uZyH/suXdMmlFb+5kK2BPCI1e6FvLEv3Ac
xuPc1UCwM6GZSTTKc4lsRPJwXmAqV6T2AXnCtJN3A6rY1jngZfGD/L49BklE3ONsShV0vMM1
rcbba+Szej0d4QyFTrgpKlKDNQsJ9vQ4BObO332fhDwauJxpXCdiEAOxj0TTUG/Zo649WFWo
9SS++1Em8WD7BOgEt87zyCgERmpTk5142h/inTwUvVi5Do8RY1oqC5Sfy1DXiOaI9+WTh1bf
d5T+7nKvQr/+riiznZ0gvbswTynztKJtcOmR2QTxWPSkH7BNoctSeoPk/UoukVHE3arGMf/W
6IXg5u0DX+7DhJfvWfB0rfpFt4ikC9vFlnomu9QHEmPSXfh6vOQOsCbmP8Yjx83bhDCaIwli
dBjjFWdtnr/gyYdsBDZl5vH0x5yWzcHI3P2Xs1/GvNmP2XOCNlOmpCi9k+m3xs7B94+cbfjM
DYwSll2VLOlHiI7vVyY/MPR+Z2Fj3G+OvQPRa+0xa9cT84mrM8wdV/savAmJXmopEDz0euOX
YHTcRTdxb7hvPmZW/yNjpaw1wF2j8Iviz8J6MZf9Jz9FUWPg+HMKi3gGlvdtVSfN14fNBPoh
N1R0utDyiIj1LpsCdd2+SorRBa5PzmAnZ0F5cXrod1JxX4HpZ7dHGVOT8WBZn/UeTHd2QPMq
DqNZDTePrYRiNT3DPSbP5KXVF8dnZd4/66THAqsW+890zROEzO6AxrWej7CTyyaGDPCh7miv
XWXx41a8yAN0QO39iHZX01cU7mdjcFneyiLH2WyrMK+paNmUEX24ZvHx9duwPkyFvBvGyCUh
kX7W7yr3ChY1syq0bpS5FbZcShg/e97OW7Dl7a9y5H354J59kxfbNc/dJS1RkdxU74utNgMM
/Nh7cWkHhsj6uFCeUbxDp1K2lp6+lemLmc1OhNv6S42q7OC2hOqnVSQdwWvEH0/o1vFO1HbS
3gQ/+YxLZuiXesQBomIRNz+eNmMP4lfw0JQMEfENGKrkUE6hga4dFy4tnClI3hFz+BAFMyRh
998dVNHKFEUA/U03s5tkpUfUeiuXmPR0uZVF2KwnhnCC9b0jKfgBwTzAFsyQ/Y/+i8FH0kPD
FoYvoJrKcuUf2Whwuwv0WSfx1hYPdtlMlA5KIsuj4xozqcLGNxq8d1kipAWpi5ye8Jcw16Vu
c55JVn9evbQjYClKEZSOj38uYI7ZFX3w8J4bfNUuzjJb92E7rowPH1fZTdl7O6bTQodHUD9Y
EL7WVDXBjy8q8cpq45kWAVAOhhvi8WdJA5QNKz++D68nuF98ETMuARd2Xwbuqb5RaIXVxX/Q
1B6MzL7UZbqIyQAfXi7cygmaCE781mki6wg3EPV+JruQ7pHbVW92LcdRu8fT7uL9QnRN7q6U
a844Vff+Fr5bk/ET7yFCoWX8V9cBdOxyQ7U6KOmQmNzrUxns4arb+/FzR/BvHW2PeUo1e+Yz
g+OjVDq7UaE+XQJ1PgbOQYFnlj68OdBOSeEP7LW3reLulFHG3nhfdLHXl1sQvgqv9eDJ9zDd
pmj85q4odI6t/iaXeAc34OUhvUNIehJS5pSV03Vdv7noOJfVQL99q8jQDegVOVjI+3ULaN8f
Ya76tNXSi515KJUs0Pnli0ZR5ctijjuXPnEqLmnn6ZYVkfufXYw6fUeeOqYDA7vMohJfcPbc
rSS/8shC6bbT35V65TyaR0uXKRIIp9vv0LsJmMy7U7b59iVUejX6ZKFm4XoA2Pek5tBbXS4j
Ko7Ffr9OK+ywSFksf4bsQcgwz8IXz6zcDAHr4Nc8pjoHYSbDWlvtRuqyj/s2sujcncWYexDL
DsWNoJRwAmqUm8wZ6Vdtmcpr2XP3ryIBjuIgJ9WbEk/M6edhBQP5U+lVVzYSn/zEtzoDN7et
KVLJuzDlf/a+E0I+lNtFfHKOY78PW58cDmeAVcy2PbmgjB5pttNU0rEPzWWuXAsUE+wJErnX
xC6WfFQjIrn0ZnDi+mhomfyLqeobXeMbw0qTEMmSHI4MdpWYe/vGIytyJjGHLR0InDOwDtci
qijjo2np0CDpYU4bhi+TzUrs0Qashil7omc5ZbBuntmPbkWRQ9fmympE44DC9X5p3dWqVIRQ
NJk/HEmdT4XYCusHX91ep37dJbwdHNGYzf49pgCnJt1jp6aLsjCCsChEdKSyYaVMopi3TeU1
XuMJ6oXneNIeNuDt+8pHLWmyrPuDxNVgeH8M79HlRiZ4mZYJIpYO6G5wNb2zbOj1s2dvn2LT
avtr6YO3sMAMl7j+gMhdiwkfS0raqELv1U9q/ul1o7vXWf5qwe8vJwdWaniGQxTK1NbS6F0j
q74hIGG7H9VGv8eZrRH73dcE59lyPzYY0Ys0bsAp380/uD4pk57YNqbTqHs53jkuUBZ1OsWo
4UowZ99ZeOaHjYgLjSoR0zq1tbhzadO5GMT4FNU5x0GfY+1ymbPE0NnuBhrOkMrOotxy2zO/
rZlTSnf35fN3uxjqrAc/xBJNc/Q6HkrrO3q4tdUeZdm1dXpdbmpisIT5DniY8ZNnklj0mcu/
Vqbp1mw3fSrS+qBVop+TZkGgq70gJPPZF60SnEX5hBd12e8q254JWxY052hOf4hPwJAVbgRM
LlywLh3iVqZIuDagplw2dTEVhx5z0LBdefYV0Hw9CVFUCjjMinzbldM5pCnxrPW/ALqPZ7EK
ZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PAovTGVuZ3RoMSAxMzkxCi9MZW5ndGgyIDY0
NjkKL0xlbmd0aDMgMAovTGVuZ3RoIDc0MjIgICAgICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUK
Pj4Kc3RyZWFtCnjajXQFVNTt1q90SqfUAII0Q6d0d6fEAAMMMTMMAwwtIdIIEkqDlIh0iIC0
NEh3SUkKAgqC8I2+7znne8+9a927Zq3/PPu3+9m//XCwGhjzKzrBHMBqMCiSX0gAKA1Q1jWS
AgCBIgJAoDAhB4cJBOkB/gsl5DADI7whMKj0/9IrI8AgJBpTASHRZrowKEDLxwMgJAIQEpcW
kpAGAgHCQKDUvwxhCGmACsgX4gTQFQBowaBgb0IOZRjcHwFxcUWis/zrCOBy5AYISUlJ8P1x
Byh6ghEQRxAUoAtCuoI90RkdQR4AY5gjBIz0/0cILllXJBIuLSjo5+cnAPL0FoAhXOS4+QB+
EKQrwAjsDUb4gp0Av9sF6IE8wX8aEyDkAJi4Qrz/go1hzkg/EAIMQAMeEEcw1Bvt4AN1AiMA
6NwAY00dgD4cDP3LWOcvAz7A31cDEBIQ+ne4v71/B4JA/ziDHB1hnnAQ1B8CdQE4QzzAAH01
HQEkCskHAEGdfhuCPLxhaH+QLwjiAXJAG/wpHARQUzQEgND9/d2dtyMCAkd6C3hDPH53KPg7
DPqSVaFOyjBPTzAU6U34uz4VCALsiL51f8E/Y3WHwvyggX+dnSFQJ+ffLTj5wAVNoRAvH7Cm
yt8WaIjwP5gLGAkQAwKBElLCALAXAIxydBX8HdzEHw7+oxT6DaPrDw6Ew+AAZ3QL4GCIMxj9
RxjoDfIFA5AIH3Bw4P9W/FMiFBICOEEckQAHsAsESvif6GgY7PyXjJ48AoICWAPRxBMCAH//
/n2yQXPLCQb18P+P+Z/hClpqGJiaKfP+afjfKiUlGAoQyC8iBeAXFgMChIAi4gAJ9CH4n1EM
QJC/qwD+x1cT6gwDSP1VLPqW/lWw79/T5/p7MbgB/4ylB0MzFgzg+g/BHwHFgI7oj9D/N83/
uPzf2P07yv+D4P9dj5qPh8cfLddv9f+hBXlCPPz/1qP56oNEc18Xht4A6H+bmoP/WlddsBPE
x/O/tZpIEHoHFKEuHv++RIi3GgQFdjKAIB1d/6LKX7jp7wXzgEDBBjBvyO8HBcAvBAT+lw69
VY7u6EfDG83HPyowemn+mVIV6ghz+r1dwmLiABACAfInRI8YLYkBAoXQa+gERv1hMEBQAApD
ol0A6PaCAc4wBOHveYpKAQTRz9Jv8I+Mno8g0hUB/l8IEI34wf7I/0jt6INAoBfvDzXQdf1L
/rPlYDAK7Eg4PwNzlIl0q41svahWZPDj3xp9OMmxZf6Cmz9wHtHm85MEL427Kjt8FfFdMW2g
i2xpQ5XrXGGB5VfgfnM93tP3zw1broKu7ZKNxrdaCOc+0XwcK9pXrOtlImDkN1HYDvrlFWQW
5o7VjNGuxZHv5SNJYlBIeeHXo46q6y1fHI6a2TLcrhLXJroun+BPMI1/FFY6xVHgkDNNx4aL
5GfC56E4RpFOnX+fpMgbu2XRSuYlDD5IECkOtFoTTrycDliuMBH27qC/T29Fx4R1TjE8zhmo
9CVdi3Y2sKx46eMcqlm2mCXvLl/GEj+ZwBfhrCqIURy0qbvGd3j+g9Bmfhog8gHDR8rN5zWv
m6jsEGz61FUtdnGUyBoRdzDTlw/OSsut3806nd0yGBekJupuAdMSrM9r7ubG+I0sW0h3EIsU
5BVp+X0dKTpMfqGpTeO2fuVMb35N+0vz3oGAu6/y0LC53bJYTUKpy6K51XmG+Xf965AlG1Zt
NlR/d99czDjC50BrqjheXm1kQXz/UiuH1ivmjhxW0YmS7atxZ5IHssIfkh2SN1MYjd/iBtDk
YMsJNruvboPaPg98MHjL5nbSFZayRIdcC7amWGCnzrCGbydv2ZHaEeEdnhRSKuxa4h3OU31n
HWi+8v5EPsriE7I0iy0YLakLZlEW5g1MnkHRkd7nqT8IKr5ainLnzmmqVvl50DdALKI8EZsa
a5reRsmIq+I3dHm8+1zwWXfaeGxKxSsJLJ9UY+HbM9+W5dGwA+KQ6G1/5PchbSe2wS1nVquc
sSfyAnuNfX3FR8PnJp4NhUq/PLY1zrLzh1RNrSOt1MJrX9sbnvlz26+M0y5duDiB6dU0M4oR
pvwftUJuGeJQ5y6HolHaFkdv7yYFds6HVtT9eJ6ZdjdyW2L3/k391skLfQXdq/JX8o+yhnC5
GHSoYrA/v07MxA/gyMOevqetp3X93L7nTdFE8Iy5+LvCnnw6RfwEAwYycb3d+Cy2WAn7ltal
5z7TeoSvjI8sFL7xQCZ7+G5QmovZPPqCbOkdRE2ESCGZ+x7h/cO3HHd7AYkFM1dw9gIl3sLg
2YXHLVcX1A8+1tSWGBnb5hfTTBoMNbwEPVU7363G4/oQklNLV/+dhJ2kueN1ZOQyVcVie2T5
nBLXuCYjJ55CF3ne9sbIJktwDP/6C+nALX/FO/ffeUpfYIfHPBgMLpkspXSzfbR32/NebsP7
1w44vd+ldz0Ah5VvqWFZMNXnuImRH0Oq0Sc4pRic3KDpjzMGn2z0vs+U6LTD1D+rZyj4aVKq
QpYxj2TC/mvnXTv7yJeeMguiPs9AjnTYKMRb1vZlfB0lYuWO1mc+bCRPyem0VfYSDchg6eOt
jpcBsu4mHu0J8vTZ6zasV8svZxflmppXNm76mBPmGiNdIlNfTT5xeyjHKFQTmqrpKfWT1f7K
irPAtICc2tgy23AIBibf6q8lmG3/QgxUL5ED/KrJkpc+EDjZfgXY1XP6WGCTTt1+YZoiVvWm
/OFRkfQE9jT/a4blqQBmFnHS5Bw6bJclCk7DjWorTesGWfM0e/nG+92FsBBKT9ZNg16M0f1D
lYcRp6MJJBm+N0t9bNub5597OhdommuGy8JEqfW++FhZNcrnkOoYwQ0Pv7W+cr2oDGMYdJPZ
2nc8swFzLTWMPKHfqiS4wiRzWKZ/AmrB51UZLtf9NW8rw7kA9XExWytbfnWB9dA7j6eqSPxR
bWjhHkZEVS4j7qnz1erL9Nb8Ts+BNVqjR35avgRjRvDv1SdbXCFRXwHu0kQF0QmmpHsOgKbq
2s/SKyPrKQUZDvA11XneQyog+VsMRUcnixuMnDdZOpTOdtpn2o2HR3O/ErUEMDwSEoKPuvzZ
FjwrO1jt2BdKUQ4TP+BietY3PEb+3hmp9/elHQQP6xQAli8VB7V/YlMGOpfNr4a8kKicZPlB
cIm/LpfN3fmaaw5jmJiOyrCXIKbDVpypWV1prJFbmc45+6NHTIfLu4efXu3eif9V1xNaUfye
sA/OTqma/2Q/sfF9UjqMAwK5SWszkWTE7/Ll4+AMFJ9j02Qz8JEz9SCeKIFmBX/N3c373LdR
/moPb9ZnD/+LG07Bkn8uqYatbXhu1jP5x2wJkoo13VEYifEfVrRvKFzt6qvNp5a8tke6lrjM
X+9BMjHe3RPNw/FOslv5kPOGrUJwb8CBb2N8iaYcd+NLQGbu/tb2B7PwLpdXHg0X9IuSds04
6mVubmMoZTWTip5X5mytQr6MOZwZz81oFYKVJFPNS0sL3w8g83GknPFdXK5xf6xs4HnPEixr
M3kyJREFo6zP+1gFrJRdlhXzLhcrWIbPsc5kpXzHmFW4xp1cpcb4mONg2uOinx7Lt1uAbamm
QpNomHtUv3bIxaQ24npCDCfphuRydW7LsrOYrw8JYwZOy7CDuHaxMoTl1hhYeRLCwhge3Ivl
+BJboBdGTEsyI8GIOVUIlyO/+80cQdkuhNc2cIdIL1BnXpq3Wq77V/EpL1b3SHr6+Ttp08Sh
73jc+67fhmRLl5ELcyGYxW5CxIa5lfwiwS/TXrEsmRBSGfvw29Bh8xxT2AfyNYRymTV+atnJ
Z1kt4VvwrW/vjmRh5Z2asbIpOeM6ZLOAPoV0cVRFpJZa9p3qPVTxbxax16H1wY0VuTfbPHS9
0HIeu1PlOCctFj5gAgj7PH3EydVFNMxlKSBIe27VbhYUF8croTgeHixajtf4mPBqdbeZeK3a
v7WZcnFC5JKTe25DbI5N3xSeGTTgWVegVYsuf9/RMFV50UlWynaMwKaB+tfSM7wV2hXJ6eCJ
o71b7Dc/itq8it75GMbmTcTPIwTddMZOWuP5FatX3sorRI5meo2eV1+YtfVy7YLO77C/kfRf
M7snK6rBbcrUrfkzRbLRvX4oqWfE6Oo8SOZsNACXVyNrOLTYmsE6F8AK+SGsNCwRlM+HZffy
BUNebVgK8HKcX0A3Hjrvm6zDh59DMcPenz42bKwb7ED1Y5qmRO9St/x8chhU0XY1q73zmRQz
7BJ7teTUUGEdq/FW/pLC1wD4SCNspRVKE1JwBDzPC6kVfbA9sdyh/q7DmfBOMZ3oL4jUmwoL
V9ibtsx7Y6IGk7UBU1ZCn+YtjjZGjwFPgI9rB/yq+7r1EuTfiAhgDk05dGq87eXF5NPbtiPZ
fyIURNEV+8S7tiZ8EShgMrDSty4BoTZoO/uWFJ3uvoO4eZUNGdrOmsy4oZ2VwXozb69sSzEC
6Xc6d++4y8+v7x9vK5JNn6cXbgtTbeokvXptSGa7gJI4Fwlvk7cRjlT81JoljecwWORVKTOf
+8sj6lt3u28fi1n009jNpF/1Zet3qZ/vjHwVc6WanMTOv29JtrB/aLwWpj6LGQHwNr4KuadC
WVwpGMGu1bQUr9uLyubt5VxnLHcyeSxQkOya8zHRvSjgHvGyX08zbz7haBohiRSe3z2xl/CW
z3JB4XrGzZxmr29/yTYzK2McCJSUFTJn7lW0ZoaFHjSaJV0tl1R6+k2UqkcAqTvFaYwss4l3
NTilXGIi8QrlLueFhiHMA+ZVGd2a8h8zInvr+kuEGaK60o4tZfwnw11gNJfzpe9rrlow3WKo
IDvvbIrfml8ZVnb527WL02vnC320U6DWCLRHhe2QJaFOqwntXGpdHvVqNiFjjliyahLjosU8
ezjywIw/goCHHYzYgqEiJpAAvwPsiM1DHK/gwfRivfPty9KbtbobjFxGTUWw+o+7Dx8kWihj
4oyTjEqWxe/D4m3kp69Dy+PBW34ZL7k8eeSsey7Upb7UVx91Ogo4SKjizD/BDH774S2V8Tcu
1aLpEa2QTyqhJEYOT1AE9g7Q0Aae4+jqtDqCJnXyfaYMmBJ3bR5VNIkENWuKccTeVMnozao9
jFgeT+qyMqbUNXBHLcFdSomcUEeo8sf+W38YlyGdevJ94MvZahuRt+x7mHz6WiWSQSHrR2zx
X8eOmqf7uvVrYS5cPS2oL5+VV10OU1twRYMNmMFEpJwwj1Y6YMrgjwcdd5s4Qi3lfo6atejB
DsL65uIizzw+LpPgu+U+lEF9jb/peXuWNdglQrrFjTvPqn6KrG2Zc9ayoX/ChX8+KBy4xA1B
CCVICqY7ZVv29lsKKbrIml7Opg677preBJ9tIN41Ytny67rzxo4u33HYqIOHeCwm+4kJkLTX
SIHITNrwkxRmuIvedDNT5LN+ILNzeiBFMF0rQQe6+yhU4pb9obRqzFfJp6xva27l+ryaNSJ8
vCtnQx+IyHT1HT5LThnKNdrWQ3JBn8kRkrKVkxAPEt7TJ719b0+hmBEHI0c5DHxVvXs2kZml
z6WVuPzurBY5gKeeFtnnCnJ04Iec7mP41RtLjTXaZHLJsze14eyzj1QcX9yRGFmMolSZduXj
Y8++h5H+br1iYPbA4uHiNzqFeMfn8SyVT0aJnovKe8ltxrEebElkPVA2GiOulY6CMz/iOkWo
m9VoYg82uIqMRJRWkQql2UXM0xVcED6dbp+MPOs3jPF28G0hRDJEj3e39tyX8z96uM//OWgn
tkKlnWVJQ+nNzfth5qYhQcGuzeWtcByXcc+ZS2x54x5atUt9BjLVTqjEZO/KgelqYqzp8z3n
+eXC2VZVEtJPqF9vPYtbuj9ELUzZvYzCKVUpMgLtM85erELpO0d5ph9eYGJ+rvJdTVsV/pVy
0Pdl7bxkFrnHNLIDxtuOw29dtQhK8nELSwSIjb7gaQp8nnGCRDX1kzpQz3ROeGA+5zSbKQaw
9hqW7MafBNSe0sixcr9EWWe/WlkW49zouGF6xK5AAip1eYZ1fZ9CbPS+K17EmMwMi+djU9Rr
7qCXvVtGJXBnAh5LtaE0DUrKDm+Se/wRhCw84Tsfeh/ypd4XxQnY3yJxj3RwP2b0lY/WMlEN
AK5a2LkYs62YLLerfph6PuK8zHxd/8Iyg4jRmObIXiqbLGOhrsgbEy/uLvz2wlG2d7BsTl5l
PGzqzKbq8nvmFsFWO03mrVKfujxNrSRbPVtoGXJCSvXCmI67n2KiV2kTJQ0Dre89cf6CXxWn
wplhxyB7w3VX4vw2Sy9d58F7jkk7oat2E6z1SnEpLH+4Wuy7bz1ya2THj1YfKKOwQnT0Wrgn
er+abeMkraSe131l1gcus11VF2SexUzSKwIepfW+PiYN7e/xy7wZ2fU/D9BjE3kekVzAC7L8
qsnGRmAd89r0g5+oetfs03Su0fX13Lq5KrpzUUwnWfM2bEg93BYnSuwa7Op1RYKi5W/2I64Y
rloCnR2fyeEiFqJuKcsXylhAWd94okmojKh4nb508Pml5fd9Niv1zK9PCmk9VRy/meI+vAjS
3PTPLg5tymRQoCUsfHaryJGQCYS6gfGfNsomiqgw2JCWkzDEPWTSPp4qtwrmVoJssfv/cMTW
4tx3X/eZ2fMOvXGZM8dZvqdqzWLEROuHRSEzxV1E+9NEzXI1bDSiE+jDR0SrE41nkrEylHiQ
+IOpm9VDHI41xnXxzEiLUzRmonRr9GmACtcPSbD5+bPdNNV3+oB03MNmLgcNPanDvSIKzTuj
ZwnCXgO6Sbls0Vo08B8Mq3UUrZDhpC6dWZTUvhAXkVtkIMrWQAH/fPbr1ITFsosxD+OhhkX6
D4cuMGfsa3Ls4lNXKzv9sq0iM0P23D0tmZ4K+vIBDBEyL/E5bYswQ+fXg8ME10O6ZGWyNT9f
XO+SGrxz+tTjuk2mFcXYFp4EgGyR0mr1LyhYwrQYnpYRAei35nHzxp27FyIU/cd8zCDsY6e7
jJK3opxVKtJNTvqcGB1qsoZCdvCn7r11H2WVnn7kXFNeSNa1p7x5wx8B3NqqSqJ3kbG/SPBs
IAIPPwvakFPiBSbpkjDGnjxKiMcRc1DxsF4xf0fWku22K6e15XPClWS0VLb2KaP3abfu1VG2
TISpWvWnw9WG13Mt4o7IHq7TjiHmjjpcQ8/dYG5PV4IWyvpdyvdtkEYhxNoyBjQFk4U72zD3
a2gM+Vx9e0fd6Id9P8HUwL2W06Lk67Ua6mhNEZkx0USX9TNvvppP21sxdDmdLzsXD50MvYm3
W92jmQ6e2BnzRvjHYaRUlzw5kQucYzhmUSmm0hbB6uVnDKB8oPzk2WE0X7IDK+NrEg1nSx3F
8ZBfXhE7M7TAw0UB58xEYei5I4wvrtJlWawKMcAe9e570G6kZxVQbAVvaGsCpnUG79GIP1Gu
b4L5BBIdMlEU3RgIBdPMEEDoOE3uuncWsh67W4FbhwehkFjg5eNTyScgT69QkjmPzGbWOFLh
tfrjm2TG3lLLLIpMyvAWb7zgjGrVBBodlSr1MWMebgU9yRgxbuWPi3xZdH7nFw0TmaIP26bE
2XQDkIm5NouKWtw2Os+zcRGh8Tya0PSqPGXbHUNWzTaKUloaQ7OU7Orjl7Fb8Va11xSOscIL
089MyaKKpmVG8ZXiM9pJ1BxO1Kar0pIlz0JpsaEWeQ0Zmkwp2Io6ANv482ServCsSJjAbvqj
n8ZH69/vbc1jJ1lq+hz401l4v5WnJGIeFspl6mg//ZQkXaSOU+lUteOFUXamd1/LpRznJ1TH
ezNQycty0MaNPq3B+cZSaQGxnxh7GHn+DfKBbuhUrBZuHI/7plO5rjbfS5owHEtKCgV2xLUx
mgwMUK7Bevpe3l//vfGMwDbvmgm7/bUWT304T1mlPmJkVppIiL+2VR1ExqZm4dCKJ/yiV1+N
VxawwWSQBKfqM+G2vMMFCje71SZkvlNc02KVMl4wnHClEB29/EFfOqd2E1Fjm7gtrVsi5V1O
fPMkb9xLIZJHJeWn5Qs7stBJ2TuaDnLKJ2Dro8RmhU+lNhzhTCX9jxnYtSXiWHKm9n5+6Tdy
S852F1bMktviZIywrV3+Qm8UMP7QmTxmN537wsVNcfn5A9RTByUDJ9mqjWLbiUS+SVbS7gLf
6S3POSIt1uQaHtnKGkHjWsz+LsyHusNSwRZM1otGIus/FYV59SKc9tk++95REydQPU+x/ipA
WjA6aaWnF67CwLTRtcPiSkcd/yqIheJYe0dObCJOQIxLe/0n9aQcL15UBK9oi/+0Qhn1Ck5O
4iel6SNrS5Z3rannBBVM/PbX5PFpManJJyPJrMWl/EGvz43MdBHiBE73yd0SfrzxqwTfy3v/
NuGQi0PAXuD7t7vIjueE9nQn/aHRuV++1ydBhbZcAaTQgPFFsFHO2mN26KXnJtWKfjXmzXwU
nV+Xn74Pj17fBYn7HZRjbM7LW7NXU51SFRpdXpLVwgNFY+QiJ4Wj377Nhk5nnRVGCIQZZ+Ly
9tMqcJK2xSY/6hm36chxMF8tYC3UWymGz1ODuo+AKc5JrR5Jy9CWSUJVlQTiejjeF2WE9En1
KRP51tSBIRn2w1ebd5K/UH0ezjFvYMCikQxkTvZUNp1rkmkyRN4wbORYV8ZarZZTkLt9zKwP
ssQyFGXp31aWpbYCj80d0cI2t36qPPHjp2dw5SzmPnYpsTIo0qlZsTf5En6EL631ayJ9XE4V
xzpNPwn6jSqoc41wpuJ4t4PQQnW874tPa0fV6ANt1/Q9+V78B2Pzx+WNfUWFEDXIQsEUcy38
VrCDfJ/4/lH9Yp39oA8dPA/Z2nyziRfU0ZNt3LG9KYYtvwY0qLhuWpGv+qZOjCtPOk/n0sYq
aLdQeQ3f8xSvTGUWTvaXcbZM8qOb3u2xiC1o/jBak4Cy+y6j35nZE1Eox/aqegnioPHzA53v
pWyhzl5SqFzTLg97VCOKNnfnQdY34utruMTTF22iR8jltytvQCCKFKdkS8bGuZZcrezxXnUF
/tBnhoPZqYKDgSx9TKVNPG3J2dafTynf97INUcBPC/DO5ce/8oIqQtiCido1kB/LCGfnMu5x
9S+YGe/VbLYJDvshtQ/gM5y06y59rlRee2mDpwqDIoxbPN8NiOJCVd+PMb4HMKvgCrZkhu+S
M1N0RBVTujz2iaFG6Z2bEOGEPwYJPVB7NKvbciGc2ZNV7pT3Kb8jj36Xnd5TuazgSnZht7Am
bSRuvvnum14g9LtgIMac8NYDWzbIC0t2HrnM61OEb0r6riZB6qewCMASbEp4EFecjkmjoW0P
blQguJewaDArOVXNLq7UE1y5BufJWBcG1lXFkNLHKcvwIHKn+MkdN6DcBFqd1Xs/tAI1embN
rWruXh23yhgPCBxxEDzy1hmm7raiH4z/fBAUbBfF/agTLyagWTC/TxpYhsexA470Eem+Q5Gc
+jkcxPvWi47JMH/g4+hocC+2wzmbEI5clOCt9hyCdQymPn68Yh+j/dCbA3lc4aYd+T08g+tm
GuvGrjhAbP41q7vjVqEL4hC8Qb1+S0RLQI0dMH5Zi9GHbZOv/EzwBIw/N8+iY/3VyuKFOrb2
B4/XwaiQk69Pa87Z+L+/7xxv64VGASCbUqKp2K3VDO98mYx3skP0DDo6BS1s2EYboBon9BPq
WwmYUOfzpEpukkfrUqWbDdMaKY2Uvw7ve9A/feYZPcepYddcK7TgcRZlevTY5GJBp6pr1fzM
JUwG0dpcD4c72432E18xlagT6TX+CG5ClLmZFpAS0PhBtWYyUhos9XN2N6sa/YBEP22jK7oH
n/e1f3JgW6Cxmr6rwEnjq+lmgfBg2oHPuBYDxaydxt3vwHtr6T4LMnJ009QSoHAK5/b8b/F6
p9f3+ovJc3zZXpAZlD3NQr7vGwILciedZR587f4fOXNTFgplbmRzdHJlYW0KZW5kb2JqCjQ1
IDAgb2JqCjw8Ci9MZW5ndGgxIDEzODQKL0xlbmd0aDIgNjEzMgovTGVuZ3RoMyAwCi9MZW5n
dGggNzA4NCAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+PgpzdHJlYW0KeNqNeAc0XO3a
tiCIqNGiD9HrIAii995bdDODYcxgRid6jd5bCNFLEL0HQRA9RAmiRS9BkET5JnnznnPe8/9r
fd+atfbs576vuz3Pde2ZtVmZdPR5ZcEIW4gSAo7iFeADigPkNfVNBYAAIFCIDwgUxGdlNYCi
YJC/7fisRhA3JBQBF/8PhLwbxAaFtinYoNBATQQcoOYOAwgIAQRExAVExYFAgCAQKPY3EOEm
DlCw8YCCAZp8ADUEHILEZ5VHuHi7Qe0dUOg6f98COECcAAExMVGe3+EAWWeIGxRkAwdo2qAc
IM7oiiAbGEAfAYJCUN7/SMHx2AGFchHn5/f09OSzcUbyIdzspTh5AJ5QlANAD4KEuHlAwIBf
IwO0bJwhf0bjw2cFGDhAkX859BF2KE8bNwgAbYBBQRA4Eh3iDgdD3ADo6gB9VQ2AtgsE/hdY
4y8AD+DP5gAE+AT+le5P9K9EUPjvYBsQCOHsYgP3hsLtAXZQGASgraTBh/JC8QBs4OBfQBsY
EoGOt/GwgcJsbNGA363bAJRkdQE26An/zIcEuUFdUEg+JBT2a0b+X2nQ26wIB8sjnJ0hcBQS
/1d/ClA3CAi97978fw7XCY7whPv+vbKDwsF2v8YAu7vwG8Khru4QVYU/GLQJ/982ewgKIAwU
ExERFgBAXAEQL5AD/68CBt4ukN/O32b0DP6+LggXgB16DIg/1A6C/sL3Rdp4QAAoN3eIv+9/
Ov65whcQAIChIBTAFmIPheP/OzvaDLH7a40+fzeoF8AMiKafAAD46/OvOws0w8AIOMz73/Df
R8xvrG0sr6XE/Wfkfznl5BBeAF9eQTEAr5gIECAgICACEBUVBvj/M4+ODfRPH/8Rqwq3QwDE
/moXvU9/t+zxhwMcfwTCCfhnLi0EmrkQAMe/iW4OFAaC0BeB/zPdf4f8/1j+K8v/SvT/7kjJ
HQb77ef4C/D/+G2coTDvPwg0c91RaBVoItBagP831Bjyl3Q1IWCou/N/e1VRNmg1yMLt0Yzm
FXjIB3z4lx2KVIJ6QcA6UBTI4S/W/GU3/KU3GBQO0UEgob+eMOgoIPC/fGiRgZzQTxEkmpq/
XRC0hv5ZVxEOQoB/iU1QWARg4+Zm442PPmv0ShjgK4BWJRji9ZvMAH4+OAKFDgGgZ/QH2CHc
8H8drCAQwA9DF4C4uqOPAO3C/0d6kLubG1prv3mArv33+rewIRAvCAh/bgYBkgh1fB3aflEj
S+vJuzGCs7zSGZVg2hcpjGL7+MLXQQM3S3nSVc4aXHV/OF1ntix8YsaPluvgYtTLvDsnaClN
JQ+Fodi3JnfEmz/4/aTbHsIARtDYj4mmR62RHibq0hNbm2GbsScbz1yGifYIbb76UnjVidx8
IrYLcAYUn5EwpdGiYmVzO3cxn5kysayghkzNSeLuuZlluBuoGo5dYT6Dxp3LtcdQf/deM4vL
HFpcfJfT35cudFyg3lstUhVORk3uo8aUO5w0QE2RmKPWhMRgkxM+ky9LTWCmLnIOZ1vCshZd
+jlV0N+WOCDk3mCvJR90V/vp+0b3OoTwjGRuz9IxndV6tsF3fsL7zUlRDjw16SxyrNVgjLOh
jMNqIVheLzYlAwCnrnPhRnMKUVJ6bqqBOd8Yg/s0RMjyy/j9C+vYrEQBQYtUSdijgc8v5UR0
YAwuw3bG85ePUwFkNKxkOqpYWkyOK+7DD3j4vr3sg1aYMCbDT7ea37UP9UQcIVgO6CkmgxJM
OrJ23+4kNqkKn30gNeJSFEHVqn9EdFlxxufGTwXo5eVi67R1Kks8kRGbHWeONxIizjcg/Wig
sYmRoXXHVDxMNnCKhIjM6aCM/tV8pcj7F5LBzZKpjwKBTxfGj24p6O7Fk9Su3dXt+X7bMsHW
7YhfEM9SPa/ziYN1iRa7GuphArRxN+FyS850MuhIdGYpT+7aMMCKrPSpeZ5d7M+4b5unDYd5
JrJ1kU9gUSldkwFrVi/f03c86Y+jy3gzvtfbwZ666aXS8OMM+4jMdkhZfIA5tAhW0Rgv3Cq/
2E8RZWjWb6PRftqM59bz3q7x9DuBgNm5xMP1IBfLrQatQ5ef5a5yCoB7xOyzYWJCa1WagWxi
vtgEkUYBCoTfHt0jtBlvCBacgfNhONg14q/DpNXnKQt2zVieNUeT1v1Qdjk666VbJGutpeNX
G/ABnWMVBSs9+umhI/TpM7+Jtsg7b1lEV+3B091NC2NXWoVgzRacSNOHyyUn4c2kBabx0+8L
THQUjzSuBNesBFvuVrWUIVRSffEFqLwmqckHd9i72t2p/doQhBdnP4y1GOn1shRTjov3M1vi
pzBPf7KlrGXAGJVuKM0DNEgx9RwEXjEo5dp+La4a8+eOgBHKX1gAiosWejjwQuk87KYRIdx2
Y/dzNHf3Gev8z2HSdCCupUjmgyrLAL3KLxblzuHrJB+gJaHq5dqDk3FMqndjXk+9/rl5/5se
6bUVaspYIrPr/deMAXcZjgflKK73JWRTdw1f5Pj6rX37putvI7ShVArDSu08eeSFXUmLWziJ
SlIxli3tqVqVqGOaN1oavyaUbx0iDzFC1KUveLTm7iVJ99SlMEqk5NRKDn+S4gntXyup6DRn
rvjemJpFNaG3f9tDTz51tgg7R1fBAZ+aaErGiid3gHI4h7jD6R5lrK0dbFNW9ULHErO8LtNz
LousGKw6qOLjxAE6Fwrx+pnAED0YtKc/ZKijWmfnqz5aNoKkCSM4GDGtbs/f59/z6I4fM8tv
+TnL0KzBqp0vs5upEhKefO/xkg57nNrL4YUAj8Rpnn6WemYHwxJN6dO6XemVZBeumVBRD6KP
VJILOgJI/zVl4mSZQq0kYcsjodQog426R3at4QAab93iiJAWbc7QesJKoOjUl0lWorA7ocoE
hT+S9Hxekp2c2G37Roxbkio4fDp9vF7gm5m5Kpc6vDPj/+NN/1wuUtCOXf7Ee2m1xmrg1dQr
GQsQw6PkWjiNqCt7CPWXW+qRlw+dtCWp9q8rZGYMAUmln2A8izoIxWdLVF+cMD9kchGJ4rli
mc0z4eyd/2gand2aMke0BVt+ZGlii9k4ObYgfQRLjV9vQrawhYZ28yesrlpyZjEZbLwNtCE8
wVypPJgbr1uhDOrQZ86XiN9KvXS3xNCPwpcVPs4UkZMkXSjwgC9kGqzhVWXG1461M4dNnJeR
WfDjjPAG+PtGTvQPyuRNpXE/o8uCEt26KgPZjLrABxfW6qc+T/uWE2qVBWMcOrAiv5dvH+UC
MFo+rmgVUgavb1Qaza+PDoR02ZRlWZxuSU/zEGDuH9ui8mHJGQ4kIok32pEePVYlOHrb7+vE
EvQBllg6+0y6Lud3uhNoz1vcRM7buyWK6p6kbXX1r3vMMog5EXiTxlE2qCR5u0jQKAx+XAMk
O1LvC+SMix/phVpULmbb+ijLSzOzBvtBFos8mbZq00ZEYoeL9HS2WL40tYjfdHzgHOyIU3ww
u1UEZq/s3eii5W1pJHgniMFP2wdg/RrnHzHXRRsz+4mKwHk4rPrJJc3bAg2iR2NvTudiQcMn
DWMI8jnMyuhsDZWiD63qn05PGnM5M77huuZyf1wAmXqn9o20FeVl38Ins9J8H3NlzStThwu8
Z4RzRct+mjNWO35WhtIvHSwkBksv1ppQYJNxhJiGhL09d9IybjB9s680+3hLzr8ubdupbqEX
d1lvn2N+esxScJaVBIgpe3m15xzahhEzSrwN83MOQUy92yt7SK270UpRFZrv/ZzMLzl+3oPx
3iH304TCPIa3KYoNoLgPr+ewkjT7dz/yV53RU+6iZsOwLlUgWeFzOvL12x5aB5vMyiL+BMV7
hAe4ebkWDQL5slQJb2JSuP02azjWW4ymvy5HK5dWwkSD1e1ojcl9ltzyrPYlfyoz+7KXPxwO
N9EEFHN03e9NrQ0/pPbh/1TXOOczqdH7JNSvJUrhFkP/Q17i7ytAxX2XxmiaJ/o/mk9kB1Yi
KvEi696tUM82y66ntHR3oGCdtaMqV/lmGAZBXshRzQL6MJ0orvoXEEhZfLFdcSeGp9N8xH2G
CxUBTlG80ngoc+x472EwC5B+9jqovqLXSBrade9elM/J5qP+Pr+uIinwjaO3QVZsUG+DkfPA
l/QVateS9/byQ9SJJ4mHs29as26J+dxu2zCIlF8K4H+Letqa2JcRfrsEQc+1ny4W0+82Nq36
LB/hWG24r35G5uWY38p3hwdn5ILbVqBm5vVXgl7VbJiCxqHuEyyhoPNGHV444rT9uIP98bhp
xzIOhHdPgP+CKCZPNCiGS1H4QTo44mshIi7N10K+XIrlGkvpjo8903gk10tEK8bUbcfoD7xa
P4P2R4pGqhDHj+L71D117RdjXXK4BCzJiIL5ZqIjn4/27NYSaBhFPT19d3N54UxIDrMZJbRg
Jd/jYy62Tmgrs3ql2wSlC6BZd3lz1hfHMISLi0zCFPbmMwmJx6KbHHnF+fULXYFB/j5G8RlY
QD2vwKmi4n2042JARQEeLRzoQ1Wu/Ip+hdE1qil+16bMWHeb1Sd06r7a65ZZk0Kagh4hlKo3
8G3nSz7sqQdRfWbJDwrpQxQeKH4ITnJxqVbiqij9VruU4XHopj0FHoWLwu8Wkk5i2YmFcFXT
7pmIf+vclBpozxLnGlnSoLfDHIml6BVLYrNJcpTgpvelaANG3OEcn5dNsu+tUefaCTJR78Fc
MGpk95l7cvJeln6e8w784Gzsbt20QXsKaW9mwoLG6DKR2u7h8balArT0yqz4SBz5+PmnZsEe
pq/kS4YRP/yyMdIe4HwXNgrdtZswjN5x1QnyP7+c9JO8iclC/5/pEdb20+nF2UJmiX0tYYjz
X99I5sKn57Z3kQ3kqeHplvRzrBAUJpUfDBbN/jZNkHSYVt2QPktHEsC3za9USks72DIMLEhD
6eWstEZj8jHTeUIIHGiou4h0Al9A1mecXY4P1CIQ9TI1tatpQTdWRzuykwFCJau6FNtdcgxG
p09ZjsQUC1opExwl8Z9ZSAMqtp77et6utiIWFjovUjqwn+qqe/hcLnNrPXtPtrTi3kqH6+ux
o2FixuU3SxMPG3CjGSIKE8YPBF7p2N3/cKfyhGdGvy9P5HSt/TbdC7fCErPExW4P688E7Q21
P2OpTrsCvM6VWW7yaEOLdsb4/PNbRu++T2kqpfo01qk0kpkCqqnNSgyWvF/VbcdEdYuRa7ij
nA+Hf9MT522U3qNWDpm5uWdZPoSg5g6ZXi02Vef03MWXUiZM75xTIV+HZEZhlETGN8yTRvIq
WxfPH31woppOvP3Y+yJHy53QJgV3p6i0o4+vuP8QE6VVX/Q2Eib4mqTZSVbVIoKTSvOCOKBR
v+DLjWnaHLyBJjgWByczfpqtlMsyjn4gkf0SJINBvHr/kq1p0O/x8mhfYfp5J8MEzX7NvZud
uXLuFBBRVWDj4/yn3uzOe8jHmYbbQWIuTFadmCW67fPf1tmLtbKV6w9XbmdIEWH2lY68cbSo
vwc/ETKRUsv3kZ5T2A+U1LoIu9VhCyekj/V1pbI15ZBinnvEtfWsc3DEqdRb6AKxGn2B8QkQ
eBKlstZDGK/gudpyYVEYSNBBm0CxC37hq5hEMVTU+8wzaI56JZOUj4XCaGXTgQaVc+bjxOLk
xGLxcLeaAvsIZNec/6OapE0e2zhN5nj45KfQ87N0F0aYbvWLZN0vmVHYtiulFPwuJ7caTl7Q
GSS7dipNPMK2up6WJU3qgu+S6X7AvSlwVo/zZfOReDzdlYsT5Hy8ZgYVfT9GWb+b8/IrOxfl
latJoMEt+DHqMe10jNMxP550maAzNWfu8JjdaUv1furKasGF9wOOtWpr1nnfclqSEqZ2XYYc
fiAbctmr5dRuU66Cu3La7dmh4vKhGWpi3l5bnS5W9yXLD5bXkuQ0n4M/5kjvgGWEQJwkFkLl
NGlEO9N00xisXJr+KnS9NJnbRbkS8uCXKxm3B91cOqhrBMgdr/KUSGlIuiJBYUh6VOq+Mvv5
qrx5WqsLJ3YV5xnOdY4VYxZpAWftNEfLj+yihruamq34DXWhhK79HmyN1UPn8ssbQloYjRpP
kHWeBjruvomUyPbWsZoLndxn3LzPq8ryDZ+l1yp9M7zQYW5THw0P565onzTthIiSSQMrOFLP
8KBgWtosjXoJeydcse57HKaqvAkxMOtX3w4krKcpNr/IjuOpiNe/erFiqkJvK5DcsNqmMuDb
7BkyoGdpOpFFTcSD/4JFqfRDmorC3LERjbTLMa73RHoLuc4Sq5JkW3DPQL9cBM7Z3Fm+svqs
jkPdU616s2Zs1SGrnchAebwjA0qfpUm7O5t3Hk+lpcRcBt2yfoj+VVYUmFFjb79aWWSx9te7
g0McjDsfYF4aSLqqJehkV2BzgnBXExV6HkCyU3/ssbLTdRqgvmDsm6M5tSQk/TE+tkzz2OK7
uDG1BDmpB2NCGEnGbZNViduhcoxJd6JKTMji+XRWVCWk85gMCiMBfHebkJR7WGeGFuuvQpIk
J0yir+9eJQnXv4kOdAvUREl5S1aHc60F2cpjdT61JOxA9dHKutXmw9gbL/qKUy9Pbpmfns/m
DdJpBGHuhuTrJLOJolDEmGfuyj4S6vYP508mYhkkmtw5mbfrJH580k9N6/HoGD66/Cb/tE66
Sy2kjT9JiVnEkK8GKLWJg3nK/UlddyoUSM08NFUxIbkb9BW5vbQf4oVQs1j5WM703vNSRHuR
z/9ZbiBqdzhAmPSowGh1uKyOu5K0qKmy6s0lvWh0nSEyOOvVTFm/9+bG0NtkXIO8GHnhS2U3
+1VDnLckwu9Z4iPSY9j8auIbuqLxnqYuKpevzz7KTd8hzK/G0fTYWOZwpEKVhKwtAwi/jhXA
v+5nW4xa9Olivje+H6Y9m0gT6UzEF/Myrurojp5ZJ9V4BkLrseODL3jX7MGbb9sFqshmid5I
+DMSH4WZawY8B81wiM9C4mulz8LC18ieZD5kUI+0j8Au69sq7CnbJCaTickxqEwBTLPbnDGz
9qv7Weuq+38ueLd27K4QnpMcReR/whZ49faRGN/VTEnbpi2NhxyIO0Cxi1uaYFC4OJINJnZq
0qIjNQ63P72jqrQpLt2DSplNwNE31B4F9RM5Cso7mxV9rtAWlQpyMv7hVFRQ1oE5bFLNHvL6
gL6YMoeYouexYcnrj1oLjzQQYMcF5EciIZIIKYLMB7Q0X9MmUOwmqWAKMW5F0dojrXUcvExw
zCPfPovjGOeW5/wR1Hf7v5Lktn2MoygC03hQPzPFDMcxTTu7ZvREuJCdbmcyZSq+1XkuqiSN
uD/21lGHWGz1uIo5u9s+WS76ecxo35zOQdyphJylbrx2WbLQ9y4uubtCdSHu8DYslqZl1X6i
nZs8K20cyLX1B3zGDJY3y9bB/rxiFLr8b4s2NOsggbnSs90DgzuTNQ23GEj2HNaxLKKLbY+6
7lxtt+1UWO0IPp64GEnr58Ym2UPR9ZTXmI3l1EZSq+Vfl2nLFLJqJqoGL20TooobZj1wQsKn
zWla+G3XJnqPNY2UKIaAwjej3E6qG4LGYlJ2af5lTQCS8Yu3jadCqIjGipvWfMfy8OJeP+aS
+i+nBwkz+HkDg2YUUxrRDnmYcab3KOo4ZxHCok4Uy9fJD1gDcFWSzDF4Kr1G/U6R1Uiv/SKV
3MdK6qRr6xGzt0f2HUrutjwRGb8fhuHMszThoM9r/ORePBHWqNp99qaa8yHJ0vVPnlobz+ts
YOXiUSwX2sLLOuuhnr1W41GKwGgm9SWhqPFhZsuNie/2rtdiwFo7xX4OCRdmyeshO9BHvmwn
ZeT+tPzwbtBa9B3t7193re8N4ZW4JGX4Ni+XqopQyaepX8lj8XvWPHcmx634NKT/geWV7k+G
CXmN04KTxGZKrwzPO587i+nDlJqXsm+zET5lDl1XTJYaCfdrlLDGJu4j8PjJesE4X21gtg+a
wbE4DIZgRjMrpxvSOMYuV+CEekcfoTy8psXdwbqJlO5PvK3IXxuAmZPLX9pyb3Zrh1vMwqq9
PrOLeB6viZi8lifpUlBn0Mal7o6wy+awl/G0sCs2yhzuMdsJeLobI6D0fZvBklhWyKPyzsCq
drbHZDVdo+AtDwJ8nx8bBs1LP4aBc4vktg/Osm+ZZft4jyVNs2BDBCoXnKaF08F6snvWHH1h
Mr4Jkre9jaW6jiLXpX4kVm96y3zpu2kxXPmB9/uVQq+KxADIN+3osbecrWgZjInNK7716LZM
WcSHw1Q8XnA+9kKH+/qOOUbPCOYX5oyAc3b3gyE/CiapBaGfwPpYqt72l5bTr1Luc05n8vo2
ace31GjP/BAk0SvtqSf2ere1i8cYqduHd+opZz+euNp+pX/VlpvN/LEclm17dOYj0VKboeo9
ba748Xb38E6Ui1upkyZBkwyOTA+E7c0LodQMWO9QFEr//MtbVvqgfc4tfhe9gYuluTflzPcF
G9zxMxQhScIX3G/napAlT47ZafDIa1tKvmV83rSN1H1Nc3pUow+7l+fYdwZIoKbxwfWgxiBZ
Clx9yspHpu5jrkWeHx26ebl2Tqm4g8uzBjESnCSV1KRCkHGS8wapgQaMPheKT9IYzglONEsN
CkR+fJfMTNyla9z6IkT76ttE4kMubZ+frXyg5hNHUEqFKdvl8qfZ2TGy+L0dyV3Reymm9zPr
zy7eHe3wyArDh1SXlaJT+XOkL99HZ64QWtgg+eq1+K/lp9swiVBUn65UwpSFgV7+EHpbMbx0
fWq27zmVeNtBwA23zs8VaiUMKoGJt4NOMbWqzLukLR+yH+Rs2ZYNto0xvmEXV5+09nQBjRmQ
pcUzfVqwuiE4U8mgrbmIboldjA5PPLmm903ro5z3v1bpcn6CQqR8TljaER2q6FxOzNPNHWjq
nLOFSn3KeaJdWMLwIjQ6GdwKVpruAoHwWZgrMu76HZE5MKjpeuDJsdOYP8eqGyFnfS/Ss/5a
aKtajRNXNtie6jW3Qc9xVPmbg5ILjPbwoVg3+DLxmsZesnZmt1ZCikyDos+mihtLGZjDr/W8
u4ELxyfyEwqq1IlFgDsdmd3KVjFzXRHjOyXsZmBWw0kvf04oiQp/XAAPsnlGVh+IfSi0kV5n
W0HtfMdfvutwlm2iaZ3K+aYtrZI7nnBpZNe80HGxO7ZHkvt5LBb2QrrBvRMRGfJvXTIVa64d
aW4jOInbyUeNZWaSnzk4JMvLw0N/hhq0uda+DEJazWpPvCuPtHqXf4m/aF/X7KlZCYMGt5do
EXG82Gqa2sDH02Iidxlg9DPjwj5EnZjsZcXOeo0yLarcXt+6Dnvj6LotHSuYezOn2RuDEhSQ
TGG5IrDrdkq2d6eyb3Q1D9sXLAvdMmS1xgDnJnVz3+Iv0uo0eaf1AmylwsL6llr2e7GLT1c3
ArS38F7zm8XzY1ZxlZEMDGnY3VdyvsiHIsdkVPP8t5xFvD6cIu2kjTFcTqsY4K2WTv8DD/G3
LQplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjw8Ci9MZW5ndGgxIDE0NDAKL0xlbmd0aDIg
NjY5NQovTGVuZ3RoMyAwCi9MZW5ndGggNzY3OSAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29k
ZQo+PgpzdHJlYW0KeNqNdwdUk1vTLl2kSW9SIh2khN6V0DvSpJdAAoSSAAm9SJeOVEFQkF6l
CkpHpEnvIKD0JkqXDn/0eL7zn+/ete5dWSt5Z+aZ2TN7P89+V9jvPdLnA0EQNlBlBBzFJ8gP
lAIoaBmoCQoBgEBhfiBQiICd3QCGcob+7Sdgfwx1R8IQcKn/hVBwh4JRaJ8iGIUGaiHgAHUP
Z4CgMEBQTEpQXAoIBAgBgZJ/AxHuUgBFsCcMAtDiB6gj4FAkAbsCwtXHHWbvgEKv8/cjgMuW
GyAoKSnO+zsdAHKBusNswXCAFhjlAHVBr2gLdgboI2xhUJTPv0pwyTigUK5SAgJeXl78YBck
P8Ld/gE3L8ALhnIA6EGRUHdPKATwa2SANtgF+mc0fgJ2gIEDDPlXQB9hh/ICu0MBaIczzBYK
R6JTPOAQqDsAvTpAX00ToOMKhf8F1vwLwAv4szkAQX7B/5T7k/2rEAz+Oxlsa4twcQXDfWBw
e4AdzBkK0FHW5Ed5o3gBYDjkFxDsjESg88GeYJgz2AYN+N06GKAM0gWA0RP+mQ9p6w5zRSH5
kTDnXzMK/CqD3mYlOEQB4eIChaOQBL/6U4S5Q23R++4j8OdwneAIL7jf35YdDA6x+zUGxMNV
wBAOc/OAqin+waBdBP/47KEogCgQCJQQkgRA3QBQb1sHgV8LGPi4Qn8HBX+50TME+LkiXAF2
6DGgATA7KPqHwA8J9oQCUO4e0AC//x34t0UgKAiAwGxRABuoPQxO8E91tBtq95eNPn93mDfA
DIimnyAA+OvznycLNMMgCLizzz/w30eMnlVPTQt0/8/I/wnKyyO8AX58wmIAPiFRQYCgIFAY
IC4KBAT8u84jMOxPH8B/ctXgdgiA5F/tovfp75Y9/3CA649AuAH/rqWNQDMXCuD6h+jmQFGg
LfpL8P+b7r9T/m8s/1Xl/0n0/+5I2cPZ+Xec6y/A/xEHu8Ccff4g0Mz1QKFVoIVAawH+31Aj
6F/S1YJCYB4u/x1VQ4HRagDB7dGM5hMU4QeK/OWHIZVh3lDIIxjK1uEv1vzlN/ylN2cYHPoI
gYT9umHQWUDgf8XQIrN1Qt8iSDQ1f4egaA39e10luC0C8ktsQqJiALC7O9iHAIhmlJCoKMBP
EK1KCNT7N5kBAvxwBAqdAkDPGACwQ7gT/DpYCSBA4NEv129LECgEELD7x0QzVgDxH1NEDCDg
ij45BOR/IUQAAu6/zX+1Zevh7o7W6G/+oHv+2/59IUCh3lBbgtkphK10mGNNWPNpFeiuF9/a
kJAIcfdB9BG+0aoSneeGboiCzNmhcF7MDKh9Yj3mbJH8m1DxTYOTMTXQyfKrf0aMFPVsXTOu
nc0Kr/8Iuez5N6Smh9C6RlubqbUwHGJPvftOr9frSG6cm4bXbX9tMmtLRYbj3ZuTCofdW5z1
O/xEWENxMbdoJSSEibDCWkBZLW/kq0HjE61qbMgDuaHvyYzKW2cZXf1Cosvdn0t5MWFLGXe3
t4ldNY6yth+kb34Qo9ewHgGMs69+UKK9eMYVctQcFsxlgxzQl3mnp5fAr5n8BNK07RW4qvYs
xFVVWOJ+7Mbz/aRTs9A5sMLyUE4rd6Wo65GM4NgZOadPcs1YrqnWve3DTPs9jDKNqSoHvIys
hm/LyC3eYN4CHtXP78K0xUozW8JOBLTff3k4/cW5dyJBqmMfdOOxsNvgssV1+/lK1LZE21tK
21zqn4rf9cW4MZ5WKmPtS7SZvQyDiuXaE7eNFX28l6v4Imgj5oWZVBruZGvcHK6BM2/O2h35
OLd85cXVaDKndIVbeWoV+mMPHdKROBllaalnwZsOQ1ufpW/n1hmotuzo3HosEj3vN+4id69w
Jk89nG0bBMBj0XuApSi9voK5voltiF84mvyE/C0LHgt5ldS90Itbtnd1y7UY3KS4grXGdKa4
G/zZ8OkDGUu86e/F9oDEPfC8uXqaKtSu9MO2Vfxz1eiw6fEPdScSdgeZTBJKO2Vf4WeTSrIs
fhiDhezPCzKftsh/uZXyuulSgPHhvjdWUqOahIjqlvsmVuH80H7mvLdyFN8TDMy4ABr9h9f2
0GVjh4aTFZvtEU5tzgwxCUtEUBz9d+KvidmhBgthjnksJ1Y4M/R1hB5VwtT6xWbFr9Yqhd9Y
qsT6tbxswTeKoW2OK4w8QzqwaGfu4IT2rVIxG/2oPnOqY2ZV0z2OkHw1C7lb8uNVrfeiazFd
nwmRelNyqnojDaYO+UX+G9z6/p9cG9/wDbWogsAaitOu9UUUcY9uyfqz2s2uk7Rrrj6WuaJT
Z0UccJOabh/zt2OwGZaGcJEWG+fLPqV/r8InM6FpiQTwF8yPrD5cYXUnhfkY049Tf3ihRyGx
cMzT6Jo3REl4sP5eL1/hrkchp+Piw5F5tec71W8V8cAjSYLs2SJJHEz9bM0/4HoCWZPM5F00
s6DKQDrYBw6+knL7eaa9nr07uEFWReZ7Ew87rSobEsta8XOCWpzdj3ym+5QsMBkEpQUtkuie
U4xGNGg5DONZ5nzKb6fPJpnPmNNPaNy4wKpjfUjPSHj/LqPtilyYXRwJ1hpt/DRmu1Z7HcSM
8x479JKqYcD4KlzdEI/04mENaciVnSSlMlScgZ0t5vZ8MxnWyPehkN4ouA2hVNrKXpnit1OJ
N7lahEqKayKYlsBLUZFbuaF3RRrcCooHV/LVmHrCLCri6qSzTc1iOtLr8xfW1VyIavzIZifM
7g61PPnk7LYnw6PahXE2xWJXSaVu63FjTZxZLkFGsDEanHUzThvSZ+ns2p1P9SV6pYlGnnFt
0AKL7inBbRtGUrhs/XPqxLz4m70n0aIBoTET9yuJ5CJFQ3jXzK5sqDCfgF/XkXi3nBI9UHfa
qFpjt1ItVjnQYiZmXxGJ+Fq3SE9wpBir61hkMjcu2Cmb/+bFtkZk6KciVdOChC68gUwGL53e
0DxFnIyV2TAxMrIMheR7EjEW2/X2vLa0oNkPDFmIxYcJP8ZeNbU6dpw9lA6uUyunyQGpFD9b
NnnUpqFB1Vc0e/O+c1P+AGm1GjRqJNkGelqpKKSm9HXnyuinhnZ2NY8wDMSOCgkhKSHEISx7
38mP8CZa6mTt5cDUb3RQxGA5LBP1C4fTd8f8LI5il/bjl5WKmq0MsAAlJ4RtnTdUGMKITmWf
/rzK55cKXp7y8sTdvREjxJIJjqKCn61QBj58PD5yP2i7LzL2eflnicSjKj3CFXesymAXpDss
LUFkAANonGz/TH0Fd5g+sB7z4iY9NkWSbK9ctSaKu1RlQNgANCxsKyPtxLwEML9kyezea3xC
RVDDIhmRM4nThGMkL17qZ2LqEfbgrUW3bKrDXH3I25d0laxt89Nvk/p3tYuPemSHJOjsnd4f
6Ftumg6FDELIcmq8m3E2gvDjTQ+Z9ki3iQg7Xj/Alx8XgNu/qFMtYRPkVMZhvyfj2RLk0o+F
qBlGaVn+GMoWDmeUUpvNtipwtpi12aKqC7z9poh2NehDlT5zI4I+AcJ06mmfHJR3GdBB0Dw1
37ZQiBcoaT3waTtn2mkobOd2Hcn69bcouQ9N2SnS5M8N26qusRwF2ROG62W0A5dCsMJy4cOY
TvR2j2ERz/uuiYwrngUOmYbVm5HSOzO9/S7jWZI7LXCeYqjGK0xFlJnCAAjp/DFsKktD0gnp
yZgYmmoAfuDXOop7AxGGX90WsdxWnzF2m/M77qoAdtstshT1eHWdMjj13PrwKD4VGn4Yf3im
RCOt9mXskJYoyFdunWlnji5Cr/59AWilYmq1hTU7pXTAiPwHvfDu0g5ZQIxIM01y1R18xyh9
qng6h8a2oVkHTmw/MpFNM6/Dor6N0AcFbubFN3UXyOOMu/aEvCZDx0MaV9TGSxj0IwfTFvYI
vT2vwERMtT6Ya3GzsYgVwU/QNzHuj0FW1Ynka5gL8hwuNY8Nj2vmZNWLXlBGS773dUIRicfi
TB9hwEmiBLTve1BxLtmEurMZTIrgiVfyz01QmMe9UQOqOzz4wv1CN3SiyizRgqUau/eCaOYZ
CfFnPK0ihVAG5uGVrtSNucGIlOPaXSbDnQtX5suh4+AhEo/ufsJGp/ZJv1Ic+OCdyE1tbE57
agcHJKAoQJs+LfnU/pLnmqIW1Zw9bV4k8NTxrsi2a30UZ3sV9aBQ63H2JRWzQIGp3/jkvJ+o
U0HVythC9vlhOHOJa/nNE9qIq4VXj9iJHiqMDPykSme4LbnwpAP0+MjVN/twqU+FvFMtiN3U
2PaNOsG3CndG726KHxf2JtqvL93t6my96FcDn1e0hMqXPsSXf12Mx8GBGi2YgVu+K8uOcR07
/1ZHka+IcedKmUNtYuDAe5ARev6CfceWahBGtbJLsBxeJjqKE5qyJ3OS8SEuVwGoQFF5zPki
bR+fPKI9rcC8T7ls6jVe6/Wqb1O32We9siXiORFci3Am2TehEbfmuTeVrHNTh/oHX23EFZuo
3VM/KbCDS9Ea5VlMdj13GoKrsX6IcWTZipaPkPcM9pz93DnS7KF8oqItzUdOOuE8oDEUlArj
Qo47B+SqqtQjBFc/afqu9bz0X93Tv+9tgxuygqTngQrnPJAamMamzIklVdYmaemOMizIrY+4
5UJQe3NcSanASbdDaXE538cxfmidEf3UKISw53ES4cFhP41TuQvHYvR6UIP8SqxcTtDQcOYg
x5TRcCK9gAihiaXORUwnadsekTUcqzX/wQpcL03JKs5ZDIuRVHnnxAReC29wZ3cVH8c7SJ0P
aGH3bzdUjFvNv0hxN50U2OItC+tkxdUuFMRamVf9MJfA/1QhflrrKZw7/+fXH9ih4lg1uuL3
7J4elrr3pTtNQ/bsmLWf/Zj61nlSb36C6OdLE1ttU/tUfMSq52XOjKXQk7m97LZ7zgxZ2rs4
ieAJ5C6z2DVNqMKQTK41SOoqnfks/TpbMWfxxRNocEiobDSrXne5iNHH/MO2oQd5mhEWl6Gf
u44OC4YJRsyj3yZtMdmfbmyzCWXksM1cYLls0rQThhAkuNXT7L55h72QB3KDhOZ5dG1k9Iu+
kd//3kXWvhGZNdhTpg4e5aYea/t6W3bVjDPcjrhEL+DlusVphAyW9nJLDrVvwkjw5DQ363eg
W0P/XlOUirBQTC+nYwQgzJ7D/vNVC/R4au7DT0xQ7HklnBpc8PoBjtrFc3M97NK3n/IyeyTO
Yo+oSV5+rUi+k+nxImxRhBPVFtMeDFipYXODsTy/sD+eUHojTa82sjhQn81VcNORtdRdQSIR
5RpAFFkz/KmztoXbksV9u3js+6fzUZS+FcVjYQ1cB8lUlqwdtsLo18/AKZwuL4ta+HcD+sIl
mc5XTKrzt+bShrEC0/lg8pfn0SnHPPe/QVqXgoKNafTC+hnUiE3xD0Jiiz4JKysXaW9euwYr
cAvynO3oPS6qIXB0YTV++rNWjdFXUphDeshTm94giqxvDObKNEPkNk2NvC8txDJj29ZrUv8g
k4azUluSFPmyx55scLJoNP+xRvcaZvht8mRHq44ETIyuTqXTz3Gk4TPpOakotncC4+PblD0/
ND8nTdgI3roTVN/06meuq6EKBzvuj1oTr7Tq9cpX/iTvaoXLiTTNZm+0lwaVWzSHLaBK4Wh3
5VUjFOSLHUanlTtZb7BMOf7FVEYqt4+Jt5T/NduG/j5qT7ZY31F5xopuxFUJY3ndd/iLe0jA
G/kTRM+h9juSHhxeYh9L64MZHuEVrZQmKKwwA7fTOyfPXj5s2JVMgeiZnAsxIeVpy+RciLR0
0iqWx9ZaBZCPspWOoVnXTbhJ4SFLT38l8lGXvGc4xf7cV2h2go3l+XFY4FQZd0Zatil07iyN
tz/pSatZAoEPTyXuw+GF2iSlsVdvBaz6TLU36iHJhUq2LDFZW34ljUtYHsIY6vDd0d3cNIwj
0VjMD05MHsff6TXzpc0CMyC4XCyuWvR3hzWKCzVSHcnuRKVnPvM46v8EslEXy684rOv33KVF
8X25iOKxq6z3OObYYn+3mmhMqkcvGqWx82WihPnmFnVgC2N7dKibfG58FkbsdEVdfgc9l5IU
QwjHOYFO/afjq+GdxHX+i8fGyXI6tlNz1jm5xRyJ3VbyeBX0qMtXMToJ9nrX8ES+fZsk5DY3
7/0+v01Dl8/BnOnwQgXuqCfOi7wfKzloyzWjs18SGuKrYuXueeBmxONrGnZwqjuLoaQcGi3a
m6NBD7DBeu/NRkNoJPrbmue1/XaTZHSDc4oo8D9wzGAMARETc75aLwOKrkg/xnqt2ihOspLN
7c+T6+y8qBVtuJKdoeUaJZoLwpthEFtWuEWZ8FG5A/cwEv9A/fLw8L16csgUoXUqqLOoCJA6
BLwgH++Tr3Vg6N0UIW+FzRoDj6rJ+Vl9sysMd6cvPVmTemYj12cVHFbiKRPtPiOSPLvXqPV6
LB8FlyaF9Yi58GqgZi0H5LvTP1ldCsOsCRtIC9vLXm8PeVy5q45dTVWpcBY2JO/rZnGwXla0
KH70aEPKjNZQXujVGa04H+LfrX9uW4p36S2Pe2j6UBN2uRnl1HKmY0z4PQJmesdEdRV/S+Wc
7+UOw9PG61qyryVP1oW4W/IvBK1933w85O7ppn1wlmL3kCSPaBn6lFSWxmRfYPskzOvHTBlr
T8Pu+Ci+185JkHR8QfwBaQ8D1ctgxC0xXWclpKhQUIbrilnbayLbXbYdG9zSuEeDtV0x+cKt
yDPJnS+CE98D2A7cWJYejUUNbZJm2jxnQtyffDZ4rRybgPTkG1+R2zYXmbup0HZ5xI1vvBH3
s4r+60Ju25OmJwGDVuQiDggHZTpiyWQFC2POSNcgEX/63v6ZA/xSKbC8OKuGeHR/DRl8FfNk
O5Xlm0RtUG+/YParzafzfHh+OdorewfUaW+kURDiWh4wS+yu750nGI5CYC2qa53lam48eU3W
VqJ3RH54c47yBvGMwjWShvFZ3ypQjQ5vhVMKAlX0bN4xSViL86eBAAhng1ss+A10ivd5NSR6
oos+HtCOXut/i8vBL9fqtebUMm7o3aTWFqkayfPEDblGv2M5KcY0dbhrMxV2Pg5jPlHE4y6Q
9LsrrUauLgsLmDieqNZDZCmfN0RfU7yRoBGcDjzrSNKfTTniUJKWHGUsur80uJDMmyemvq/f
WesnhL1/Ha1KOv3ZiMS3Uc3VaJPfQ5wCJ3zEVbJRSDc1Y6G0BjPx0Qp5TZpQPmYu4x2cZkvQ
0Dcv98HBPO3Xey8mju8qxfZ9SfCZOJ2Z3vdnXF6fO7B3S813MTLsL3iPfM5DZCfGr6mBdxfL
glg45kG4FsLweB4XWUdGTKe+Ii7eff3BBmvheJiMt+AwZR0Hk+1k4nz+h0845dRi4BY54f0j
4oiQiFr65ATefIfhtJbWZ26+k9uoPTIcxcTUL8okTruoa12Sg3tUfQy63+Sd73A1fxJJXnvw
RSrUIXjBs8LtvONE7Uv33XZFnktxo+K5VdFg3yKVvM8HyJKZfbebNXxzY3FPlzwX7DRubafs
OxhVqtv0x9uk4qQ4A1LnBuZHDcpYDGTwpQIJ7LPJ7sXIb20ksST3IkN7Tu6qhxE80NE2zYkk
ICgCS5RnsGyKYsIBt03nZkfUIfdwlhIX5zZ7Lm1ixaxleybimQgGXaSEzz4nmqRpcJP6ONjV
2hcMOswVnDwC3QlZmLPlbNZnNqThw0n0f65S2yHRm+wv0M3C1NSuxahREefUoQbASsmgb3eH
WQaN+jkyK8osSLuG1NWHd/peO4L6WBO9i6qktzf9K/busFpHdXFWe6y+jMwFKe3hqmTUMLyC
E4qs+YQ5hH/NGRoMEJlwzIetjUxHvuSWBzl/+H4oJy5/WvTSgcknBoEh32Vj17383nx9+5kE
zXMV/TuvhJM6sir6E2KDon5qf3kLMeat87srIhfKYVjCX9IjSOXM8epRiwbh3FS5rp/LNOfl
U9tTnJBKuiV2DyS9Ow2F2HAja9XhPars3JBJQ08C/i0+uZgmo3DG/cEaJYhbowXm48LnDnoV
/HaQhep4hL27sDed81zsZczJeUP8jhs1sqt+cZ4V7LOFmXpeCvs+I4Jf7eKlqRhSwWGCOTAh
IrcmGN+568XTpXM9P9bWdYtXtvF+M+l8q8enYEOKxdkzi7xoIQfPGLJAGYhdvqpOFpuaReu8
fvqENjvSsofE0+Rtt2p5LwvWIDOspzmdFUvmC4W4SyIZZXuP3mX4KClOJL0jd/57p5+drKNN
vhNCvTLvCkvlNAf6RTfjlPwlFULmmqkjeH/iiAtvvbKpODKWamAm7ojfZ7TCS+9gimXUIfWv
Ic1sMv/JNdJJqIaonnRe5cjzzHZhR2rcObwH3PIzgGCtrKDcgOkGgdSXhq0e0lHP/KWYWYHO
y0MDfiqUs80Z3fHLIjJVrCPvzT6/LP8c+XXAUqPHT8Vs9/iFJTkPZKCeWCaMbaHOSv2Cx8X1
uC27X83X10JmiOuGw99gvN88vZKtxLok+B429/G0LiHQOz4DqDMCZ6eYT+QIEkjAKuy3Kqrn
ubIUN2iW0BNRy+NmC3GITdikbjbpuZE+CYjmVzF5oJl6S5CPJp4gi7xhUzfAbvmbtb2Sk7UB
hRP7RmyNcA1PUlbUYllCojqVhZr5eIP4KDChrhCsPNXRdJUQ5fiaoTwpuYXD2cc3PXjAhpzD
a0OFftIi8s1yq+tXpAjc832xFZuQ5YuClO7122vVLVEu2MHr8avX3rsdr1MEKHzqQJFRHuES
pq/C2+aoO06P9SEbiHGhsvQywon16PW3V+914Qk4j6+lCu3xvu4K27c2Twgpt6sw6FfSYgVJ
V07qt8ADw2hgXv6P+LUmL2KoFOjBFZkcg7C302M1FbnYu9KkfgZ1JTYazEvYs6aRJJ63Tk+l
/WSviLxDL2jvyXjhGnq8uCw3x9eaUy2w0sbFHk+EFgAF5c0tmcXlHWc6A6rOHULDg9munXly
dONPv+BDLJaGDrGBVeVwqcqizsj7tfrxVO8/kelqL9+/CO1xA1Nata9eUhkJ7+OE50ZmVn1h
4ifGU87rJ3nM1eYcZ5Ie9UDIXz6R87Fk9xdYt17ztoPFbWDGUnuo9va+Qdkzcx05YJnLQRcx
S+dligpriEWHWBE5A4kPPBzkFIMESf+QuZsLihuV4gMyFaf4yRpMwPA73G6pPGt7ECtbJwwq
FW9bDr8vbaWsK8NI8FjTdqz74QqOB/FtA0men1tH2K7x13evreKuFcmMBVRtiFguI2Ebgpze
hNW64vTYmCaYV1K85Mt7z1FXSBCJFJMsxsPEHVdfhsjnSue8dOzVAyTQwSbPqKFQUCHAejY5
VZSd10eFoQ/jrTct5ir0RVsz7VkMRRlpttGhDNuZt57LwqtkW+uii6WyQAoIfnKF2UE7gXZN
K4Ta0cp+7dJWyo6khZm7AnE80qjtM5r4AveFWfpCH0aU9ECgcSwJ4zAFEw8Vt3p41K4j8Qfz
m3vibuT4gTdTDGln9rGpR1BmXnbGLZPdcpcFIsMA26WcmebM9mIN7GeTLk2kd+BORESN62RP
K3/g36Hz0bS2Of4Kith6dQ5vEq/EBzqD0hldtocEZCSump+Bh0zETC1Lrk1Nmar1H5c4HZeO
50FyOpRYwhAEwvXVn3emee+P4O5cwgZm3z8xcLfSu6ceUnJ1ymI8dlpryH8Lz1GxMH/TeS+J
biKNLKd60WV7C+QwH6qFcu0yyjBJt4BgnSw3G61zlvfbpH9Smd1upFGm5jlJ9W8on5lMj16U
5XgnY7vuXQiWBEF9vrJu1cKaxwxeCtgd5JWYsIAWKCA+hSZnEgL+16WvHUa+y7lHdiSqTnfn
h/h1NpW3vpSKYTwkCKCinOod0t8bEfs+0oH9w1nabtuUZ8Oh35LyA31me4VSnpxesEoNXSCH
aI1O+QI4+edodPe9+qd5DCbNqwtWVeEVknW179coUsc9QadfByV6bzffzr2y+ShgJjDMcpS2
FNgjHSUcqmknUZ/yscTwVTX0UZ2Wpe9ZkhV1UURxdCgGQOQO4/f0gwZaro9ksho809WluXVU
c56rNyEytRilQ965ymSLhTq4HErDT0O3+uIyZ3/mDJhPNHoyLfQ6ZdFGEUr32GifZ8wHl+Ct
HPm805Lbfn1y50J/JNqo51K5ZY6yw5pesm8jpnJG3Ptsb+U9OC7vjUDOsK9VKoVKBh7sIFxL
LnGPIxWedUx5217eV3lPlfViu7fX5iX6b7yk08cZFImppOlqUVYpgNuq9etkCYuyoM73olys
XHKSV4pPvQ9WP5p1hBuzv1j9H3tFwvwKZW5kc3RyZWFtCmVuZG9iago0OSAwIG9iago8PAov
TGVuZ3RoMSAxMzA5Ci9MZW5ndGgyIDYyMDkKL0xlbmd0aDMgMAovTGVuZ3RoIDcxMTAgICAg
ICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnjajXYFVJTt1jYh3SEhNXQPQ4eI
0kgPIUqIAzPAEDMwMzQIqMDQDRKSEtLSSCoI0t0gSEuIgiApH/r6nnPe8/9rfd+atWae+9rX
3veOaz9reDkNjUWVoUgbmAYSgREVB4IUAHrGynriIAAIJAkEgSRIeXlN4Bhn2N84Ke89GAoN
RyIU/oOhioJBMFeYGgTzi4hEALTdnQHikgBxGQVxWQUQCCABAsn/TUSiFABqEA84FKAHBGgj
ETA0Ka8q0tUbBbd3wCgA/vUIELAVBIjLy8uK/HYHKLvAUHBbCAKgB8E4wFyubrSFOAOMkbZw
GMb7HyEEFB0wGFcFMTFPT08gxAUNRKLslQRFAJ5wjAPACIaGoTxgUMCvkgH6EBfYn9KApLwA
Ewc4+i+DMdIO4wlBwQBXgDPcFoZAX7m4I6AwFODqdoDxXV2AgSsM8RdZ9y+CCOBPcwDiQPF/
hfvj/SsQHPHbGWJri3RxhSC84Qh7gB3cGQYw0NAFYrwwIgAIAvqLCHFGI6/8IR4QuDPE5orw
O3UIQEMZDIBcVfinPrQtCu6KQQPRcOdfNYr9CnPVZnUEVBXp4gJDYNCkv/JTg6Ngtld99xb7
M1wnBNIT4fv3yQ6OgNr9KgPq7ipmioC7ucPuqv3hXEGk/8bsYRiANEhSXF5OHABzA8C8bB3E
fl1g4u0K+238DV/V4O/rinQF2F2VAfOH28Gufkh90RAPGACDcof5+/6n4Z8nUnFxABRuiwHY
wOzhCNJ/R7+CYXZ/na/mj4J7ASxAV/ITB4B+ff71ZHWlMCgS4ez9b/rvEYuZ6GndM7wn/Kfk
fxlVVJBeAF85gKiUzJVcJSXFAeJXugb4/zOMIQT+J43/cL2LsEMCZP/K9qpNf2fs8UcCAn/2
QxDwz1j6yCvhwgAC/9a5JUgaZHv1Jf5/Vvtvl/+fyH9F+V91/t8Zabg7O/+2C/xF+H/sEBe4
s/dfDHV3ZxjqvwlmsL/2VQ8Ghbu7/Lf1LgZytQLKCHvnf7UPjtaAe8GghnCMrcNfKvmNw67E
/09fdYQtEvprSySkZQAQFAriTQq6koKEtDTAV/xqnaAwr98qBIgBEUjMlQvA1R3jD7BDokh/
jUQSIIZ2c/+1xVcw6T9C27qjUFcL8nt6V/f+ff69jTCYF8yWdGYSaXvzmWPVs+bjSmUWT9G1
wVtjvGtmzwVFfWdQLe6nlERJghUZTxZRR8pJPe+o51fUBQ7vzHJc+G431hCFvkkAN535nVvH
GY2sNZFODzN0Db3cVq5+z0bCKmpyZ93vws3vXpATfiNumzZvtpu7HKVhLt2xZ6emV/X74rn+
kMk18HqFjA7ZefGoaJRppGVQ4Thvjs2LCSYuQowoG7EQ7VcvqvHDozHarKFLDu04YVL/nSjJ
fF/zJYnokwmfhVITCXQ7Mw+zORMb/iFt/wifr8pmsjbjlG9R/nzXtFcD2rGZfOY1IG8m1aNs
82lqT4qHTUQ4LMncL3qPInIZb6N2+CkuhRJqQBMXXbL74VifdxB6O2PhNKM995TWaoKYTEY7
r6O0YgDKWaAzXR/cddQST1FahwHJuI2Gjnmfw6ZVN/OmVQIF8fQ8QGOzoj6xcewKFtqZLGeA
uJ4HbV5A94PbspXZE56zT7pTmo7uvUg1k+vR8XcBIQNcVrbs+59Tx0ZCRjmu3yCjWjAweUk+
Ukb0BZkkqi6AV90AlqhS5qjAL7NWCK20WcxJO3iN1VvDLIXsLUkalmwr0Jn9PBDSDT3BVWAa
mGQD+9eTf4MLBzRZ9Kvxx4H5+EnfE8S/Mz4n9nvW1lJu0H9wI3/ZEefLa4venu1PchKOfVBz
zcQVuzukN8Xw6JkXAphu8HRcgqwX2pU5qOu/N8v2QmY56G+xUAYmyay9TY9CAUs+udKozjhF
8LyNUAyaE1EpBcUwL2Pz7fl3PnzuNjSEyztaFBQG4uZQNYqB+8BiIdOxwkE+eFpr4Q+4aa6N
CWX8nDXGGlFQ6Sm0UgsSsDo78FNT8lhN+taGbvBlBkVs+dEPa7bzk5W+YGIi+WhMVINDiJT8
Jv/mUwMP9I662oJyAePnQtbe1C4BYxq9S1HmY9pvaevvVpmnWgz74h78UFI34JsXxGEefEhO
MCHKcVSJPJQVkN3mprK1mO3GJuWfvG7mu7Q/GLdM7gnirCa5VWcQzX5q7vhFLhNV4lPXvExe
EYIpynuqId6of/u52S4TjQeVa5zGLCu+LAdysZyzJIaB5AKRTrow0t83z22SMrQJk7omd3Gt
II4ST1dquV4quX8F2ZvJSchBI7zBDmUoSup4Q8cdh6nL8EZczEg9K9S4nbJiJ0e8g7lG+Ont
RruAiTHVSKKPLUdO6olxDU+//UFdYd6mzqVFXLreEp/BzTXsijB/wJ3myX2GS+looRg1CQIx
1CCJjo/wtwlrjushT7+Pud5wIKl9mPfIYWbg5xehCnbKD5/00XNDuF1Jd6vZsbfvrbvvPsE+
viHQHaSc1bGNjnzvM2OhtB0jsv7DeJ3tCQXE/CBnwcBA5u4Uit1xgcztNUmh0mA97qVdfANW
8xPPU1yJUu/ox7ngyiWdgLkGoyXRz01U7gInou/Z21YVjmpIOdZxPYxJgLaAN/V7m97VCYwz
xMaBhKnZOAyDjR5v5Zhn/PcsKk8S26inD6ksm82I37Euq2FxzFN9fcyh+8PgRpwZ56piVKhf
gGB/0HOptMlq+PU32Oa3mtIpoZpjislh9x2SdSwqtW3VXpNYEoin/xjl1AD+ILAIlcc3HxRS
I1GHUjgQe1bmh6aZRrcbIgur2f29zdNAAEOLHZNolFwEaZckXXuMtp7NbWNBYud3e2U+awkS
wWrJvjTqqgzvyAcbO1rmCW3sR1CVxqSWHxlTsJRxUtcba0VW+4no2xafED7zdA+xZ3Rv4q6R
X8EX0IFRrIYTESoQeLnBBcfHlgJyJjR6GR6q1BPFHRseeMFEKaLxEb4VZxEaquu2U49umBk/
ky78+R0nBNyRfBE/cJdNdkmzOiJjYkAw3xsXP15lNaVek0hC3zPGgjSQR2osQxd+nGXJHHRO
wtHBfrKUF5YVXTzjjz692yWcvRAckvbogi44Me4Snf/qPIxKOxQy5Swin+fZRCKnUJFOX5N1
6WtIdY9FpeFlUW3bZMJ1EVTCKR8bbsAZ8KGNdZJSxyPzm9/BIUYZFxTF51GMeI4N+0RVrDdo
KuXaBsMfKOxSyoHRtKiz18ek+zKz36ZLejbMwe9eLGvl9TkdGoZKH1Rn3xRy3dacTj/+1BSz
n4NITa3IkRQR0eSb2/s+el0DpyiGtXN2oYhgt82bxNrgAZ0UuLyK+aQJ4z3Pt5IrqoTetwg6
sBhWXvLhcU033YspWC99oNcoKozPdH6OGIMmEbEZ1yArw0q2N3U/PbfWamjiDZRlT38soNZg
NrWs33+uFmgtRhJzh5NehfGWsQNhLteHlXYMVUxgvnKjgOfAIv6r8QOXLELLl/aXL4rpHib3
+qS0pxrMp5UHK5ZpykQ2okpxvmmlj5AYmFk7uspp6hD774MnI4Rl9RXixM6gxF5RtRT2hVJz
8/ZyYJtiWG8aB0flqeHji2unKwJ4HkXmKQ0aXWFnbVlMfXzCZiYuX3w01MZzPKI3A26KvpKO
0/mIkPWbJSUu9+/NVY8pjBT05wjrMRizm9fDZ/3qQ5HBjL+9SnE394fQHSZf8ylxiJVrfeLu
tedqzLvvjl99vBVxneZFfIvpB27omOXtp7z7rRCzfcXsqIc++uDNGMW3CHJfpgErQviGLvua
AEsLdueLV3FQWxsKNLT6kxBQkr1jbYMbjHb2N9Q6u0hzvvhCnpzHsfCs1t71lYmyfN1rOZq2
7Ka9CN9FPYJTa+9PgFvBTikgm1jh4TRkXuec83m/4x6UmCNQv2TpgB80vcPTc0/BSekRy8Za
1G2dQ+FbknSw8XwATbEtQTApMqR34tBbuZ0h9paSPbCx/PuFEiaiUEj0VbSRaWvtoFT7upYD
9sZJtVMmJw5J1YBB8DUPVnotkeml4WOOLrw8V5buwCjKB7WvC+1MORiJyu0WBElN4p/INNMY
vHQKche9PYYVGA1Dm0vX2TPIY2gbqhPsj+J7RGzaC+XODOtn2YK2Xuc42H17sDjJcZyb2nSa
vLnrmVOfHJk3LF91YNVxgxxmLfl1velzJBVH08fz3jp3qFdrFG2WZGUVNc19LL7njB98p78L
MKwRI6meYcr6ZVDG/3SbuIOaNtRbUPvQLBGQcjfplMNoOOBZUryiqSW84pJDWOobZEOhde/y
O6QgWmUZKJkNenb6edvlYZ3fvYjqbFXyw6MZROewxS7Zc3HEAo5Sc/kBSjVYv7VhTeMDZK5w
tepOFUqFc306AAA6qsDLJjwNIqgXM1mT8JZo/sbTMhbj8tCFquzjV3ScHV7M/jJ4jsK1Fweq
oH0nzu0QHdfpVH8sx300863Fq8D0ZhqflFEpxfedMLhhCUhWoRRnh+glB1+uf7q7/la+flaL
1nLytIKwMblazoqRMkOOqRGST37u/CiH4hLb+WwD41SpiAogPP3yYPKIqzim3kP1u3d5p9qa
bKihhdoNWtz1iHLS0Y6WJg08KvsM9o0ICuGVmvDB2HeuBVKbg+7pn54Rn0l8VVMJscu0Gucv
6MQ4E7XUhLIfKAyJ70wRriiFGIFURm393ndkbb8UOnqZun+aoFBF1cNF/G7iZphG5eknktG0
rfA6Uqr+dLEwLOn6e5N5VyFCuza8qg3XUD99o/tMER+JteUZb5NjSay+SmCN3ldpMOGb9A+X
rX/bKOMRfnLAyVHmxLFLRx4VUle9EasbP3jL+5hRRNRRAm/coYWAyHWidgQrY6qQJ6sRsvWd
XzkVup10WD8+tJx0Cocw7TVlm0+l4jTqf/JPAQ3afEz5RG/hmfmx+F7+bpMW5nt4tWUo1Rcr
Xq207LCtjq3H7i0ZT/mtfRXS32U1xNMEbqneTLQfcwru5ASwz86kyzrFwdmNtsPWri06RRcp
3YaTLFAIyvEynfIbvQULSviUS9DpUFCcvnQ0Mn6x6pK/FFhLkaey6ia6MZjYTEH4M8POjOGR
1s2LWZJJIXPd8SyM5cO7TvYmS4xmeqH1HsS9rHpieTsxI3NMyntm1XHB/ppnkOMn4vZ7oXrq
Zoe7cJ6J8JQx8rxME8SCQqVoc0thH2sQ2lNbYWf8nJW2fqhaMjtuE54qy2OLPZ5w/mjhnAwL
VByO3glbv5i193OufSKo94xMY8LwzlQla9CMXHlt2CvWmhltcGNdQKdYRIo2M/EKlOor5e3K
ILOlEt6Eig8xQiqm0uNq3l70i6XlzoNvDsePvWgO3YUY5rsFYCEpaAoquV1VaZoKDXsFsh7X
150MP29rPS0p0o093JCUSl+sNti/r9o+n4u5xqgWNjRQxT/JGGSkubxecy2e9uULAtxbCnac
3g9A8DILPOUOAtb+r7VWYzVuxriV1WTGaQgfGZJ0wbMvtTag/gIr/663E8+eFAesCSREtkpv
hBoqpSpo6OSzQyi1Wb3IyrE4TinTG36pdITUff09jIF5RcPYqb2KvqAn+SuDdPWaakORq1SF
7NxrEWJhiTsyhe/lBqiTgbk1y4rT9lkOmytzbpQUMcsfYAlNdNFT1C+XmiXs6NmH3oHrxs+S
8Y2zqH6C6eBnawS3qlc5HR6f9TtGSB5KRZFZDkm+3VrAKlPO9WuOFMIVXZ6VCtgnHBijy9pP
pXi2XtZOvmIbjL7FE6Pg91G7psoYAnIxqCkdBq8/SvnQ/Z4kvi7NNh3D25L4fYJrg4rA/G7G
hvTQJ2Pqbg+2Phg7oWW+8uoJefUigSVv4s8FF6dDHEOblECHFwxWx4FL0IfV4Ra8m9Jfs/Ei
t4D8us8L+it9/JA3CD4fnZ6CgjUhItl8ZoZr7wqM91i+eyfihxCHMx66bYdzAs35SjIJCsnQ
NmAv1/lg5c+maDxBKiMn7E2G6Kl1CPgbVanLSwzhMqhnyUf0AVTkxTGw9ahczCrsXF27nHyk
9cgtmEgzefZIvdR3/ToFCfkpzaQ6W4mmooQe2xrP2plLqTXZZ7O31lqm3R+AzEPp9fWmOf5R
ucTUFTGSsUGOoARwy56XIUcBJfN0DYJFlmCHR1miZyGrY3UpzpFU/fqbB51HomOJX6zopr+V
txZzucTlonkiBuO3dCNc0aPDXDyY7pLnJ22xUYafHIQLtGta6xLebp211kUk4I+zOJKsWZRF
WFuMRgrJzvT6km36wSIPSd8MxqQHv19vu64dFfcMUZr8kJc3SelmWF1c/LsydutyCRzwVpTP
WKS7R3AR4rbK+y4hQdxXEroFrwhHLsw7JFvhXHTRbkQW1hDeiWLx77XZL15YzeRsJXGC8OWi
hfMyMy1lX4IZi74KsRHLk8R24K4sS/s01gLJzA7p9L1QZ2Z35aUnKtrOCTAnl+6KOHRJLKPt
/ja8rrcuHsf0EU5JND77eMcB2qOwdRnbe1LKkYCf2hp+V0tWqO1tUQeemgmtmKj23mD65asX
wOLsaXDCGrGDKP+mbJBTZ9TDkGySe1PrAcOZIdRTZ7cfU5bEc1ttEVHs3UI/VSxD76viFhHm
L4EKoqEm1chHnLbn1ei9FK4fTLVKiatPQnWno/0sTzI7MiRO8VX5VDxPGz5T6K8i8KbWI8UU
+vD5Aj7MGhp0jj85IVo6+LSY0tJmMCmyGiblOPrNpHVCnOopbQYs/Bt4AD/TShOJfyfN+uXg
eAgx/cgg0YBjd4/T6+aSAlWdtnkhHIYilHNCJ/fnjj6t6j6nkeun1td+plJrfyu1mSd6I88a
OW5C6zZkNVe9lsJI0EfVr2vCxcL/nHKuYnZu/Mn38iBH5jCh4yiXm4snZJCNilGCwnEpd7qk
+60D/ZQllR9ukSBuDgyRRG3kd+AOZwQv3M/xax+zLmY2uzfrX/FkEs+6QIv+Na0Xzd7rm6Dm
zVwlzttCx4ESytp6PJt7c+HOKU68LEgVTL8sCxeCqeqjusvYs4rcABEhTb1uzE3dwLBW5HUV
ixBf55AQ1VhPXegbG4QTVPxE20yZ3Lws4M0p/fQrS93Ek9iWhjZYdvv4w3J87nJdY1yFLzyl
qPsf74XVrdB/GUwmplXfwnhoxicql6vR9Gk6JSZyIz+n5XIAaxw9hsxXaoXmHkpRJFZJ61UN
v+YL0Tk2DdZv+hhrcJkRH/GpcYuQV2nAfZsP8wm76mCp7hH2cbxIQgXomv510JslqXOvIxH6
IawbfxRyz3ts6pFDTJuHiWXRjsdABw7BapCcZ2qrTp8CPrZkNkvRuhkhhzf9uZRqVGpSjWrL
viz9Fmd4VkFbJvWJK9ODtamDHUInd4l2y/ZWO7kginqcFxsGPA+aiEa66wFeSR/yQ13pBLJT
J/Cxb05Y+tW6Egtttz9iG+ms1XmP9+0R5O3FTm628rbMqddbcd39Zxe+xjDeGOK26bI6m5Py
vOb63sRD4FCxssdAM4scUmSPOowbvINrvkW6LoCnhg53a5LP6nD3e2QsrBww/UwzJDUYpkHY
eHsoK1JW4pDl+l5JWufImMbPN+ZnZAFfxSy7dg5SlX8EjBTXcKalf/BpWN/0oZUU43ZlGulH
J07lUqj++EZt2S8dmReohi8YsqZyt5SQTgIzt/G+Mq02yFUnM9ajbxubZc+aKoWxuKSv9UFJ
e7FHTWTiZvsRO5Crt1dlmEZuIbkPsQk+XpQvcJnjgb3q2J6fQhIyu3U/Qptfo7mSApqeEjSE
JQVwBD4NFp/fjzOI840yy0wafcivY1Pz1Pd8EUhOWT2X9kDkBRdBdeFKrWNmPuKHXTU2Jt8c
7tQBHRMyKz1RtvTXclYzHthlP/6xPSp4IND+aI76c5GOSujHrzKwzmXncRPGXrc9UYyoMeFb
srrI4EalGprZ/Zjxudv64XaRioPm5DIOnnrltxi0njkIJunv3sjtj4bdWe6haqDWcfKEwT2n
j4isC689tjF/w+vmjdflkXCo6zTuGMo74IeN5iJpi5Ik2bDJ7NZw0GeD56KOgnq5GJIxd+/b
u5Sy1WaOACMbWTZtnj5g0fRz8+yrYWudyM5/hbhHHivw4ZhvhbjVQ1W1BEBXdN908YZlsHNP
jwFPXU9FsE7eNZvLs/oWpknyAqyIgWlnCq2Oi34IVTLltJN0Q0wS54Js4Yl7Dtu17h0zEiJS
0hjB0OuVi6hSA9SOo1N3JXAy24gKO1tMch28+3QnUi/cIUIpF4It2lKU5y/jevu1/LX6WC9t
sjGFfy393QvEm32VbeJHQi4gKfw15siuToY08w9NIuH5xW1uT6jinIalIqSXccHNuzyMW5Lg
7lzD1NlMXryhkiFj9jdKHSaWmBAUfLx54c37vk7nn7bTX6QxDk3pw2GD7cY5VbaSe6LmxUIv
EsgyqtRzg96rrfvSqhFzB28D+u7js75+YxZwEBeRQE/spN4ODOrLd34+Lg72HSjbjrN/EM0S
Z6nMC89YDLCUs4vH36NppCtaluZ4vdF99dY7dirv3gWqYwIPSkQkv97Nj6nmdhIY4mdYqDae
LnwwG7vfmCTbC8fnE6EYkNGuqkPogKQyQjk6oT5rwHIxWXYPHq3JEL2y+iIcQUaUbQKHzwhz
jKBZDn6fGEVa9WF464eYaGZWAhtYxoyoe0cxEVojn+1n7/3JlbRYwXnkTfXjPrELoNs+rnJh
ea1JzKggFxVZtHT/WnlHZRLLZIRUDGxRkEmwwMCb0oMY+5N7yTKeOrlMlLQ7U1nnnJDgIeFF
5aKo5YhpLxil+jlLVMUR3ULseUZEdEF+Fjh6Nr/vqJc7Kp5k0Hi7PrarYWscubE2Q8MRsOnp
qXFOslM5M11wlNN+tBzIsuHHD2UTyXz38DPsq4FKfRS3OZKGW1Mvod2SqMEhqxN7L3W1yeNR
X89wNIOvRJXdyyiGcN/rqbKyrZTIWnoKBJlR5FvOwZG+Lp3RqM9gP1JnwbvhjN07lxXBuDct
TWiv/XjOc+/RWHpwu8Y29Z4W0ipylieA8+ovcy6ibm8w8pGmIveLN67UYz11P9Jpu3As0s0l
T7cTk+1wiuoB85wfiUy/rB+SNjLx9j9nN0KyBSomVOVm+6vgGFuDW0FvL5tMFWNrfpwlvnAj
NB36poUEcF/DvXxLRttGZc1/I5GcAflSLig/CawucI2NtZCbKepJrOYtfeA3IsoeoxgyKZnR
3pYISBfXUH6aAmByn0O9pC2DYvudv/z8QAf8gcRPMmBF0jH+56kLTuH13W38nSdJXVvvTOtf
tRXsiVtwSi1LLOeao+1a354dXdrR4J2NZOvlhHw+A7YgXfXNTpYeU+CshPts7AJbeh9NqHk1
vbIM0QiaDvS7Tp95f+PLJf39Sbyb4ySt4gdvE5OCRPrAm82xi6EG9UgqQ4OGWvsET66w8KLZ
Ii9By2KZccuOlU6mzAlyyp8kogkr4z+/6sYaiLvFmj/3Z6RKf5z1+UYyF3XEACOXMhx3XOth
89ArYCpvC/Vxwv8AxcGgBQplbmRzdHJlYW0KZW5kb2JqCjUyIDAgb2JqCjw8Ci9Qcm9kdWNl
ciAocGRmVGVYLTEuNDAuMTUpCi9DcmVhdG9yIChUZVgpCi9DcmVhdGlvbkRhdGUgKEQ6MjAx
NTAzMTYxMDM5MjctMDQnMDAnKQovTW9kRGF0ZSAoRDoyMDE1MDMxNjEwMzkyNy0wNCcwMCcp
Ci9UcmFwcGVkIC9GYWxzZQovUFRFWC5GdWxsYmFubmVyIChUaGlzIGlzIHBkZlRlWCwgVmVy
c2lvbiAzLjE0MTU5MjY1LTIuNi0xLjQwLjE1IChUZVggTGl2ZSAyMDE1L2Rldi9EZWJpYW4p
IGtwYXRoc2VhIHZlcnNpb24gNi4yLjFkZXYpCj4+CmVuZG9iagoxNiAwIG9iago8PAovVHlw
ZSAvT2JqU3RtCi9OIDM4Ci9GaXJzdCAyNzgKL0xlbmd0aCAxNjc5ICAgICAgCi9GaWx0ZXIg
L0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp42sVYW1PbOBR+z6/Q4+50iO63mU5nIC2XlhTasLQM
w4MbXMg0kNQxLfvv9ztyTBxD2oayuw+Rj450Lt8n6cixZYIZFgWTkakQmQxMB8mUYjYIpiRz
XjHJgocOrWOaBRqHjYwdZVnUMHQsGs+UZ9FauGHRaaYii7DScK2sZloyaaHWcBejYdowpSWe
jimrVEcH2KNjEDUay4zCVGuYoakWeoR2LjBDCSI1i7xF9HDOjBaCRcxEHhJqa0UHE503TEpm
fAwIzUxUSEXDEK49s9JhtmFWRWSGvqExiaeLnefPO/zo72nO+GF2kXd4b3Jd5tfljDnQ9b7D
3+ezyU0xzGfgLin6+fko25rcslMBhUNSPqqzDswL2JF/mvbiBXlmcDeeFINpNsxBJwYoTFnm
xTU4Tt1Xt+XOoMzKHNSTosO3kQF7/pzxbVDvq1nbQBXmInFfi4FYmMuWKKhkrYmsuZyomMuJ
h0oGNXBKMnLlh8VkOMhLdooEX24zfpTfluxsDuNhgpRoMyTDf07RAsUSR00CGnyt4qJB9MOU
PpYi3aZIyf+Von9xR/2MokXDGJ9efJ4WF5/Y6R0Q/jL/Nhrm73e2zsjVqZW6G1mjPeuceu+7
ofG01nYdPbXs6vrJgnJdHPYkWxu7HtTabmBBSOi99TTHS9L7gBZlD/qgPCIFyFRPBPSoiqSP
jnmlulRvVFIYTQ6E6yqYagwEbTE9CEEak/QyQO/RhiQTqSJF8YTHScrH4wChEmF6s5XCqa6t
Hwa10zoDS2MN9R0FQeFCQFS5xA0lZQWYoG2E1LQjbEYRcmvhk5jxEdYOEQxz2tFcQePGBvIH
PlH4RSB/wjKNWASF+IqwVA+0ylc/EyK8/X5b+/PIvtY1ZRRxZOfBhzfEoQfd2MHYiF4Zollr
4rRaS0lrb7ADIhV7ZBuwf52jpcHthTEfDBB7EyA7zIPsLfx5Y0mDtSLWNHYA3UHUNjOiPHXa
ZU/DQI29gd8RjqqtNITcRVo/LzxweOAIc0wOF7N3hIVmaVpzrKNOlrQZJe3+mKx07a+ynPvG
xgbD5s43zcIPm9bddWwMS4CXpUWP3BicCNWQVKQtsxhPFklHyxpSP8i57d2saqxeBEq3khdj
VbpJpuUS9K7w6z/d+Hm70JPsFW03F0IiHH1NknPVAUpaS4ewmqe9m5cp0st0xHU67mnTpjnk
tbJP/tO4JUnU0ao2Nm2qLOY52tazlo2tfrWsxaJfz6O+wi+QTQNrskXZsGeNW4zujpf5bFiM
puWkqO6St9kVRo72+y9PBs96/VcfpcDAOLvAi1E1YytdZxu4YjZUdLgjULLoQOJW25wN6VYz
MOll0918dHFZMnQoCA1sAGKH75XZeDTcvL4Y5zQ4KPOrY7zTdfjHuQVONBxcZgXdMX/wcjQ+
z7+PzvM/qwS2RzDUunFz/hTPXv9k/9074OnvSfUwHrzNbhBzKP+Olm4Bx0XTxOOCbiCSNNhE
tCFNjcnZlZgGfDi5usr49HK0hMqug2r348HBXj+hCj9YJAIlpXgiUD6sBPWFz8bZ7HIJkF8H
UG+n93pnH4Der1ylBEiyGMLv4BG/sETbfI9n/BP/VGTDL3k5zj+XtVzQfD6cr+E5z/lnfsEv
+YiP+RW/5hM+uc75lE/pLS8ZJqkym+bFaHLOv/KCz3jJb/g3/p3fLpEW1yHt6O2b170DIm3F
JsC723xne/EkpHm3kjTgbiIxch0kJ7uHfx33CElcgSTWSLR7GiTmR0h4eVnkaL9PljCtVXk+
HHzovd0GpsHJykoKVKmQSlyNeD9ZoALExx1SqsArcI3z2Sz/epONlzCtVXewQHv9TWA6Wl1N
XXVOUXf0U1VTvRLTIc7fpD5YxRKwterPUX/3+PD4WX+w2V+xWIFtGIf/SJo+fgihm7hUExd9
sbjDtfLSW71MMyxRsXyWVlQFOLv5VKYuKeFlK5vl6X/hvXt8CTl9sEl/UrdHxayk0IAE8/2s
2fswOi8vZ/QlaO3o7Vu3Fd21o2vRCE77Yh5bi/Vjt+7GVujQDu2WcfsF7kew3rrGlmMb0Y5t
mrClEgvc8hErvnQbtEKre6FjIzR1atRh/cjL1bsV2fwwsm3sM7N+5HaNbcW+t89Uk/AG38o9
Yq1btbAV+95GM6652FTd6sVWj1jsVr1aDm7v7TTdiL04XuqB4k8fuGb0hesGcTD1zeh8xk6r
z0uy+oikUsKtD2O9DHVuctGpHDS+b/0DGpu3uAplbmRzdHJlYW0KZW5kb2JqCjUzIDAgb2Jq
Cjw8Ci9UeXBlIC9YUmVmCi9JbmRleCBbMCA1NF0KL1NpemUgNTQKL1cgWzEgMyAxXQovUm9v
dCA1MSAwIFIKL0luZm8gNTIgMCBSCi9JRCBbPDg1RDIyNEVGQTU0OTc1NjcyOUYwMjdFNDY1
OURFMUFEPiA8ODVEMjI0RUZBNTQ5NzU2NzI5RjAyN0U0NjU5REUxQUQ+XQovTGVuZ3RoIDE1
NCAgICAgICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnjaHcs7EsFgFMXxc74Q
4pV4v/MFYSFaK9DYj0apVhljLEJnIdmBgpI5t/nN/96ZAwA/ByShqIiqoACBGKqlSMVMzIUX
U7EQK5GR/maLXATCEcHFfmVRIsKvnZGoibpoiKZoiVgkok1ED1t0iPxt1SW23qpHHI5WfeL0
sRoQ953VkHg9rUZEUViNSbe3mog1mZ5Bbq74A+k6E6gKZW5kc3RyZWFtCmVuZG9iagpzdGFy
dHhyZWYKNzU0MzAKJSVFT0YK

--/9DWx/yDrRhgMJTb--




Information forwarded to bug-auctex@HIDDEN:
bug#20115; Package auctex. Full text available.

Message received at 20115 <at> debbugs.gnu.org:


Received: (at 20115) by debbugs.gnu.org; 16 Mar 2015 09:19:55 +0000
From debbugs-submit-bounces <at> debbugs.gnu.org Mon Mar 16 05:19:55 2015
Received: from localhost ([127.0.0.1]:48073 helo=debbugs.gnu.org)
	by debbugs.gnu.org with esmtp (Exim 4.80)
	(envelope-from <debbugs-submit-bounces <at> debbugs.gnu.org>)
	id 1YXRBi-0005iJ-EQ
	for submit <at> debbugs.gnu.org; Mon, 16 Mar 2015 05:19:54 -0400
Received: from fencepost.gnu.org ([208.118.235.10]:34536)
 by debbugs.gnu.org with esmtp (Exim 4.80)
 (envelope-from <dak@HIDDEN>) id 1YXRBh-0005iB-2N
 for 20115 <at> debbugs.gnu.org; Mon, 16 Mar 2015 05:19:53 -0400
Received: from localhost ([127.0.0.1]:41841 helo=lola)
 by fencepost.gnu.org with esmtp (Exim 4.71)
 (envelope-from <dak@HIDDEN>)
 id 1YXRBg-00033g-9I; Mon, 16 Mar 2015 05:19:52 -0400
Received: by lola (Postfix, from userid 1000)
 id 66009E0470; Mon, 16 Mar 2015 09:47:49 +0100 (CET)
From: David Kastrup <dak@HIDDEN>
To: Dylan Thurston <dpthurst@HIDDEN>
Subject: Re: bug#20115: 11.88; Preview images get mis-aligned
References: <20150316051122.GA9397@HIDDEN>
Date: Mon, 16 Mar 2015 09:47:49 +0100
In-Reply-To: <20150316051122.GA9397@HIDDEN> (Dylan Thurston's
 message of "Mon, 16 Mar 2015 01:11:22 -0400")
Message-ID: <87ioe1gwga.fsf@HIDDEN>
User-Agent: Gnus/5.13 (Gnus v5.13) Emacs/25.0.50 (gnu/linux)
MIME-Version: 1.0
Content-Type: text/plain
X-Spam-Score: -5.0 (-----)
X-Debbugs-Envelope-To: 20115
Cc: 20115 <at> debbugs.gnu.org
X-BeenThere: debbugs-submit <at> debbugs.gnu.org
X-Mailman-Version: 2.1.15
Precedence: list
List-Id: <debbugs-submit.debbugs.gnu.org>
List-Unsubscribe: <https://debbugs.gnu.org/cgi-bin/mailman/options/debbugs-submit>, 
 <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=unsubscribe>
List-Archive: <https://debbugs.gnu.org/cgi-bin/mailman/private/debbugs-submit/>
List-Post: <mailto:debbugs-submit <at> debbugs.gnu.org>
List-Help: <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=help>
List-Subscribe: <https://debbugs.gnu.org/cgi-bin/mailman/listinfo/debbugs-submit>, 
 <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=subscribe>
Errors-To: debbugs-submit-bounces <at> debbugs.gnu.org
Sender: "Debbugs-submit" <debbugs-submit-bounces <at> debbugs.gnu.org>
X-Spam-Score: -5.0 (-----)

Dylan Thurston <dpthurst@HIDDEN> writes:

> On certain documents, the preview images become misaligned with the
> text. The exact circumstances are a bit of a mystery to me. I've
> attached an example that's as minimal as I could make it. Some
> features that are necessary for bad behaviour on my system:
>
> * Removing the TiKz library makes the bug disappear (even though TiKz
>   is not used in this snippet).
>
> * Removing the duplicates of the text makes the bug disappear.
>
> * Removing the "proof" environments makes the bug disappear.
>
> * Removing some of the text that does not involve any math mode or
>   preview images makes the bug disappear.
>
> On my system, starting with the 13th copy of the text, the images are
> mis-aligned. I've attached a screenshot showing versions just before
> and just after the bug triggers.

You should have given more of a description than "mis-aligned".  One of
the most important features of preview-latex is that it aligns the
baselines of graphics with the baselines of text, and I was looking for
that at least 10 minutes.

The actual problem is that images and previews get out of synch.  In
this case, it would be interesting to see whether there is any
disruption in the _region_.pdf file that preview-latex generates as its
image container.  I suspect that there is some page inserted or deleted
that should not be in the file.

-- 
David Kastrup




Information forwarded to bug-auctex@HIDDEN:
bug#20115; Package auctex. Full text available.

Message received at submit <at> debbugs.gnu.org:


Received: (at submit) by debbugs.gnu.org; 16 Mar 2015 05:15:25 +0000
From debbugs-submit-bounces <at> debbugs.gnu.org Mon Mar 16 01:15:25 2015
Received: from localhost ([127.0.0.1]:47897 helo=debbugs.gnu.org)
	by debbugs.gnu.org with esmtp (Exim 4.80)
	(envelope-from <debbugs-submit-bounces <at> debbugs.gnu.org>)
	id 1YXNN7-00084n-0U
	for submit <at> debbugs.gnu.org; Mon, 16 Mar 2015 01:15:25 -0400
Received: from eggs.gnu.org ([208.118.235.92]:44245)
 by debbugs.gnu.org with esmtp (Exim 4.80)
 (envelope-from <dpt@HIDDEN>) id 1YXNKv-0007yy-9O
 for submit <at> debbugs.gnu.org; Mon, 16 Mar 2015 01:13:09 -0400
Received: from Debian-exim by eggs.gnu.org with spam-scanned (Exim 4.71)
 (envelope-from <dpt@HIDDEN>) id 1YXNKs-0006rk-Kw
 for submit <at> debbugs.gnu.org; Mon, 16 Mar 2015 01:13:09 -0400
X-Spam-Checker-Version: SpamAssassin 3.3.2 (2011-06-06) on eggs.gnu.org
X-Spam-Level: 
X-Spam-Status: No, score=0.8 required=5.0 tests=BAYES_50 autolearn=disabled
 version=3.3.2
Received: from lists.gnu.org ([2001:4830:134:3::11]:41598)
 by eggs.gnu.org with esmtp (Exim 4.71)
 (envelope-from <dpt@HIDDEN>) id 1YXNKs-0006rg-Ex
 for submit <at> debbugs.gnu.org; Mon, 16 Mar 2015 01:13:06 -0400
Received: from eggs.gnu.org ([2001:4830:134:3::10]:45960)
 by lists.gnu.org with esmtp (Exim 4.71)
 (envelope-from <dpt@HIDDEN>) id 1YXNKn-0002us-UW
 for bug-auctex@HIDDEN; Mon, 16 Mar 2015 01:13:06 -0400
Received: from Debian-exim by eggs.gnu.org with spam-scanned (Exim 4.71)
 (envelope-from <dpt@HIDDEN>) id 1YXNKj-0006q8-BP
 for bug-auctex@HIDDEN; Mon, 16 Mar 2015 01:13:01 -0400
Received: from whitehail.bostoncoop.net ([74.50.63.164]:58949
 helo=bostoncoop.net) by eggs.gnu.org with esmtp (Exim 4.71)
 (envelope-from <dpt@HIDDEN>) id 1YXNKi-0006q2-P0
 for bug-auctex@HIDDEN; Mon, 16 Mar 2015 01:12:57 -0400
Received: from bostoncoop.net (localhost [127.0.0.1])
 by bostoncoop.net (Postfix) with ESMTP id 199915BAE27
 for <bug-auctex@HIDDEN>; Mon, 16 Mar 2015 01:12:55 -0400 (EDT)
Received: from tulip.bostoncoop.net (localhost [127.0.0.1])
 by bostoncoop.net (Postfix) with ESMTP id 874F05BAE1D
 for <bug-auctex@HIDDEN>; Mon, 16 Mar 2015 01:12:54 -0400 (EDT)
Received: by tulip.bostoncoop.net (Postfix, from userid 1000)
 id 995862620E9; Mon, 16 Mar 2015 01:11:22 -0400 (EDT)
Date: Mon, 16 Mar 2015 01:11:22 -0400
From: Dylan Thurston <dpthurst@HIDDEN>
To: bug-auctex@HIDDEN
Subject: 11.88; Preview images get mis-aligned
Message-ID: <20150316051122.GA9397@HIDDEN>
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="n8g4imXOkfNTN/H1"
Content-Disposition: inline
User-Agent: Mutt/1.5.23 (2014-03-12)
X-Virus-Scanned: ClamAV using ClamSMTP
X-detected-operating-system: by eggs.gnu.org: GNU/Linux 2.6.x
X-detected-operating-system: by eggs.gnu.org: Error: Malformed IPv6 address
 (bad octet value).
X-Received-From: 2001:4830:134:3::11
X-Debbugs-Envelope-To: submit
X-Mailman-Approved-At: Mon, 16 Mar 2015 01:15:23 -0400
X-BeenThere: debbugs-submit <at> debbugs.gnu.org
X-Mailman-Version: 2.1.15
Precedence: list
List-Id: <debbugs-submit.debbugs.gnu.org>
List-Unsubscribe: <https://debbugs.gnu.org/cgi-bin/mailman/options/debbugs-submit>, 
 <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=unsubscribe>
List-Archive: <https://debbugs.gnu.org/cgi-bin/mailman/private/debbugs-submit/>
List-Post: <mailto:debbugs-submit <at> debbugs.gnu.org>
List-Help: <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=help>
List-Subscribe: <https://debbugs.gnu.org/cgi-bin/mailman/listinfo/debbugs-submit>, 
 <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=subscribe>
Errors-To: debbugs-submit-bounces <at> debbugs.gnu.org
Sender: "Debbugs-submit" <debbugs-submit-bounces <at> debbugs.gnu.org>


--n8g4imXOkfNTN/H1
Content-Type: text/plain; charset=us-ascii
Content-Disposition: inline

On certain documents, the preview images become misaligned with the
text. The exact circumstances are a bit of a mystery to me. I've
attached an example that's as minimal as I could make it. Some
features that are necessary for bad behaviour on my system:

* Removing the TiKz library makes the bug disappear (even though TiKz
  is not used in this snippet).

* Removing the duplicates of the text makes the bug disappear.

* Removing the "proof" environments makes the bug disappear.

* Removing some of the text that does not involve any math mode or
  preview images makes the bug disappear.

On my system, starting with the 13th copy of the text, the images are
mis-aligned. I've attached a screenshot showing versions just before
and just after the bug triggers.

Please let me know if I can provide any more information.

Emacs  : GNU Emacs 24.4.1 (x86_64-pc-linux-gnu, GTK+ Version 3.14.5)
 of 2014-12-09 on gaia, modified by Debian
Package: 11.88

Run buffer contents:

Running `Preview-LaTeX' on `_region_' with ``pdflatex  -file-line-error   "\nonstopmode\nofiles\PassOptionsToPackage{active,tightpage,auctex}{preview}\AtBeginDocument{\ifx\ifPreview\undefined\RequirePackage[displaymath,floats,graphics,textmath,sections]{preview}[2004/11/05]\fi}" "\input" _region_.tex''
This is pdfTeX, Version 3.14159265-2.6-1.40.15 (TeX Live 2015/dev/Debian) (preloaded format=pdflatex)
 restricted \write18 enabled.
entering extended mode
LaTeX2e <2014/05/01>
Babel <3.9l> and hyphenation patterns for 4 languages loaded.

No auxiliary output files.

(./_region_.tex  !name(t.tex)
(/usr/share/texlive/texmf-dist/tex/latex/amscls/amsart.cls
Document Class: amsart 2009/07/02 v2.20.1

Class amsart Warning: When the draft option is used, the \includegraphics
(amsart)              command will print blank placeholder boxes
(amsart)              for the graphics.

(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
For additional information on amsmath, use the `?' option.
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty))
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty)
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty))
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd)
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty))
(/usr/share/texlive/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty
(/usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty
(/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty
(/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.tex
(/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-common-lists.t
ex)) (/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def
(/usr/share/texlive/texmf-dist/tex/latex/ms/everyshi.sty))
(/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex))
(/usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty
(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
(/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty)
(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
(/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty)
(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg)
(/usr/share/texlive/texmf-dist/tex/latex/pdftex-def/pdftex.def
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/infwarerr.sty)
(/usr/share/texlive/texmf-dist/tex/generic/ob...

[...]

	...i$ is a cover of $\phi$, then $S[\phi] \le S[...

./_region_.tex:150: Preview: Snippet 88 ended.(775509+152916x455742).
<-><->
      
l.150   that if $\widetilde \phi$
                                  is a cover of $\phi$, then $S[\phi] \le S[...

[88]
./_region_.tex:150: Preview: Snippet 89 started.
<-><->
      
l.150   that if $\widetilde \phi$ is a cover of $
                                                 \phi$, then $S[\phi] \le S[...

./_region_.tex:150: Preview: Snippet 89 ended.(546132+152916x455742).
<-><->
      
l.150 ...if $\widetilde \phi$ is a cover of $\phi$
                                                  , then $S[\phi] \le S[\wid...

[89]
./_region_.tex:150: Preview: Snippet 90 started.
<-><->
      
l.150 ...etilde \phi$ is a cover of $\phi$, then $
                                                  S[\phi] \le S[\widetilde  ...

./_region_.tex:150: Preview: Snippet 90 ended.(775509+196608x9067912).
<-><->
      
l.150 ... S[\widetilde  \phi] \le \max(1,S[\phi])$
                                                  
[90]
\newlabel{tocindent-1}{0pt}
\newlabel{tocindent0}{0pt}
\newlabel{tocindent1}{0pt}
\newlabel{tocindent2}{0pt}
\newlabel{tocindent3}{0pt}
[2] )
(see the transcript file for additional information)</usr/share/texlive/texmf-d
ist/fonts/type1/public/amsfonts/cm/cmex10.pfb></usr/share/texlive/texmf-dist/fo
nts/type1/public/amsfonts/cm/cmmi12.pfb></usr/share/texlive/texmf-dist/fonts/ty
pe1/public/amsfonts/cm/cmmi8.pfb></usr/share/texlive/texmf-dist/fonts/type1/pub
lic/amsfonts/cm/cmr12.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/ams
fonts/cm/cmr8.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm
/cmr9.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.
pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmti12.pfb></
usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/symbols/msam10.pfb>
Output written on _region_.pdf (92 pages, 94391 bytes).
Transcript written on _region_.log.

TeX Output exited as expected with code 1 at Mon Mar 16 00:57:18
Running `Preview-PDF2DSC' with ``pdf2dsc _region_.pdf _region_.prv/tmp24890l_Y/preview.dsc''

Preview-PDF2DSC finished at Mon Mar 16 00:57:18
Running `Preview-Ghostscript' with ``/usr/bin/gs -dOutputFile\=\(_region_.prv/tmp24890l_Y/pr1-\%d.png\) -q -dDELAYSAFER -dNOPAUSE -DNOPLATFONTS -dPrinted -dTextAlphaBits\=4 -dGraphicsAlphaBits\=4 -sDEVICE\=png16m -r102.048x102.132''

Preview-Ghostscript finished at Mon Mar 16 00:57:19

current state:
==============
(setq
 AUCTeX-version "2014-11-01"
 LaTeX-command-style '((""
			"%(PDF)%(latex) %(file-line-error) %(extraopts) %S%(PDFout)")
		       )
 image-types '(svg imagemagick png gif tiff jpeg xpm xbm pbm postscript)
 preview-image-type 'dvipng
 preview-image-creators '((dvipng
			   (open preview-gs-open preview-dvipng-process-setup)
			   (place preview-gs-place)
			   (close preview-dvipng-close))
			  (png (open preview-gs-open) (place preview-gs-place)
			   (close preview-gs-close))
			  (jpeg (open preview-gs-open) (place preview-gs-place)
			   (close preview-gs-close))
			  (pnm (open preview-gs-open) (place preview-gs-place)
			   (close preview-gs-close))
			  (tiff (open preview-gs-open) (place preview-gs-place)
			   (close preview-gs-close))
			  )
 preview-dvipng-image-type 'png
 preview-dvipng-command "dvipng -picky -noghostscript %d -o \"%m/prev%%03d.png\""
 preview-pdf2dsc-command "pdf2dsc %s.pdf %m/preview.dsc"
 preview-gs-command "/usr/bin/gs"
 preview-gs-options '("-q" "-dDELAYSAFER" "-dNOPAUSE" "-DNOPLATFONTS"
		      "-dPrinted" "-dTextAlphaBits=4" "-dGraphicsAlphaBits=4")
 preview-gs-image-type-alist '((png png "-sDEVICE=png16m")
			       (dvipng png "-sDEVICE=png16m")
			       (jpeg jpeg "-sDEVICE=jpeg")
			       (pnm pbm "-sDEVICE=pnmraw")
			       (tiff tiff "-sDEVICE=tiff12nc"))
 preview-fast-conversion t
 preview-prefer-TeX-bb nil
 preview-dvips-command "dvips -Pwww -i -E %d -o %m/preview.000"
 preview-fast-dvips-command "dvips -Pwww %d -o %m/preview.ps"
 preview-scale-function 1.0
 preview-LaTeX-command '("%`%l \"\\nonstopmode\\nofiles\\PassOptionsToPackage{"
			 ("," . preview-required-option-list)
			 "}{preview}\\AtBeginDocument{\\ifx\\ifPreview\\undefined" preview-default-preamble "\\fi}\"%' %t")
 preview-required-option-list '("active" "tightpage" "auctex"
				(preview-preserve-counters "counters"))
 preview-preserve-counters nil
 preview-default-option-list '("displaymath" "floats" "graphics" "textmath"
			       "sections")
 preview-default-preamble '("\\RequirePackage["
			    ("," . preview-default-option-list)
			    "]{preview}[2004/11/05]")
 preview-LaTeX-command-replacements nil
 preview-dump-replacements '(preview-LaTeX-command-replacements
			     ("\\`\\([^ ]+\\)\\(\\( +-\\([^ \\\\\"]\\|\\\\\\.\\|\"[^\"]*\"\\)*\\)*\\)\\(.*\\)\\'" "\\1 -ini -interaction=nonstopmode \"&\\1\" " preview-format-name ".ini \\5")
			     )
 preview-undump-replacements '(("\\`\\([^ ]+\\) .*? \"\\\\input\" \\(.*\\)\\'"
				"\\1 -interaction=nonstopmode \"&"
				preview-format-name "\" \\2")
			       )
 preview-auto-cache-preamble 'ask
 preview-TeX-style-dir nil
 )

Output from running `/usr/bin/gs -h':
GPL Ghostscript 9.06 (2012-08-08)
Copyright (C) 2012 Artifex Software, Inc.  All rights reserved.
Usage: gs [switches] [file1.ps file2.ps ...]
Most frequently used switches: (you can use # in place of =)
 -dNOPAUSE           no pause after page   | -q       `quiet', fewer messages
 -g<width>x<height>  page size in pixels   | -r<res>  pixels/inch resolution
 -sDEVICE=<devname>  select device         | -dBATCH  exit after last file
 -sOutputFile=<file> select output file: - for stdout, |command for pipe,
                                         embed %d or %ld for page #
Input formats: PostScript PostScriptLevel1 PostScriptLevel2 PostScriptLevel3 PDF
Default output device: x11alpha
Available devices:
   alc1900 alc2000 alc4000 alc4100 alc8500 alc8600 alc9100 ap3250 appledmp
   atx23 atx24 atx38 bbox bit bitcmyk bitrgb bitrgbtags bj10e bj10v bj10vh
   bj200 bjc600 bjc800 bjc880j bjccmyk bjccolor bjcgray bjcmono bmp16 bmp16m
   bmp256 bmp32b bmpgray bmpmono bmpsep1 bmpsep8 ccr cdeskjet cdj1600 cdj500
   cdj550 cdj670 cdj850 cdj880 cdj890 cdj970 cdjcolor cdjmono cdnj500 cfax
   chp2200 cif cljet5 cljet5c cljet5pr coslw2p coslwxl cp50 cups declj250
   deskjet devicen dfaxhigh dfaxlow display dj505j djet500 djet500c dl2100
   dnj650c epl2050 epl2050p epl2120 epl2500 epl2750 epl5800 epl5900 epl6100
   epl6200 eplcolor eplmono eps9high eps9mid epson epsonc epswrite escp
   escpage faxg3 faxg32d faxg4 fmlbp fmpr fs600 gdi hl1240 hl1250 hl7x0
   hpdj1120c hpdj310 hpdj320 hpdj340 hpdj400 hpdj500 hpdj500c hpdj510
   hpdj520 hpdj540 hpdj550c hpdj560c hpdj600 hpdj660c hpdj670c hpdj680c
   hpdj690c hpdj850c hpdj855c hpdj870c hpdj890c hpdjplus hpdjportable ibmpro
   ijs imagen inferno inkcov iwhi iwlo iwlq jetp3852 jj100 jpeg jpegcmyk
   jpeggray la50 la70 la75 la75plus laserjet lbp310 lbp320 lbp8 lex2050
   lex3200 lex5700 lex7000 lips2p lips3 lips4 lips4v lj250 lj3100sw lj4dith
   lj4dithp lj5gray lj5mono ljet2p ljet3 ljet3d ljet4 ljet4d ljet4pjl
   ljetplus ln03 lp1800 lp1900 lp2000 lp2200 lp2400 lp2500 lp2563 lp3000c
   lp7500 lp7700 lp7900 lp8000 lp8000c lp8100 lp8200c lp8300c lp8300f
   lp8400f lp8500c lp8600 lp8600f lp8700 lp8800c lp8900 lp9000b lp9000c
   lp9100 lp9200b lp9200c lp9300 lp9400 lp9500c lp9600 lp9600s lp9800c
   lps4500 lps6500 lq850 lxm3200 lxm5700m m8510 mag16 mag256 md1xMono md2k
   md50Eco md50Mono md5k mgr4 mgr8 mgrgray2 mgrgray4 mgrgray8 mgrmono miff24
   mj500c mj6000c mj700v2c mj8000c ml600 necp6 npdl nullpage oce9050 oki182
   oki4w okiibm oprp opvp paintjet pam pamcmyk32 pamcmyk4 pbm pbmraw pcl3
   pcx16 pcx24b pcx256 pcx256 pcx2up pcxcmyk pcxgray pcxmono pdfwrite
   pdfwrite pgm pgmraw pgnm pgnmraw photoex picty180 pj pjetxl pjxl pjxl300
   pkm pkmraw pksm pksmraw plan plan9bm planc plang plank planm png16 png16m
   png256 png48 pngalpha pnggray pngmono pnm pnmraw ppm ppmraw pr1000
   pr1000_4 pr150 pr201 ps2write psdcmyk psdrgb psgray psmono psrgb pswrite
   pxlcolor pxlmono r4081 rinkj rpdl samsunggdi sgirgb sj48 spotcmyk st800
   stcolor sunhmono t4693d2 t4693d4 t4693d8 tek4696 tiff12nc tiff24nc
   tiff32nc tiff48nc tiff64nc tiffcrle tiffg3 tiffg32d tiffg4 tiffgray
   tifflzw tiffpack tiffscaled tiffsep txtwrite uniprint x11 x11alpha
   x11cmyk x11cmyk2 x11cmyk4 x11cmyk8 x11gray2 x11gray4 x11mono xcf xes
Search path:
   /usr/share/ghostscript/9.06/Resource/Init :
   /usr/share/ghostscript/9.06/lib :
   /usr/share/ghostscript/9.06/Resource/Font :
   /usr/share/ghostscript/fonts : /var/lib/ghostscript/fonts :
   /usr/share/cups/fonts : /usr/share/ghostscript/fonts :
   /usr/local/lib/ghostscript/fonts : /usr/share/fonts
For more information, see /usr/share/doc/ghostscript/Use.htm.
On debian system you may need to install ghostscript-doc package.
Please report bugs to bugs.ghostscript.com.


--n8g4imXOkfNTN/H1
Content-Type: text/x-tex; charset=us-ascii
Content-Disposition: attachment; filename="t.tex"

\documentclass[12pt,draft]{amsart}

\usepackage{tikz}
\begin{document}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\begin{proof}
  which implies that the sequence $S[\phi_{k}]^{1/k}$
  converges. (It is close to a decreasing sequence.)
  For surfaces,
  $S$ does not behave as well under covers, but we still have
  that if $\widetilde \phi$ is a cover of $\phi$, then $S[\phi] \le S[\widetilde  \phi] \le \max(1,S[\phi])$
\end{proof}

\end{document}

%%% Local Variables: 
%%% mode: latex
%%% TeX-master: t
%%% End: 

--n8g4imXOkfNTN/H1
Content-Type: image/png
Content-Disposition: attachment; filename="bug-image.png"
Content-Transfer-Encoding: base64

iVBORw0KGgoAAAANSUhEUgAAAqIAAALxCAYAAACHG8SqAAAABHNCSVQICAgIfAhkiAAAIABJ
REFUeJzs3Xd4FNXewPHvlpRNSK/0Kr33poASBAGlKqioKIhSXqqAKCIgCBdBFJSiogjXhgqi
lJAoGKpSI70kJJSEkl422TrvHzFzsyS7OykkoOfzPDy6U39nTpmTmTMzKu7QJWygdOc0QRAE
QRAEQSit/RGbVQV/yz+6hA2Ucg0mUlLTMRhN5R+ZIAiCIAiC8I/l5uqCv58P7m4ucodUBXmd
0MysHG4np6JSqRxvRRAEQRAEQRBKQJIkggL88KqkY3/EZpUWwGy2kJSSZrcTqlKpCfZtSLBP
Ayp5BKHVuGEy55CencCN1NOkZsaXayIEQRAEQRCE+49KpSIpJQ2du2ve7y5hA6XklHQysvRF
ruDh5k+jmo/h7RmEm7sWN1cNWq0GnbsWCTAZLZy9dIqzV3ZituSWY1IEQRAEQRCE+5F3JQ8C
/H3QAuhzDUUupHPzo0Wdoeg8PPHzdadBw0BARVamAW9vN0Ire9G5Sw1SUtoxa5YXxy5+h9lS
9LYEQRAEQRAEASDHYATI64haLNZCC6hUahrVeAxXVx2eHi48+FAthj7VDMi7v5+bayYr00Al
LzdCQr2oVrk66VndOX8tvByTIQjCv45kRZIkVCo1OBvTXpxlBUEQBKesVgtWswm11gW1WqN4
3p3MZgvwd0dUkgq/sSnIpz5euiDUahWuLhoux6aSkZGL1Spx9HACWZkGLFYJrVbNjcRMklP0
BPs2IE1/hpspV+3u2GI2YTbqsVryAlBrNGhddGhcXIt3JARB+PeRrPh6uuDupiU7x0RmjsV+
B7M4ywqCINxFFpMRkyEbABc3zwrp8+RkJitaTucVYHee1WpB5wIDBvbnlx0RZOiNaLR5abGY
jfh4utK3d2+2/LKTHJPFYWc0v++ptrdAsG+DvAUBqwT6bCNbNp9FBYSEViIlLYf4uFT+/OMa
x48nYrVayTLewsfTze5OTQY9wf6V+Hz1ci6ePMTFk4f4Ys0HVA31x2QoeoyqIAhCPrMhk+VL
3uHowT1Mn/QqFmM2SIXv6ChdVrJakCwmJKvFdmVJQpKsdyyfN02ysz9BEISimI25eHu6sHXT
l/z03Xq8PV0wGyvmmZqU6xcc/nPGajExoF9vli2exy8/bMS3kjsWsxGL2Yifl46fv9/IssXz
eKLvo1gtZkUx2e2IVnIPBkCySLi6aqhbP4CQ4EpER9+gchUvHnqoFiaThexsIzk5RjINueiz
z2HMqVLk9ixmE6FBfkTt+on+j/UiwN+PAH8/+vUJI3LbJoIDfLCYxftLBUGwQ7IS6OeLu1ve
X98eHh6EBvriX0lbuDPqZFnJasaSk0blAA86tGxIzVBfzDlpeduRJLwq6Qj2dsXbHSSLCZBw
wUCwtyshfp6iMyoIgiJmkwGfSm5s+XY9XTq1p2vnDmz5dj0+ldwwm+6/Z2o0Gld+2RHBhYsx
1H+gLls3fYlvJXf8vHT89N166j9QlwsXY/hlRwQajYuibaq6hA2ULl9JLDSjS5PxaDVanhjY
iMFDm6LV5vVZDQYzKcl6cnLMJCRk8tXGE1y7nYMx9y+yUl3w8fPlROx3hbZn0Gfw+er36f9Y
L8IjdzPzzfmoVCoWvTObXo9056dfdvLS2Km4eXiX7igJgvCPZNanEhX5Mw3qP2AzPTU1jQbN
2+PiGaB42aaNG/LB0kU0a9pYnnfg0J+MenUiaZlG2raoz+bvNmKxWgnrM5ALl2LY/O0GOnZo
y3+/3sTUWfPQuFW6uwkWBOG+ZjEb8fZwYcu362ncqIHNvDNnzzPgqefJ0JvkW9t3W05mMinX
L+BftX6R8/PnObo1D/npcmXLt1/QuFEDEhJvAFClcujf6XrB5pa9I7VrVM4bI1oUs9WAVqOl
Z696aLVqsrIMrP7oT86evQ0qsFokTCYLadlm/AKSOH4umeZNHyYpPbbI7VktZno81AWAaa+/
ze3UvLESr73+Nr3+3EOPh7oovowrCMK/j9rFnfUbvmH0S89Ru1ZNTkSfZPfve9Hrc9C4eChe
1tPTg283riMoKJD/fr2Jrb/sYNSLzxH2SHdWLFvE0y+8yp/HTrFk2YfMfG0yH3/4Hr9s30nH
Dm05f+Eir781H42bZwUdBUEQ7hdmQw7r/7uaxo0acObsebkzmv//X6xdweNDny+3jmhBd3Y2
lY4fBdBoXcnQGxnw1Ats3/wV9erWBuBSzOVidULz2b01n6nPu0r67dcnsVqt5OhNJFzPxMVF
g4e7C+7uWjL1OcQl3OZg1FGaN304b72cG/b39vdzAlZr/m0tCevfg1XFF50EQXBE7aLjs/X/
5VLMZQCOHY9m0XsrWLl2A2pXnaJlV6z+nB4PdSUoKBCz2ULUvgNUquTJwUN/AvBIj274+VRC
4+rBBx99wt59B2jSuCEzpk0iJyeHUa/8H2aVGwW+jiwIglAkCYmcnFz+PHKMAU89L08f8NTz
HD56HL0+B4nCD4vfDyRJwsNDh07nLk/T6dzx8NAV+QC8I3aviN5KO0+QTz32RcVx80YmI19q
w3+W9ebc2dtcvZLGkSNx/H74Nqk3DvBg54EAWCWJ22lFD3ZVa7RE7T3IY717smzxPCZPn41K
pWLporkA/L7vIGqN3XAEQRDgjicwVRqt3Am1mo0gWVCptag0LkUuq1JrCQ4OAkCr1bDmo/cL
7SI0JISM+BugceeTzzfwYNfOAOzdf4gLly6j9fC7GykTBOEfxsXNk6EjXgaweSAyKTmF3gOe
lpdRwtkVS2e308uS2WSgcpAvP3+/gapVKnP+wiUAGtSvx8/fb6D/kBEk3k5D62L/4fWC7Pb8
ktMvkZF9A2/PUC5eSGb+3N107lKD5s1DeKC+L/9ZfpJKbpdY+NGb/PxzHDnZJm6knCLHmFb0
jlzdmfvue3Tu2I5He/bgzLF98ry0tHTmLnwPrat7kesKgiBA3nVIizlvCI9Go0GymLCackCl
oedDHahbpyZnz19k76ETRS6LBAkJeXd7jEYjHbr2JCf3f0+veuh03ErPQaXS4KWDd+e/BYBe
n0Ovnj0Y0L8PW3fuRu1iewVWEAThThqtCxqtL1C4I+nu6Vvs7dl7qt3emE9HinMrviDJasXH
043vNnxC9WpVuXAxhieefB6VSiU/rPTdhk/oO+gZsg1WVGq7N95ldjuiEhJnr26nRZ2ncHfz
JCDAA8kKKck5LFn2I1iu8cH7UzAZXajkmcCNW1eJSYyyuyON1pXLVxJ5qNcTLHh7Fj0e6oIk
Sfy+7yBz3vkPVxNu4eLmYXd9QRAEVBquXLsOwOP9H8PT04NTp8+x6pMveGrIE/R77FH++/Um
ft/3h91l163fyNWr16levSofvr+Y777fgqenB61aNKN5s6Z07/UEIPHBhyupWqUyP/28nW++
+5GvN3zKe4vmc/zEE1y7nYnKycuaBUEQ8qnUGn7bsxerVarwtkPJa5rssViM9OvTX346/vGh
z5GWlffH/BNPPi93Rvv1CeOrH7ahVTu/Kmr3qXnIGwPgpvWkYfXH8PWqBsDtpASiTx3gwc69
cXPNe2r0ZsoZLl7/FSuWIrdjkwizCbMxB8mad6VCpdaidXWvkMG6giDcXyTJSqi/B6s+WEKL
5k1xd3dn9+97GfbsKD5b86HcEZ06ax5qV4+il31uDDWqVWbB3DcJe6S7PD49IzOTzVt+Yfqb
8xj1/NMsmDebxBs36fZIP9Kzs1k453VeGjmCE9En6TfoGSQX8cCSIAjKWMwm2xfaa5W92ihf
WdyaL9MX2vfr7eCF9mF/v9Aep19Xql2jsv2OqCRZsRgNmE25WEwGAn3rUyW4JVfir9O0cXsk
lZXU9Diu3zxKhj4xrzPp4iY6lIIg3FWSZMWSm4lkMQMSKo0rWp03ltxMrGYDahd3+dVK9paV
rBYsxmxcNSqqV6tCVlY2t5NTkFRaNG6VsJpysBiyUanUeWNCVSoshiyspty8P549in9bTRAE
4Z/AarUgWcx5Y/SL+MSnvXlFcdgRzSMhWa1/b9jy99PuVvK+t6RCpVajUmlQa7R//7/zsQCC
IAj3jrw2DpVKtF+CIAjlzOF7RPOoUKk1aNQaB6NJBUEQ7leqCh+vJQiC8G8mLgEIgiAIgiAI
FUJ0RAVBEARBEIQKoQU4eWBbRcchCIIgCIIg/Is8PmyUuCIqCIIgCIIgVAzRERUEQRAEQRAq
hOiICoIgCIIgCBVCdEQFQRAEQRCECiE6ooIgCIIgCEKFUPya+l937yEh0fYLTFUqV2ZPVBQP
d+9Oj24PATB77jyb33dbUXEBhD3yMKEhIYWmp6Wn88r4/+OTVR/hValSoXiTU1Lw0OnQ6XRl
GqfFYmH371H8deoUZpOZOnVq0zssjEqVlH+vuqjYyvt4l0bBvNJoNAQGBNCpQ3u8vLwUb8Ng
MPDhx6s4dfoMwcFBLFm4gF2Rv/LjTz+Rnp7BgrlvU6d2rbuTgGKyWq3895tv7c5Xq1Q8M3xY
ibdfnnlfMO90Oh21atagbevWd3Wf93LZ/nX3Hnx8vIt1DEpTHsxmM9/98CMd27e3Kd+3bt1i
16+/MaB//2K1JY5IksS+Awc5ER1NTk4ulSuH8mCXztSqWbNMtn+vuvPcUFr5daZnjx5Urhwq
TzeZTHz7/Q9oNRqGPTlU0baKavtnvjmbfo89RtfOnUoda1EK1nl3d3dqVKtG+3ZtUalUitYv
qq0ui5iKqnc7d0VQpXJlmjdrqmg793Lb8m+kuCMaHhnJ7dtJNG7UUJ6m0+lo2KABgQEB8rTk
lBT0en3ZRlnMuAAMBmORy1utVm7euoXVYgUoFP+st95m4OP96d0rrMxizM7OZtrrb5CVlUXv
sJ64u7sTtf8A33y3iaWL36VmjRqKtlNUbHfGfy8Lj4wkJSWVZk2bYLFY2LtvPx9+vIqPlr9P
zRrVFW1j285wYmMvs+ideXh6eJCZmcl/lr3P4gXzqV2rFj7e3nc5FcpJksSNmzfl38eOn8DF
xYVmTZsAoFaX7oZEeda1gnmnv36d9Rs30rRxExbOe1vxiam47uWyHR4ZSY3q1YvVES1NedBq
tWRlZTH/3UV88vFKtFotkiSxeNn7BPj7l1knVJ+Tw+uz53DlyhUe7t6NOnVqc+PmTSa/NoOp
kybetU7PveDOc0NphUdGcvxENJmZmYwd87I8fd+Bg6zf+F+0Wq3ijmhRbX9Scgo5OTllEmtR
Ctb53NxcvvrmW2pUr86y/yxCo3H+NbJtO8OJiY2V2+qyiqmoerd12zbat22ruCNa3v0UwbFi
fbizTetWjH9ljM20tPR0dO7uDtezWq3ExMZiMpmpXatmmV9tLCqugrKysrkUG0NIcDBubm42
8/r26S3Hn5mZidlsJjMri9tJSbi4uODr41Pq+D5e+wlZWVms+WgFHn+nfdCAJ5gz/x3mLniX
z1Z/jEqlIi0tDZ1Oh8FgIDYujsqhoYQEBzuMrWD8+cxmM3HxV1CpoGaNGmi1/8vm/H2YzWZi
Yi8TGhJM8N/7yHft+nVuJyVRybMStWvVtFm/tFq2aC7nlSRJjHp1HOEREbz80osApKSm4lWp
Ei4uLkBe2UlOSSEwIIDMzEwuxcRQrVpVtFotBqORuLh41CoVNarndWTzG0hHZS7/GJhMZi7F
xlCrZk18fXzKPN0ajYbXJk+Sf8+Zv4BKlTxtpjnKKyXz71ReeXcpJpbRY8dx8vRpmjdtaveY
2suHrKxsJMla6Gp4cnIyXl5euLq6Flm27W0vJycHo9GEj0/eHyIGg4GMzEyCAgOBvLKWlJxM
YEDAXes4F3Tz1i1u3LiJr68PNapXR6VSKSoPjsrtyOdGcODQIb7Y+F9GvfA8W3/ZRnz8Fd5+
840yi3vVmrXcTrrNujWr8PPzk6e/8Oyz3E66Lf9W0sYYTSZiYy9TtUoVAgPz/qC4cvUqWVnZ
PFCvrlzHS7oOFH2c79ymo7bO0bmhLHRo146I33YzZtRLctu0c1cEHdu348ix44rS4uy8lJ2d
bTd9pVWwzl+7dp0RL40i+q+TtG7VErBfXjMyMrgUE0P1atXQarVl2g4pVZx+h6Nzr3D3lbp0
zHprDn1796Zvn95Fzr967Rqz3nobtVqNj483V69e4/Xp02jftm1pd61I9F8neePtuVStUoWc
nBxatmhuM79g/N/+8CPXExL4cctPRP62mzq1azFj6pRS7T83N5eIyF+ZPHGC3AkFUKlUjH5x
JM+9NJq/Tp6iRfNmTHv9DWrXqsmp02cICgrkwsWLvDBiBMOGDrEb253H//yFi7w1/x28KlXC
YrFgNBqZP+ct+XbetNffoFGD+hw7EY2PjzcxsZd5dfQoBjzeH0mSePudhZw+e5baNWuSlp6G
r69vmdxSsUelUuHq6ir/HjN+AjOnTaVNq1ZA3l+uTz4zgp9/+J4NX33NwUN/AHDl6jUADIZc
zBYLb749Dz8/XxbNn+e0zE17/Q0eqFeXw0eP4e/nx7PDn+LX3b+Xa7rBeV45m19Qeeddndq1
UKvVJCUlA4WP6Yinh1OrZg27+bB3/36++u47Nnz2qbzN+CtXeHHMq2z6aiP+rq6FyrajfI0+
eZLlKz7imw3rAfhi43/55rtNfPHJWmrWqM7J06eZPXc+W7775q4cj4IWL11G9F8nqVw5lISE
RHx8vFmycIHTISjOyq2Liwszp03l/6a+xgN167Lms3W8OXNGmdxGhry2KjwikskTJ9h0QgEq
VfKUr7oqaWPq16tH9MmTeHt5ERMby1tvzOLAwUOcv3iR7OxsPD09+fiD9+XOX0nWcXacHbV1
4PzcUBZq16rJ7aQk/vjzMJ07dSQ5OZlTp08zZeL/2XREHaXF0Xnpr5Mn+WLDxiLTV9YqVw5F
rVaTmpYGOC6vd7bVj/V+lCf69b0rcRWluP0OR+de4e4rVkf06LHjLHl/ufx74OOPO1xekiQW
vbeUh7t3Y+RzIwA4cPAQi95bxtfrPy+zv0CPnzjBsg9X2Ewb+/Jo3NzcWPbhCp4aMpgRTw9H
kiTeWbTY7nZGvfA8h48cLdNb83FXrmAym2lYv36hedWrVcPDw4OLMTG0aN4MgDNnz7H245V4
VarEXydPMXXm63Tr2lVRbFarlXeXLOHh7t0Y8/cVxvc/XMmi95ayZuWH8l/Y5y5c4JNVH+Gh
0xG1bx+L31vGE/37cTkujj+PHGHLd9/IeVPWty+i//qLlavXYLVYuXDpEn5+voobznGvjMFs
sWCxWJjyfxOAvJPihClTWbPyQ0B5mTtz9hyfr1mFl5cXsZcv3/V038lZXkmSpCgv85VH3hW0
PXwXkiRRt04deVrBYypJEuMnT7GbD90eepAPPvqYM2fPycNqdkZE0q5tG/zv6ASB83xt3qwZ
ScnJJCQmUqVyZY4dP0Gd2rU4duI4NWtU59jxE7Rq0bxcroa++PxzNldi58xfwLff/8CokS/Y
XUdpuW3YoAFDBw3k7XcW0OuRR+jcsUOZxR0XH4/JbKbBA4XbqnxK25jYuMt8tvpj3N3d+fK/
X/HOokW89MILTJ86GZPJxMiXX+G333+nT69e8raLu46S42yvrQOKdW4ojT69wtgZEUHnTh3Z
9etvdO3cGQ8P26tzjtLiqO23l76yKucmo4msrGxyc3P58aefcHV1pUWzZk7La1FtdVkp6nyf
eON/Q15K2u+wd+4tOL5XuDuKNUitUiVPqlapIv9zd3fckbxx8yZnzp6jTatWXIqJ5VJMLMHB
wRiNRmIvx5Umbhs6dx1BgYE2/1QqNVevXePK1asMGTgAyLv6NnjAgDLbrxLGv8eqenoWPYar
kqcnhtxc+XefR3vJVziaN2tKndq1+ePwYUX7up6QQPyVqzw1ZLA8bdjQIVy8dInbSUn/20ev
XvLV2dYtW6HPySE5OQUvLy8sZjPfb97CtevXAfAoo7E9+dzd3fH38yPA348a1apx9eo1rv59
dbMsKC1zfR7tJV85KY9038lZXinNy3zlkYaduyJ45oUXGfjUcD5avYZxY162Gdtb8Jg6ywcP
nY6HunYhPCISyOvgRPz6m03HpCAl22vYoAHHjp8gMyuLhMQEhj/5JEePnQDg2IkT8u3Euy0w
IIBjx0/w45af2Pj1N1isFi5cuuRwneK0lWnp6Xn7CSzb8bP54+odjTdVWi579cwbCw/Qolkz
TEYTA/7uALq4uNC4UcNC9b646yg5zvbauvI8NzzycA+OHjtOenoG4RER9H608IWEkpQZsJ++
srJ12zb6Dx7C0Gee5fsfN7Pg7TkEBgaU27m9KEWd710K3PovaWylOfcKpVOsK6IN6tfn6aee
VLz87dtJqFUqNn5jezuscaOGWKWyGRAO0LBhA0Y8PbzQ9NTUvHEfBceGBAT4l9l+lfD3z7u6
c/PmLYKDgmzmmc3mvHFrf/8lDBS6GhTg709KaqqifaWkpKLRaGzGD+WfrFJSUuT9F7xF6Oqa
N+bKYDRQtUoVFs6by6YfN7Phq6/x9/fj5RdH0v2hsnuy8M4y9OkX61n24Qo+X7u6TLavtMzl
5wtAUGDgXU/3nZzllcFgVJSX5ZmGju3bM2zoEHQ6d0KCgwuN+yp4TJXkQ++wMOa88w7jXx3D
8ehojEYjXTp1LHLfSrbXplVLjh4/gY+PN82aNKVtm9Z8+NHHZGdnc/bceaZPmVzqY6DEm2/P
5XZSEl06dcLLywudu45UJ3VYabk9fOQov+35nTdnzmDx0mV0e7Ar9R94oEzizm8bb9y8Wah8
5VPcxhQYLuDi4oKrm5vN+E4XFxeMJpPNtou7jpLjbK+tK89zg1elSrRv15YVq1ZjMBhp2bw5
h/7802aZkpQZsJ++sjJ44ADGvzKGtPR0lq9YyZrP1vHxB++X27m9KEWd7w/+8Yf8/yWNrTTn
XqF07uoI4pCQYKySxPTJk8v8r3clAgMDyMnJITMzU66wN2/ecriOWqVCQiqzGKpVrUrlyqH8
unu3/HRsvt/2/I5KpbK5UnPzlm18N2/dpFOH9opiCwoKxGKxkJycTMDfTxsn3riRN69AZ9eR
tm1a07ZNa8xmM1u3bWfB4iW0b9fOZnxrWQoKCOBWgTS7u7tjyP1fQ5r293gkpZSWORW2t67K
Pd1O8spgNBY7L+92Gnx9fahXt47d+QWPqZJ8aNWyBR4enuw/eJC9+w/wSI/udh9qULK91i1b
svWXbfh4e9GmVUt8fXwIDg7mux9+xN/Pj2pVqxYjtSWTmHiDQ3/8yc+bf5CPe3p6OgmJCQ7X
U5I+vV7Pe8s/YPTIF3ikR3cuxcayeOky1qxcUSYPg1SrWpWqVaoQ+dtumjct+unjsmhjykJJ
j3O+kpwbSqN3r17MfHM2zz/7TKHb5krSUtbnpeLy9fHhtcmTeGbki+wI30W7tm0q9NzuSEn7
HY7OvcLddVdfaB8SHEyrli34aM0acv++/SxJEsejo7Fay+6vJqPRSHp6hs0/k8lElcqVeaBe
Pb7871dA3hXIr761/x4/gICAAC7HxSNJZVfpx7z0Ett3hrPr11/l7Z45e441n37G4AEDbBrw
7eHh8gMg+w4c5Nr1BHkcmLPYKoeGUv+BB1j/36+QJAmr1coXGzbSvGlT+aThyM1bt7h2Le+2
rlarpcED9bBarZTlqDqz2UxOTg56vZ6Ll2L46ZdttGzZQp5fu2ZN9h44IC/71bebirX9kpS5
8kj3nZzlVXHzsiLS4IiSfFCpVPR65GE2//Qz+w4cpHeY/XHZSrbXpHEjcnJz2fXrb/Ifd61b
tWTTj5vvym35otodVGCVJG7+/Zqm6wkJ/Lx9h9NtKUnfR2vWEhoaysAn8sbmjxzxLGazhQ1f
fV1maXr15VHsCN/F199twmDI+4NQn5PDdz/8wO7fo0rdxpQVjUZdouOcryTnhtJo37YN69as
shnSkE9JWu7Geam4PD09eXLwYDZ8/Q0B/v7lcm4viZL2Oxyde4W7666/U+GNGdNZuvxDBg17
msCAAFLTUgkNCWHVhx+U+j2K+X7etp2ft223mTZj6hR69wrjtcmTmDVnDr/v3YfVaqVvn978
cfiI3W0Nf3II/1m2nC0/baVBg/qsWLa01PF1e7ArZrOZNZ9+xsqPV+Pq6oo+J4ehgwbywohn
bZbt2rkz4ydPQavVkpSczKTx4+QG3llsKpWKWdNfY97Cdxk07GmsViuhISHMeeN1RXEmJSXx
+uw5uLu74+npSXJyMhPHjy3T12399PMv/PTzL6hUKvz9/Gjfti1jRr0kz39hxLNMn/UmQ55+
FslqZdATj7MnKqpY+yhumSuPdN/JWV4VNy8rIg3OKMmH3r3C2Pj1N9SuVYsG9R3fYna2Pa1W
S7OmTYiJvUztWrUAaNOyJZt++JFWBf7YKStFtTvr1qziycGDefX/JhIaEoLZbOGR7t04ffas
0+05St/RY8f5bc/v8qveAFxdXZkxdQqTp8/gwS5dHF6tVqpLp07MeWMWaz79jE/WfY6fry+Z
mZm0bdOGCa++Uuo2pqwEBweX+DhDXv0q7rmhNFQqlVwm76QkLXfjvFQSAx/vz3c//MD28PBy
ObeXVElic3TuFe4uVZewgdLWbz51vmQp5eTkcDspCT8/vzJ73YhSZrOZ6wmJBAb4231oqDzk
v9DabDZTOTS00O20Ua+O46khg+n+0IMkJN4gKDCgxA+cJKekyJ294sZ489YtzCYzwcFBNq9W
Ki8Wi4XEGzfw9/cv1W3l4pS5iky3s7xSmpf3Qt4VpazrfkW2JUqlpaeTlZlFlSqVi31SvlfS
l5SUTE5uDsFBwbi5FS5LJW1jylJpjjPcO+cGKH1aKsq9Ul6LojS2sjz3CsXz+LBRd/+KaD6d
Tie/dLy8abVaxV/uuZtUKhWVQ52/CsLFxaXU8Qb4l2zgvUqlKvLTqOVJo9GUyXi+4pS5iky3
s7xSmpf3Qt4VpazrfkW2JUr5+viU+GMY90r6nI2vK2kbU5ZKc5zh3jn+MNlHAAAgAElEQVQ3
QOnTUlHulfJalOLGVhbnXqH47p8/u/4FWjRrSlBQ+Q34FwRBEIR/O3HurVjl/90twa4JY1+t
6BAEQRAE4V9FnHsrlrgiKgiCIAiCIFQI0REVBEEQBEEQKoQWkN9fJgiCIAiCIAjlRQtQrVo1
hwsV/IyYIAiCIAiCIADEx8cXe52aNWvK/y9uzQuCIAiCIAgVQnRE/8EyMjLKfZ+SJBX7+/Bl
Lf/ThELpGI3Gig6hzN0L5VMoLDc3l5ycnIoOQxCECiA6ov9ABoOB119/nRMnTsjTrFZroe8U
3/ndXaPRyLlz50q1782bN9OoUaMK+SbyJ598QtOmTXngAcefiqwoZXF8y8PJkyfp1q0btex8
kvB+VpHlU7AvJyeH8ePHc/78+YoORRCEciY6ov8wVquV559/ns6dO/PQQw/J00+fPs3YsWNp
2rQp7u7uDB8+nKVLbb9XPHXqVN5///1S7b9Pnz7s3LlT/h52eRo9ejTTp0+v0O+rO1IWx7c8
NGvWjMmTJ+Pi4lLRoZS5iiyfgn1+fn4sWLCAZ555pkTjzQRBuH9patRt9PazTw10uJCbm1uZ
7MxqtXL48GEOHDiA2WwmJCTE5oSg1+s5cOAA0dHReHp64vP3584MBgNHjx7l5s2bVK5cmbNn
z7J3716qVq2Km5sbZ8+e5ezZs1y+fBkfHx90Oh2XL1/mr7/+4tq1a9SoUQPIuy0XHR3N3r17
MRgMhIaGyvtPSkri+PHj/PXXX9SvX5+0tDR27dpFRkYGVf/+3OSNGzfYtWsXV65cQa1W88Yb
bwBQv359p9sHSE9P59dff+XEiRPk5OQQHBxc5t8UXrFiBZcuXeKtt96ymR4SEkK/fv3w9vbm
zz//ZN++fXTp0sVmme3bt6NWq+nbt2+x92u1Wrl9+zZxcXFcunSJ2rVrF+rIlDb9zsoPQGJi
IuHh4YwfP77Q+vbKl9L4nOWvM86Or7P4nMnOzpbjDwgIoFIxv/ucv/+TJ0+SnJxMVFQUkyZN
kuc7S7+j/FFSv5xt31n6HOWfo/LprH3J56z+O1Pa8pWSksLu3bu5cOECQUFB3Lp1C4CEhAT+
+usvDAYDgYGBZGVlceDAAW7evGnzIKq97StNv7P6V9r6UalSJVxcXFiyZAlPP/20+GNBEO4T
6enpxV7H19cXgHUbvi2/K6LJyckMHjyYCxcuEBISwoIFC+jevbs8Du3YsWOMHDkSq9WKq6sr
AwcOZP78+QBcv36dCRMmsGzZMt59910iIiJYtmwZL7zwApB3Ipk+fTqjRo2S92e1Whk3bhwx
MTEAZGVl0a9fP3bv3k316tX58ssvGTRokHx7et++fSxfvpxXX32ViIgIpk2bxo4dO5g9ezYA
kZGRDB8+nOrVq3P9+nVatWrF+PHjady4saLt79mzh+HDh6PT6WjYsCGzZ8+Wt11WcnJyWLhw
IdOmTbO7jFarRau1/aCWwWBg4sSJREVFERUVxfjx4xk/fjw7d+5UvO/U1FQ++eQTZs+ezdCh
QwudREqbfmflxxlH5UtJfM7y1xElx9dZfM5ERUUxbNgwvL29cXNzo3nz5ly4cEHx+tHR0Tz/
/PNIkoSPjw9ffvmlzXxn6XeWP87ql7PtO0ufs/xzVD6dtS/gvP47U9ry9euvv/L0008DeeXp
0UcfpU2bNkiShNVqZdKkSfIdDpVKxbp16xgxYoSi7StJv7P8LU39KOjZZ5/l2LFj/Pbbb8Va
TxCE+1iXsIFSRkaGw39l4bnnnpNWrVol/9br9VKLFi2kU6dOSVarVWrcuLF0+PBheX58fLzk
4uIiHTx4UJIkSZo7d67UokULSa/XS5IkSVu3bpVq1aolL3/s2DHJxcVFSkxMlCRJktLS0qQZ
M2bI88eOHStNmDBB/m21WiVfX1/pl19+kaft379fUqvV0sKFC22WkyRJevTRR6X//Oc/8vSG
DRtKmzZtUrz9V155RRo7dqxkMBjk+NasWaP8ACqwZ88eSaVSyceoKF9//bVUt27dIudNnDhR
GjduXKliOHr0qOTt7V1oemnT76j8FLRjxw6pQYMGNtOUlC9n8SkpP87YO75K4nNm7dq10hdf
fCH/HjhwoLRs2TJF61qtVqlJkybShQsX5Gnbt2+XatasKf92ln4l+eOofjnbvrP0KS1f9sqn
s/bFWf13pjTly2w2S9WqVZNOnjwpz9+8ebPk7+8v/54wYYI0duxY+ff3338vNW7cWNH2laTf
Wf6WRf3I99hjj0njx48v9nqCIFSMuLi4Yv/L1yVsoFQu35qXJIlt27Yxbtw4eZpOp5Mfprl8
+TJnzpyxucVVo0YNmjRpQmRkJB07dkStVtO0aVN5/J+fnx8mk0levlWrVnTu3Fm+6vHZZ58x
ZswYef62bdto3bo1U6dOxWQyYTQa6datm83tPbVajYeHh80VxfwrJ9WrV+fy5ctyevR6vc1t
L2fbf/HFFxk1ahS+vr506tSJAQMGMHjw4NIf3AIuXLhAjRo1KnSMpFqtLvKWWmnS76z8OBMX
F+e0fDmLT0n5KSkl8TkzevRoYmJiWL16NQkJCcTExNCiRQtF+7927Rrnzp2jbt268rQ7y5Cj
9CvNH0f1y9nxdZY+peXLXvl01r44q//OlKZ8Xb58mevXr9OoUSN5+Ttve6vVapurjxqNxma+
s+PrKP1K8rcs60fDhg2Jjo4u9nqCINyfyqUjmu/q1au0b9++0HTp7ydYExMT8fb2lqf7+PgU
a5zc5MmTGTt2LFOmTOHWrVvUrl1bnqfX6+nfvz8jR450uA1PT88iH9KYMmUKgwcP5q233uLW
rVtMmDDBpoPgbPtt27YlOjqac+fOsXPnTrZu3cqsWbOIj4/H399fcRod8fDwIDk5GUmSSjy+
ymKxlEksdyqL9NsrP84oKV/O4lNafpwp6viWtvxLksTEiRM5deoUS5YsoXXr1pw/f15xJ0Cv
12OxWEhPT8fPz8/uMvbSnx+/kvyxV7+cbd9Z+u52/XJW/50pTfm6ePEikiSRlJRESEhIieIv
i/LrKH/Lqn5A3nji0NDQUm9HEIT7Q7mMEVWpVAwZMoR3332XzMxMefr27dvZv38/tWvXpmPH
jqxevVqel52dzZUrV+jfv7/8Ozc3V56fk5ODXq+3eQ1Lv3790Ol09OvXz2Z8FED//v1Zvnw5
ycnJ8rSkpCRiY2Pl3xkZGTZXQQrasmULixYtYu7cuaxevbrQOExn2x86dChJSUk0bNiQSZMm
ER4ejkqlKrS/TZs2sXnzZjtH0rHu3buTlZXFlStX7C5jNpvtdja9vLxsXp+SmJhY7NfcpKam
otfrC73LU2n6i+Ks/BSUmZlJenq6TdxKypez+JSUH2fsHV8l8Tly7do1VqxYwbx582jTpg1W
q5W4uDib+uJInTp1qF69OuvWrZOnnT59mvT0dPkqm6P0K80fR/XL0faVpE9p+bJXPp21L87q
vzOlKV+1a9embt26bNiwwWZeQW5ubvJ7g6W/HxpKS0uT43dWfh2lX0n+Kq0fStq3M2fO0LZt
W4fLCILwz6HqEjZQ2vHDeocLlcUnPjMzM5k4cSJ79+6lY8eOZGVl0aFDB2bMmIFKpeL69euM
Hj2agIAAWrZsycmTJxk+fDiPPvoo4eHhvPLKK2RnZ/PTTz/Rpk0b+vbtS2RkJLNmzWLBggXy
fj766CN+/fVXfvzxR5v9p6WlMWnSJA4cOED37t3x8vIiMDCQyZMnk56ezvLly9m9ezd//PEH
zz77LDVr1mTChAnyFYgffviB6dOn0759e9LS0vDw8OCxxx5j5MiRqNVqh9t3d3dn9uzZ/P77
7/Tt2xdXV1cOHTpE27Ztee2112zi7NGjBy4uLuzatatEx3nw4MG0a9eOmTNn2kw/c+YMn376
KREREZw6dYrnnnuOtm3bMmHCBHmZ06dP06NHD2rXrk1ISAgPPfQQEydOVPQan40bNxIVFcWh
Q4c4efIkYWFhNGnShDFjxsgPZyhJvz3Oys/q1as5ffo0e/fuJTo6mqeeeopatWoxatQo6tWr
57B8AU7jc5a/Sjg6vs7ic8RkMtG3b18yMjLkB0ji4uL4448/mDp1KlOmTHG6jX379jF8+HC6
du1KUFAQAQEBrFixgueff56lS5c6Tb+j/Ll165bT+uVo+xqNxmn6nOWfo/IZHx/vtH1xVv+d
KW35Onz4MM888wytWrVCp9Nx8+ZNDh8+LHdIjxw5wuOPP87QoUNxc3PD29ubBQsWMGvWLGbP
nu1w+7///rvT9Durf0rrh7P27fz583Tu3JnY2NhivzVCEISKUZpPfHbtNaj8OqL5zGYzaWlp
BAQEFHn72GAwoNfrbW4Rms1m4H/jydRqNWazGY1Gg9lsxtXVVV5WkiQMBoPdzoHFYiE5OZmg
oCB5e1arFZPJhEajQaPRYLFYsFgsuLi4yCeZDz74gJYtW+Lr64urqyu3b99m/vz5PPHEEzav
Cipq+wVjS0lJwWQyERgYWOjpdch76blKpSrxOxyvXbvGQw89xJEjR2xuSeanKX/smMViQZIk
m2MHeZ2atLQ0AgMDi3V7P//pWY1Gg1qtlven1WrRaDSAsvQ7Y6/85B83tVptd/9QdPnKpyQ+
R/mrhLPj6yg+Z7KysjCbzfj6+iJJEhkZGcU6mUuSxK1btwgODsZisWAymQqNFXWW/qLyR0n9
UrJ9Z+lzlH+Oymf+VUNH7YvS+u/s+Ja2fCUlJeHj48PRo0fp16+fzZVRo9GIXq/H19cXo9GI
2WzGw8PD6faL0746a7+dxe+ofZMkiWHDhtG3b1+ee+65Io+hIAj3nvuuI3o/un37Ni1atODa
tWs2J85ly5bRpEkTRVetytPu3btZuXIl33zzzT/ypeSCUJ7uxfr/22+/8fjjj5OZmfmPed/m
ihUryMzMZNasWRUdiiAIxVDajmi5Pqx0vwoICKBXr14MHDiQDh06YDKZqFSpEi1btuSRRx6p
6PAK6dGjB9WqVWP37t306tWrosMRhPvavVb/jx07xoIFC8jOzmb+/PmFPl5xP0pMTKRevXr0
6dOnokMRBKGciSuixSBJEtnZ2Xh6ev5jrkIIgqDMvVL/TSaTfOvcYrHcs5+0FQTh30FcES1H
KpWqTN4bKQjC/edeqf8uLi5iyI0gCP8Y5faJT0EQBEEQBEEoSHRE7wJJksjKyqroMARBEARB
EO5pFd4RLe4L0+91X3zxBYMGDeKdd96hQYMGHDx4sKJDEgRBEARBuCeVyxjRGzdu8M4777Bx
40YCAwMZMmQIFouFXbt2Ua9ePX744YfyCOOui4uL47XXXuPKlSvodDqqVq3KmTNn6NSpU0WH
JgiCIAiCcM8pl45oaGgoK1euJC4ujgYNGrBo0SIA3n77bQYPHiwvp9frOXz4MGlpabRu3Zrq
1avL85KSkjh//jypqan069ePtLQ0oqKiqFy5Mu3atVMUR3p6Ovv27SM7O5s6derQsmVLtFot
sbGxXL16ldDQUBo0aEBWVhZHjhxBp9PRoUMHxfs/evQodevWlZ9iLfjVIsj7jF5UVBRZWVk8
+OCDhb6nbLVaOXLkCPHx8dSvX5/mzZvbPJ2b/+m+ixcvUrduXVq1amUz3176BEEQBEEQ7kXl
emve3d1dftrTZDJhMpmYM2cOkPduvJEjR2K1WnF1dWXgwIHMnz9fXnffvn0sX76cV199lYiI
CKZNm8aOHTuYPXu2on3v2bOH4cOHo9Pp5E9O5q9rtVqZNGkSS5cuBfKejl23bp3N9+qd7X/Z
smWsXr2a+Ph4xo8fz/jx44mKipLXj4qKYtiwYXh7e+Pm5kbz5s25cOGCPD85OZnBgwdz4cIF
QkJCWLBggfw5Q8j7qky/fv3YvXs31atX58svv2TQoEHyt8AdpU8QBEEQBOFeVO6Xy86dO8em
TZs4ceIEzZs356mnnkKSJEaMGMH69etp27YtAE2aNKFevXqEhYXRsWNHBgwYQHBwMA8++CBH
jhzh008/BZSPMf3222+pXbs2Xbt2xdXVlW+++YZvv/0WgHr16vHggw9isVgA8PT05IknnuDo
0aPy+s72P2XKFIKDg1m9ejUrV64stP/z588zZMgQunTpAkDXrl3Ztm0b9evXl9d/9NFHefbZ
ZwFo164dnTp14uLFizRp0oQZM2ZQt25dJk+eDECHDh3w9/dnx44d9O3b12H6BEEQBEEQ7kXl
3hENCQmhZcuW5ObmyreV4+LiOHPmjNwpA6hRowZNmjQhMjKSjh07AnnfQPbw8GDatGnyckpf
LP3iiy8yatQofH196dSpEwMGDLAZFqBWq+Wri4D8TfaCSrP/0aNHExMTw+rVq0lISCAmJoYW
LVoAeZ3Zbdu2MW7cOHl5nU7HiRMn5N/btm2jdevWTJ06FZPJhNFopFu3bvJ7DZ2lTxAEQRAE
4V5T7h1RPz8/HnjgAR544AF5Wv5VxcTERLy9veXpPj4++Pj42Kzv6elZopc5t23blujoaM6d
O8fOnTvZunUrs2bNIj4+Hn9/f8XbKcn+JUli4sSJnDp1iiVLltC6dWvOnz9f6OXYV69epX37
9kVuQ6/X079/f0aOHFnk/LJKnyAIgiAIQnkp1zGiOTk5Rb5fs3bt2nTs2JHVq1fL07Kzs7ly
5Qr9+/eXp2VkZGAymUq076FDh5KUlETDhg2ZNGkS4eHhqFQqeXtubm5kZGQA/3soKC0tzebW
v7P9Z2VlYTabC02/du0aK1asYN68ebRp0war1UpcXBy5ublA3lXVIUOG8O6775KZmSmvt337
dvbv3w9A//79Wb58OcnJyfL8pKQkYmNjFaUv36effmoz5EAQBEEQBKGilMsV0Zs3bzJv3jwi
IyMJCAjAy8uLOXPm4O7uDuR1xL7//ntGjx7NiBEjaNmyJSdPnmTVqlXUqlWLmzdvsnz5cnbv
3k1KSgojRoygZs2aTJgwgZCQEEUxNGrUiEGDBtG3b19cXV05dOgQs2fPltcfOnQojz/+OBMn
TsTNzQ1vb2+Sk5N55513ePnllx3uPzMzk4ULF/LLL79w8eJFRo8eTVBQEM888wxNmjQhNDSU
sLAwpk2bJj+AVLVqVT7++GN0Oh1TpkxhyZIlTJw4kdatW9OxY0eysrLo0KEDM2bMAGDp0qVM
mjSJTp060b17d7y8vAgMDJTHjDpLX75169YBcODAgTLJW0EQBEEQhJJSdQkbKO34Yb3Dhby8
vEq1E6vVitlsRqvVIkkSFosFFxeXIsdXGgwG9Ho9fn5+NuubTCY0Gg0ajQaLxSJvQ61WflFX
kiRSUlIwmUwEBgYWerWR0WhEr9fj6+uL0WjEbDbj4eHhdP+SJGE0GtFqtajVanm+VqtFo9HI
28+/Yurr64skSWRkZBQaemA2m0lLSyMgIKDI42OxWEhOTiYoKKjQfGfpg7wrzYMGDSI8PFzx
cRMEQRAEQShKfHx8sdepWbMmAF17DSqfK6JqtRpXV1f5d8HO2Z3c3Nxwc3MrtH7BaVqttkTv
x1SpVAQEBNid7+rqKsdZ8P+d7V+lUimKr+CYUJVKVagTmr9uYGCg3Rg1Gg3BwcFFznOWvhs3
bjBnzhzee+89u8sIgiAIgiCUF/G283+RoKAgVq1aVayryIIgCIIgCHeL6Ij+izi6Ei0IgiAI
glDeKqwjmpqaytq1a/Hz8yM1NZXU1FQWLVrEzJkz5U+ACoIgCIIgCP9cFdIRTU1NlTuc+Q8l
paam0rZtW4YOHVoRIQmCIAiCIAjlrEIGC86cOZOhQ4faPBnv5+dHz5496dmzZ6m2nf9tdgH5
af7SEMezbBgMhlLNLy8iv8tPWdTPfwNJkkhLS3O4zN2qXyJ/BOHuq5CO6KZNm4rscPr5+dGm
TZsSbfPkyZN069aNWrVqlTK6e4vRaOTcuXPFXu+jjz4iNDSUhQsXlmi/O3bsoEGDBrzwwgsl
Wl/I88knn9C0aVObL4kVZ355+afWn3tVaetnvpK2D/cKJfFv3ryZRo0a2XxcJN/dql+i/ROE
8lNhj08vXry40LSXX365xNtr1qwZkydPLtHnP+9lU6dO5f333y/2euPGjaNVq1aFXoWlVJ8+
fejduzc6na5E6wt5Ro8ezfTp0+0eR2fzy8s/tf7cq0pbP/OVtH24VyiJv0+fPuzcubPI9yrf
rfol2j9BKD8VMkb05ZdfZubMmfKV0TZt2hS6Va+UXq/n8OHDZGRkkJKSUqixyp+flpZG69at
qV69us38/M95Xrx4kbp169KqVSubbaSnp7Nv3z6ys7OpU6cOLVu2VPQOU4PBwIkTJ9BqtbRu
3ZqzZ89y7tw5evbsibe3d7HiK8k7UwF8fX1RqVRcuHCB6OhoGjRoQPPmzRWn38vLi5ycHCRJ
4vTp05w7d44ePXrYvKs0OzubqKgosrKyePDBBwkNDQXg7Nmz3L59G6vVSosWLfDz8+Py5ctc
uXIFjUZD165dne5fCXv7z1fS/Nu/fz8Wi4Xg4GAaNmwI5H1MYO/evajVapo3by5/mMBZ/MHB
wQ7T5Gx+UWJjY7l69SqhoaE0aNCArKwsjhw5gk6no0OHDsUuf/bqj6P0JSUlcf78eVJTU+nX
rx9paWlERUVRuXJl2rVrpygdVquVI0eOEB8fT/369WnevLlNDPbqR1mULyXxl7T8KOGofjrL
33wlbR/Ksnw74uz4OYrfarWSlJREQkICly5don79+kV2DO9G/YL7o/0ThH+CCrkiumjRIo4c
OULPnj2JjIzkySefZObMmcXeTnR0NM8//zySJOHj48OXX35pM//YsWOMHDkSq9WKq6srAwcO
ZP78+fL8rKws+vXrx+7du6levTpffvklgwYNwmq1ArBnzx6GDx+OTqejYcOGzJ49m9mzZyuK
7fr160yYMIFly5bx7rvvEhERwbJly2xu9TiKz2AwMHHiRKKiooiKimL8+PGMHz+enTt3FusY
ffPNN4SHh+Pi4sLIkSMZM2aMfIvLWfoh7yGyN998ky1btrBy5UqGDRsmz4uKimLYsGF4e3vj
5uZG8+bNuXDhghz/9OnTGTVqlLy81Wpl3LhxxMTEKN6/I472D6XLv59//pmHH37YZoyYSqVi
//79LFy4EEmSSh1/aVitViZNmsTSpUvl2NatW8eIESMAZeXPWf1xlr59+/axfPlyXn31VSIi
Ipg2bRo7duxQfIyTk5MZPHgwFy5cICQkhAULFsifwAXn9aO05ctZ/KUpP0rZq5/O8re07UN5
lG9Hx09J/KmpqXzyySfMnj2boUOHVkgH7V5u/wThH6NL2EApIyPD4b+7LSIiQgKKtY7VapWa
NGkiXbhwQZ62fft2qWbNmvL8xo0bS4cPH5bnx8fHSy4uLtLBgwclSZKksWPHShMmTLDZpq+v
r/TLL79IkiRJr7zyijR27FjJYDBIkiRJaWlp0po1axTHOHfuXKlFixaSXq+XJEmStm7dKtWq
VUtxfJIkSRMnTpTGjRuneJ8FPfXUU9LcuXPl3wkJCZJOp5O2bdsmSZLz9L/xxhtSu3bt5Pgj
IyOl0NBQefm1a9dKX3zxhfx74MCB0rJly+Tfx44dk1xcXKTExERJkvKO34wZM+T5zvbvjLP9
lyb/EhISJEBKTEyUUlNTpUWLFkmSJElbtmyRIiIiihX/jh07pAYNGtjdl7P59kyYMEEaO3as
/Pv777+XGjduLP92Vv4c1R+l6du/f7+kVqulhQsX2iynxHPPPSetWrVK/q3X66UWLVpIp06d
UlQ/yqJ8OYq/tPXfGWf101n+SlLJ24eyLN/2KDl+SuI/evSo5O3tbXf+3apf93r7Jwj3iri4
uGL/y9clbKBUrrfmjx49ip+fH3Xq1LGZXpIn5a9du8a5c+eoW7euPK3gbZu4uDjOnDlD/fr1
5Wk1atSgSZMmREZG0rFjR7Zt20br1q2ZOnUqJpMJo9FIt27d5E9xvvjii4waNQpfX186derE
gAEDGDx4sOIY1Wo1TZs2lePy8/PDZDIpjq8sFPy0auXKlWnZsiXHjx/nsccec5p+gObNm8vx
+/j4yPFD3virmJgYVq9eTUJCAjExMbRo0UKe36pVKzp37ixf1fjss88YM2aMPF/J/h1xtv/S
5F/lypVp2rQpv/32GykpKSxZsoQRI0Zw4MAB5s6dWybxl5Zarba5eqLRaGyuGjkqf87qDyhL
n1qtxsPDg2nTpsnTlFy5kiSJbdu2MW7cOJv9nzhxAoDLly87rR9lUb4cxV/a+q+Eo/rpLH9L
ozzKd1kdP7VaXWG3q+/l9k8Q/inKtSMaGRnJjBkzCk1PTU0t1Dl1Rq/XY7FYSE9PL3JsqfT3
7efExESbMXE+Pj7yN971ej39+/dn5MiRRe6jbdu2REdHc+7cOXbu3MnWrVuZNWsW8fHx+Pv7
FyveksSXz2KxlGpfBeXm5sqdD2fpd0SSJCZOnMipU6dYsmQJrVu35vz584Ua0cmTJzN27Fim
TJnCrVu3qF27tjzvbu+/tPkXFhbGzp07qVq1KqNHj+bLL7/EZDLh7u5e6vgrmrP6k7+MkvR5
enqW+CGnq1ev0r59+0LTldaPsihf9uK/m/XfnoL1U6mStg93u3wrPX5l2b6Vl4pu/wThn6Rc
x4gePXqUTZs2FZq+ePHiYn9NqU6dOlSvXp1169bJ006fPk16ejpWq5XatWvTsWNHVq9eLc/P
zs7mypUr9O/fH4D+/fuzfPlykpOT5WWSkpKIjY0FYOjQoSQlJdGwYUMmTZpEeHg4KpXK5q9i
R7Kzs8nNzZV/5+TkoNfrkSRJUXyQN2D+/Pnz8u/ExMQiX2NSlDvHGsXHx5OSkkKfPn0UpV+v
19u8fy83N5ecnBysVivXrl1jxYoVzJs3jzZt2mC1WomLi7NJL0C/fv3Q6XT069dPHt+Wz9n+
HVGy/9LmX1hYGBs2bKBXr1688sorfPjhh1StWrXY8WdmZpKeniQmxZgAACAASURBVG4335zN
t8fNzY2MjAzgfw89pKWlydtxVP6c1R+l6cvIyFB8PAtSqVQMGTKEd999l8zMTHn69u3b2b9/
v+L6Udry5Sh+peXn008/5ejRo8U+Bs7qp7P8hdK1D2VVvu1RcvyUxJ+amlqoLSrobtWve7n9
E4R/Ek2Nuo3efvapgQ4XKu0rRvJt2rQJnU7HmTNnSE1NJTY2lrVr11KnTh2ee+65Ym1Lo9HQ
rl07XnvtNQ4fPkxUVBQAhw8f5tatWzz66KP06dOHzz//nJ07d3L58mU+//xzZs6cSdu2bQHo
1q0b0dHRvP3225w8eZI9e/Zw7tw5evXqhVar5eTJk/znP//h1q1bHD58mA8++IDhw4fTq1cv
p/GFh4ezaNEiLl26RNeuXQkJCWHcuHGcOXMGk8nEI4884jQ+gJCQEJYsWcL333/Pzz//TEZG
Bu3bt1f03fj169dz48YNzp07x6FDh/jiiy/4+OOP5XdFOkr/rl27WLp0KTExMfTo0cMm/rS0
NAYNGsShQ4f4+eefuXTpEjt37sRqtbJlyxZUKhWdOnUC8m6raTQaEhMTmTBhgk18zo6/Ix4e
Hk73X5r8A6hSpQq7du1iwYIF+Pr6sn//fl566SVCQkIUxb969WrWr1/Pxo0biYmJ4dy5cxw5
coRatWrh7+/vdL4zfn5+LFiwgCtXrrB79250Oh3h4eFIkkRubq7D8hcWFua0/jhKX3JyMgsW
LODzzz/n0qVLxMTEcOzYMZo0aaL41mK3bt04fvw4b7zxBocPH2bDhg24uLgwfPhwVCqVovpR
0vKlJH6l5Wf8+PHs2LGDl156SVG68zmrn47yt1u3bkDp2ofSlm9nlBw/R/Fv3LiRlStX8umn
n5KYmMgff/zBsWPHqFWrFoGBgXe1fm3fvv2ebv8E4V6Snp5e7HV8fX0BWLfhW1RdwgZKO35Y
73AFLy+vEgV3p9TUVPz8/IiNjZX/6mvTpk2JXtuUT5Ikbt26RXBwMBaLBZPJVGism8FgQK/X
292PxWIhOTmZoKCgIl9fk5KSgslkIjAwUHEDYTabgf+NN1Or1ZjNZjQaDWaz2WZsmLP4TCYT
aWlpBAYGFmusVEZGBt7e3mRkZGA2m+02vkWlv6j4TSYTWq3WJv6srCzMZrP8qpeMjIxCQwsk
ScJgMMi3/JTsXyln+y9p/uUzGAzyH2IF/19J/EajEZVKhVqtRq1WY7FYsFgsaLVaNBqN0/lK
GI1G9Ho9vr6+GI1GzGYzHh4eisufkvpTVPqsVismkwmNRoNGo5Fjd3FxQa0u3o0Ws9lMWloa
AQEBRea/s/pRkvKlNH4l5Sc7O5tBgwYRHh5erHQrqZ/28regkrYPULryrYSS42cv/vwn+jUa
TYnqT2nq1/3S/gnCvSA+Pr7Y69SsWROArr0GlW9HVBAE4Z/kxo0bzJkzh/Hjx9OsWbOKDkcQ
BKHclbYjKq7/C4IglFBQUBCrVq0q9lVgQRAEIY/oiAqCIJSQ0iEUgiAIQtHEn/EVIDY2tkRP
2QqC8O/iqK1ITU0t52gEQRDKnrgiWo5SU1NZvHix/P+xsbHMmDGDnj17yq+2Ku5rrARB+OdR
0lYU9U5mQRCE+43oiJajyMhIm45mbGwsixcvZvHixQwdOlR0QgVBAERbIQjCv4d4al4QBEEQ
BEEokdI+NS/GiAqCcF8JCwsjLCxM8TjrmTNnEhYWxtq1a+9yZCX3T0zT3RAbG0tkZGSF7b+s
8qmoLwwKwr+V6IhWMPHgkpBPlIX/jY1cu3YtixcvZubMmQDyfyHvIxgRERG0adPG7nYKHstF
ixYRERFRYZ9OLIs03Vk2KjpNFSE1NZW1a9fSs2dPu/NLs21neQRll0916tT51/0RIQj2iDGi
FSwyMpKXX365osMQ7gH/9rKQmprKzJkzWbRokfwVpf9n787joqr+/4G/ZmMcjU1QLHMDdwwV
MDX3gsqPUIlSWmnZR9EUvrgV/PTDp0xRzORj6ecjbqXW9/spsSxTgaA0lDRlTMJQURBcwgWY
YRsYZjm/P6a5Mswwd4ZdfT8fDx4y99x7tnvvcDz3nHMVCgX8/f0RGhpqV1wtWZfbt29Hfn6+
TeM0m6tM7aU8bclYj3UZ39KXlpaG/Px87Nu3z+542+K68/PzQ2JiIvLz8+Hp6Wl3ngl5kLSr
HlHjK93aEmMMSqWSd5/KyspWypH1fPDllbSs9nItNEV7uO8AQ0MjNDTU5FWerq6uCAgIaLAX
rLUYe+MCAwMBwOZGW3stU2PL01bS0tLg6ura4Gte/fz8Gt0j2lbnKCwsjFsZgZCHWas2RGtr
a3Hx4kWz7UlJSRgwYADefPPNFonfHgcOHMCgQYPAGLMYvnv3boSEhGDNmjUYMGAATp482aT0
moIvr6RltadrwZqWvu+aS2JiosU//K6urlYfw7ckY2/Zyy+/DABITU21q2eyvZWpqeVpK4mJ
iRbz6enpiYCAgAYbqLbG3RbnyNPTE/n5+bQeLHnoteqj+WXLlqG2thbbtm0z2T558mQkJyc3
uWepofjtYcyLQCAwCysoKMA777yDa9euQSaToXv37sjJycHo0aPtTkcul3OPk+RyeaO+8Kzl
lbSs9nYtWNPS911zWr9+vdn6mPY0lJqrLvPz87lH1mFhYU3qMWxKmdpDeYyPv43HJiYmQi6X
IzQ0FH5+fsjPz0diYiJcXV3NehYBcJOL5HI5wsLCuHC5XM41wjw9PeHp6Wmyzc/Pz2TflnyE
3VbXnfER/f3wnwFCWkqr9ogyxiAWW277Ojo6QiQSgTGG8+fPY//+/SgpKTHZp6qqCklJSUhM
TMStW7fsip+PXq/HnTt3cOnSJVy+fBnV1dVm+8jlcnh5eUEmkwEAIiIi8Pe//92udORyOaKj
o6FQKODq6opt27YhPz8f8+fPb9a8lpWV4fDhw9i3bx8yMzOh1WrtyidfXduSx9OnTyMxMRFZ
WVlmvbYqlQo///wzvvvuO1y/fp3bfuHCBaSnp+PYsWPcH6SrV6/i559/xokTJ7j9GGM4d+4c
EhMTcfbsWZP4i4uLkZGRgUOHDgEAlEolDh48iDNnztic/4byZ9RergVbNPW+a6iu1Wo1fv31
V8jlcjDGkJOTg2+++Qbl5eWNymdYWBiio6Ph7++P6OhobmaxLb1dzVWXxmPmz5+PgIAA7Nu3
r0mPZxtbpvZWnrS0NCQmJnK9h3FxcXj55Zexfft2yOVyREVFwdPTk3vUb7R+/XqTx9yBgYEm
PYByudxkW91y1y1DU3o8+bTldRcQEPBQTTgjxJJWaYiq1WpERkYiPT0d6enpCA8PR3h4OJKT
k032UygU+Mc//oFvv/0WW7ZswYwZM7iw9PR0zJgxA05OTpBKpfDx8UFubq5d8VujUCiwY8cO
xMTEIDQ01KyXMT4+HgkJCSgsLOTiT09Pt6sejF9axjekGIWGhto1Y5ovr8eOHcPMmTMhk8kw
cOBAxMTEICYmxuZ8WqtrW5SUlGDatGnIzc2Fh4cHYmNjMXHiRG4s4tmzZzFnzhzo9Xo4ODhg
6tSpWL16NQDDuXz33Xcxd+5cLj69Xo9FixYhLy8PAFBZWYmgoCAcPXoUPXr0wN69exESEgK9
Xg8AOHHiBDZt2oS3334bqampWL58OZKSkmyuA2v5A9rXtWBNc9x31ur65s2biIiIQHx8PNat
W4fU1FTEx8c3+lF/XFwcMjMzERAQgLS0NLz88stms5Ytac66NPb8hYaGNsv4wMaUqb2Vx/j4
29jTZ2yghYaGIi0tjZvQY9ynLmMDFjD0/vn5+XHjIv38/BAVFcX1shqlpqaa9Kzm5+e36CPy
tr7uHvaVMgjBmMCprLy83OpPc4mMjGSLFi2yGLZy5Uo2YsQIplKpGGOMpaWlsW7dunHh27dv
Z7t37+Y+T506lcXHx9scv63kcjlzcnKyGPb555+zMWPGNDrugIAAlpqayn3etm0b93tYWBiL
ioqyK76G8rpgwQK2cOFCplarGWOMKZVKk7T42FLX1syePZtt3bqV+6xSqdjQoUPZ+fPnmV6v
Z4MHD2ZnzpzhwgsLC5lEImEnT55kjDF29uxZJpFIWFFREZf/unWzcOFCFhERwX3W6/XMxcWF
HTp0iNuWkZHBhEIhW7t2rcl+fGzJH2Pt71qwpin3HV9dr1q1ig0dOpQ7/uDBg6x3797Nku/U
1FQGwGx7/bqxtS7tqdNt27axgIAAFhcXx0pLS+3NeoNsKZM914atZWpqeSzlOyoqyiz9+vvk
5eWx0tJSlpeXx1JTUxu8tv38/FhUVBTLzMy0mDZfOVNTU1lAQICtxeGNy9I5Yqz5z1Nz5puQ
tlJQUGD3j9GYwKmsXc2a9/Hx4R51Ojs7Q6PRcGHz5s3D2LFjkZCQgH/+85/Iy8tr9CNAa4RC
YYuMuTQuMWL8n3P9ZTvkcrndPRYN5fWtt97CiRMn4OLigmeeeQZ79+5FUFCQzfE2pa4ZYzh8
+DB8fX25bTKZDOfOnYO3tzcKCgqQk5OD/v37c+E9e/aEt7c3N5Zs+PDheOqpp7Bjxw4AwK5d
u0wedR0+fBg3btzAsmXL8D//8z94++23MWHCBDzyyCMmddOxY0csX76c22bLebUlf03VEtdC
U1i77/jqWigUYsiQIdzxrq6uJsfbQi6XW3w8aUsdtFRdhoWFcetFzp8/3+xxMZ/Glqm9lqex
jJOj0tLSTHpT64uKimr1Rd7b43VHyMOo1dcR1el0dh/DGENkZCTOnz+PDRs2wNfXF5cuXTJp
eDQl/tagUChMvpjqrjdnbOA01xeXv78/srKycPHiRSQnJ+PgwYNYsWIFCgsL0blzZ6vH2lPX
1ly/fh1PPvmkxfgBoKioCE5OTtx2Z2dnODs7c5+XLFmChQsXYunSpbhz5w769OnDhalUKgQH
B2POnDlW89CpUydIJBK78m1r/pqiNa8Fo8beF7bWdVOkpaWZTRQBDPXEN0GlpevSOLYxLS0N
8+fPh6enJ8LCwnjz1dgytdfyNIZCoUBgYCAyMzPN4jc2AD09PaFQKLh1TOfPn4/U1FSzBmtL
jKNsL9ddS45/JeR+0Ko9oo6Ojrh06RL3uaioiPvDr1KpoFarubCamhpUV1dDr9fjxo0b2Lx5
Mz744AP4+flBr9ejoKAANTU1NsdvK4VCYZYXo8rKSrsn/RgZZ5fW74UwvtGjMTP9G8praGgo
iouLMXDgQCxevBgpKSkQCAQ29VTZWtcNEQgEmD59OtatW4eKigpu+5EjR5CRkYE+ffpg1KhR
SEhI4MKqqqpw7do1BAcHc9uCgoIgk8kQFBSEWbNmmaQRHByMTZs2mUyqKS4uNvljVV5ebnfP
HACb89fa18LOnTsbPZassfcdwF/XVVVVJtdGdXU1VCqVXfedXC632Bu2fv163tndLXFfWWKc
6GNc+9GWcZ6NKVN7LU9jGGfA1+8pBO6NXQXuzVg3jmO19DajxvbeGsdxNhTW1tcdLWhPCCDq
6TXo/ddfmWp1J6lU2iyJeXh4YMOGDdi/fz++//57lJeX48knn0RKSgo2btyIvLw8TJo0CR4e
Hli0aBFycnKgVCoREhKCU6dO4fvvv8eVK1eQnJwMvV6Pb7/9FgKBgFsyp6H4RSIRb96++OIL
bNmyBTt37kRRURF+/fVXnD17Fr1794ZUKsX777+P//3f/0VOTg4KCwtx6tQpdOvWDV27drW5
/GPHjsX69eshk8m4x0KHDh3Cxx9/bNeXkbW8uru7Izs7Gx9++CHu3LmDM2fO4OOPP8bMmTPx
7LPP8sbdsWNHm+ramgkTJuC3337DypUrcebMGXz++eeQSCSYOXMmBAIBJk+ejM8++wzJycm4
evUqPvvsM27WqpFQKIRIJEJRUREiIiLM4s/KysL777+P7OxsHDt2DBcvXsSzzz6LkpISxMbG
4rPPPsOVK1eQl5eHs2fPwtvb26ZeXb78VVRUtMm1EB4ejqSkJLtn5gONv+8mT55sta5//PFH
xMXF4cqVKxg7dqzJ8RqNBs8884xN+UtMTIRMJkNOTg7XO7Z9+3Z4enpi9uzZZvvXfSRqT13W
P64xXF1dERwczBtPU8pkz7XR1DLZUh7jhCO5XI6amhp4enpyM+iNjUlXV1esX78eGRkZKCoq
gkwmQ0BAAHJycrjGp/FxdWJiIvefl5dffhk5OTmIjIzk0vrkk0+4ODw9PSGTybBq1Spun7ry
8/Oxfv16pKWl4dChQ6ipqTGpk88//xyffPIJ/Pz8zOrO3nNkzF9znifjKgTUGCX3s7KyMruP
cXFxAQB8+vlXEIwJnMqSvt5j9QBHR8dGZc4SjUYDpVIJd3d3bsyesWfJ+FkoFEKj0UAsFkOr
1cLBwQHAvV4oFxcXMMZQXl5u9rjUUvy2MM7oFolEEAqF0Ol00Ol0EIvFEAqFqK2t5X6vG2ZL
I7c+4xe4pcdCTc2rMT+MMZSWlkKj0cDd3d3uZa1sqWs+Wq0WSqUSbm5uFs+FWq2GSqVq8NEU
YwxqtRodOnSwGK7T6VBSUoIuXbpw8ev1emg0GohEIohEIq5uJBIJhEL7HgBYyh9jrE2uhaqq
KoSEhCAlJcXuNICm3XeA5bq2dLxWq4VIJDI73hrj0jd1e8msjSe09KpHgL8uGzquJTRHmWy5
NlqzTI1lbOQ1ZeZ7dHQ0/Pz87H7lpjF9S2M27T1Hxnw053kKDAxEamqqPcUhpN0pLCy0+5he
vXoBAMY+G9L6Y0QlEgm6dOliss1SI8n4R6zuH7O6PVoCgcBiw8hS/Lao/0dTLBab5Ktur3D9
MHspFIpGN0IB/rwChvpxc3NrdBq21DUfsVgMd3f3BsOlUqnV3naBQNBgIxQwNMTr90IKhcJm
O1eW8icQCFr9Wrh16xbee+89fPTRR41Opyn3HWC5ri0dbxyTa2sjFLg3Rs64qHljNfW+Akwf
GVvD99ad5ihTeypPUzRH3FFRUdyrOO3VUG9kW193zdFDT8iDoF3NmieEmOvSpQu2bt2KJ554
oq2zQkibMDZm7V25QqFQcD2f7U1iYmKT/6NByIOg1XtESfPPiCb3L1uuhcY88n+QGSeg1J/t
3VBdGl9taYum9o41lqUyWbs2bC1TW5WnJRjfgMT3+NzScc2luc6TLROiCHlYtOpkJWLQHv93
TtoGXQv2e+yxx7gGlnH9UsB6XT722GMICAhot/VtqUx8eW3vZWoJAQEBKCoqsrnMda+P5tBc
58nb2/uhOm/kwXbfTVYihBBCCCEPhqZOVqIxooQQQgghpE3Y3BAtOKSBznyN9xalt7IeuUaj
QUFBQavlxR6MAZWVptvu3LnTqO5rQgghhJAHlc0NUU0Vw+WvalsyLxzFJR2SX6nC/rGW328e
FxeHd955B9evX2+V/Nhj924gJARYswYYMAA4edKwvaKiAh999BGmTZuG0tLSNs0jIYQQQkh7
YHND1CvEAVe/10DXCm1R1wEiDP67A4Ri80XQc3Nz8fXXX2PTpk0YN25cy2fGDgUFwDvvAP/3
f0BcHBAeDuTkGMK8vLywevVqPPHEE9i5c2eb5pMQQgghpD2wefkmoQTwCpHgyr5aDHi9gcWq
GVB6QYfyAj0cewrh5i0CBICuFlDk6CAQAW5DRFBe0aMsT4fHxooheeReY1NbzVDyuw61lQxq
JYOlFyPdvXvXbJH08nJALgfc3AAvL+D4caBDB2DMGOCv9bVRXAxcugQoFEBQEKBUAunpwKOP
AiNGGPZRqYAzZwxhvr5Ajx6mafOFy+WG9I0TNeu9mRKAYQblhQsXGqpmQgghhJCHhl2TlfpO
d0D+dxqLYze1KoYf/16FWye16PSoEHnfaHB0gQpMD6hu6fHre9XI2aVG9n/UKDqhQc4uNU4s
r+aOL72gw4ll1WAMcHAUIO8bywNEZTIZKusNwExJAWbMAD78EFi5Erhzx/D7+PHAX2/DxIkT
wKZNwNtvA6mpwPLlQFISEBNjCD97FpgzB9DrAQcHYOpUYPXqe2nwhcfHAwkJQGGhoSc0PNzQ
0K2voqKi2ZcUIYQQQgi5H9m1oL1QAni+JMGV/bXoP9O0VzQzrgaOPYUY/HfDmqNdhonw32Hl
uHlMi8efFuPxZyS4lqzBU3EyiDoI8EhPIU6/X2M4mAHHF1dj0raOcOptaBs/sQA49Y9q1FdQ
UGD26srQUODIEeD8eWDPHkAkAl55xdDb+dVXwKxZwEsvAV27AuPGAZmZgPHpOGOGn1mzDMf6
+xu2e3sDffsCgYHAyJHWw0eNApYuNcSfkABs2dJwHXp5eeG3336zp9oJIYQQQh5Idi/f1DfU
AXnfmPeK3vxJi6pbDGdia3D6/Wqc/Ec1PEaKIelkCBcIAZcBQog6GJ63S50F0GsNYVW3DI/q
HXvey47IwivG9+zZg2PHjmHz5s1mYVIp8PTThkao8bOPD3D5cp3CCoGOHQ29oUYCgWFsZ04O
0L//ve09exoam2lp/OH2ePHFF/H8888jMjISOp3OvoMJIYQQQh4gdr/iU+QA9AmWIO+bWvR7
5V6vqLaaocczYvQNbWD8qBXaaoDpAE0Fg4OzhYGhfwkKCoJcLseVK1fQo/4ATcBsTKlabRiz
WVenTvfGjRoxZvi3qAhwcrq33dnZ8MMXbo8rV67gs88+Q3x8PL26kRBCCCEPtUYtaN/vFQfk
fa3hejQBoEeABDmf1kKtYNw2tYKh4poegGEMad11SLU1hsYrGODYU4hOjwpxed+9KfnKXD1q
KxiY/t4xbm5uePXVV7FmzRqL+crJuddovHkTuH4dmDz5Xnh5OaCxMPS0Tx/D4/WEhHvbqqqA
a9eA4GD+cKPKSkBbp04sOXToEPz8/DB06FDrOxJCCCGEPODs7hEFAJEU6DVFgvxva9F3uqEH
1H9lB5z+oAZHQirRbZQY4kcE6OAqwOC/S/FnuhZXv9dAq2K4e1YHtydEOJ+gRm0Zw9mNNfBd
3gHjP5Hh54hqlGTr0KGzAFJXIQQiIHNdDUasvPecXiAQQK/XW8zXrVvAzJnAoEFARgbwxReG
cZu3bxsmKh09CpSWGsZ79uplmNXu4WHoSd2/H5g3zxA2bBiQnQ1s3Qr07m2I21p4RQWwdi1w
6JBhKMC8eUCXLsBrrxke35tUuFgMgaXlAAghhBBCHjKNfte8Tg2kzq7Cc//bCYI6zVmmA9RK
hg6dBcBf7S1m7CX867NACOh1hn+ZzjAJyrAjUF3CIHMTgOkAvZZxY0qNMjIysGbNGiQlJZls
X7AAcHEBYmMNSzS5ud17VK/XG3pCRSLDj05n+JFIDONG61KrDcs0ubpargtL4YwZZueLxYb4
jPGLxffGrBrt2rUL2dnZ2LRpk+UECCGEEELuE232rnmRFBi1RgatmplsF4iADm73GqEAIBD/
9SMy/EAACMWGhqiw7nhNASBzNxwrEMOsEQoAPj4+yM3NxZUrV0y2V1QYHpeLRIC7u+l4UaHQ
MHlJLDZsF4sNn+s3QgHD9oYaoQ2FCwSG7SKRafz1G6FarRZJSUl4+umnG06AEEIIIeQh0ahH
80Yu/Rrdjm00R0dHpKSkYNeuXejXrx/eeustfPmlYS1RqdQwnnPp0lbPFq/Tp08jOTkZixYt
wqRJk9o6O4QQQgghba7Rj+bbE3WdSVA6nWGJJkIIIYQQ0rKa+mi+ST2i7YVU2tY5IIQQQggh
9mr9Z+uEEEIIIYSAGqKEEEIIIaSNUEOUEEIIIYS0CWqIEkIIIYSQNkENUUIIIYQQ0iaoIUoI
IYQQQtoENUQJIYQQQkiboIYoIYQQQghpE9QQJYQQQgghbYIaooQQQgghpE1QQ5QQQgghhLQJ
aogSQgghhJA2QQ1RQgghhBDSJqghSgghhBBC2gQ1RAkhhBBCSJughighhBBCCGkT1BAlhBBC
CCFtwuaGaMEhDXRqKzswQK9phhzxYUBtOWtyNBqNBgUFBU3PTwtgDKisNN12584dlJWVtU2G
CCGEEEJagM0NUU0Vw+Wvai2GXdxbi69GlOP3f9c0W8YaUpiiwbcBFUAT2qJxcXF45513cP36
9ebLWDPZvRsICQHWrAEGDABOnjRsr6iowEcffYRp06ahtLS0TfNICCGEENIcbG6IeoU44Or3
GugstEUHznZAZ28RRA6C5sybRY9PFCNgTyegkUnl5ubi66+/xqZNmzBu3LjmzVwTFRQA77wD
/N//AXFxQHg4kJNjCPPy8sLq1avxxBNPYOfOnW2aT0IIIYSQ5iC2dUehBPAKkeDKvloMeN3B
LNzBSQAIgPKrepRe0MHZUwjXgSLTnRhQekGH8gI9HHsK4eYtMmlQVt9luCPXQtJRAMfeQvyx
Q43HJ0nw+NNiMD2gVjCobutRUaiHcx8hRB0MB+tqAUWODgIR4DZEBOUVPcrydHhsrBiSR0xb
rHfv3oW7u7vJtvJyQC4H3NwALy/g+HGgQwdgzBhAIjHsU1wMXLoEKBRAUBCgVALp6cCjjwIj
Rhj2UamAM2cMYb6+QI8epsXnC5fLDenLZIbPERHm5+Gxxx7DhQsXzAMIIYQQQu4zdk1W6jvd
AfnfaRocC1rwvQY307UQioGMd6pxckU19whdq2L48e9VuHVSi06PCpH3jQZHF6jA9Ibwogwt
0v9HhU6PCVF1S4/vp1Ri4GwpXPoZslhbxpD731r8trEGxxaqAMG9Bqbqlh6/vleNnF1qZP9H
jaITGuTsUuPE8mqzPMpkMlTWG4CZkgLMmAF8+CGwciVw547h9/Hjgdq/eoBPnAA2bQLefhtI
TQWWLweSkoCYGEP42bPAnDmAXg84OABTpwKrV99Lgy88Ph5ISAAKCw09oeHhhoZufRUVFZAZ
W6qEEEIIIfcxm3tEAUOvqOdLElzZX4v+M817RXs+L8GgNwzbuwwT4+sJFegRKMHjk8TIjKuB
Y08hBv9d+le4CP8dVo6bx7R4/Gkxzm9Xo/skMdx9RHD3LRUSEwAAIABJREFUEeGP7WqUXdGh
12RDl6TUVQCfcClKzotx+3QVRNJ76Tr2FOLxZyS4lqzBU3EyiDoI8EhPIU6/bz5mtaCgAG5u
bibbQkOBI0eA8+eBPXsAkQh45RVDb+dXXwGzZgEvvQR07QqMGwdkZgLGp+OMGX5mzTIc6+9v
2O7tDfTtCwQGAiNHWg8fNQpYutQQf0ICsGVLw+fAy8sLv/32my2nixBCCCGkXbN7+aa+oQ7I
+8Zyr6hQcu93WVcBOg8WovQPHQDg5k9aVN1iOBNbg9PvV+PkP6rhMVIMSSfD/p0eFaLy+l/d
owzQVgMdu5lnTyA06Qw12e4y4N7jeqmzAHqt6T579uzBsWPHsHnzZrPjpVLg6acNjVDjZx8f
4PLlOuUTAh07GnpDuXQFhrGdOTlA//73tvfsaWhspqXxh9vjxRdfxPPPP4/IyEjodDr7DiaE
EEIIaUfs6hEFAJED0CdYgrxvatHvFfNe0bp0asCxl6Exqa1m6PGMGH1DLR/jPVeKo29X4Vx8
DapLGAa96YAuw0UW922soKAgyOVyXLlyBT3qD9CEeQNXrTaM2ayrU6d740aN2F/DD4qKACen
e9udnQ0/fOH2uHLlCj777DPEx8dDJGre+iGEEEIIaU2NWtC+3ysOyPtaY9rjqDfdp/KmHrVK
hu4TDW3dHgES5HxaC7Xi3rpLagVDxTXDgdd+0MAvqgOGLemA0bEyeM+TwpLaMgZtNTObva9V
MZN1TrU1hsZv3WWe3Nzc8Oqrr2LNmjUW487JuddovHkTuH4dmDz5Xnh5OaCx0BPcp4/h8XpC
wr1tVVXAtWtAcDB/uFFlJaCt14tb36FDh+Dn54ehQ4da35EQQgghpJ2zu0cUAERSoNcUCfK/
rUXf6YYeTm0NQ3GWDlkfqyF0AEqydZi0vSMcHA3djP4rO+D0BzU4ElKJbqPEED8iQAdXATdm
1KmPEGdW1+DqQQ1qyxnEMgG6TzT0oAqEQP63Gtz+VYu7v+mg1wI//b0KLv1F6P+qA6pu6nH1
ew20Koa7Z3Vwe0KE8wlq1JYxnN1YA9/lHbi8CwQC6PV680IBuHULmDkTGDQIyMgAvvjCMG7z
9m3DRKWjR4HSUsN4z169DLPaPTwMPan79wPz5hnChg0DsrOBrVuB3r0NcVsLr6gA1q4FDh0y
DAWYNw/o0gV47TXD43uTEyYWQ2BpbAIhhBBCyH1GMCZwKkv6eo/VnRwdHc226dRA6uwqPPe/
nSAQA5pKBskjAmgqGfRaQOpiubHEdIBaydChs8Bk6aYLn6nRebAIEicBRBIBakr1yPpEjZ7P
SjBwtgM3JlUgNPwwnWEGulCEe72egnv76HX39qs7djUjIwNr1qxBUlKSSb4WLABcXIDYWMMS
TW5u9x7V6/WGnlCRyPCj0xl+JBLDuNG61GrDMk2urpbr0lI4Y4bZ+WKxIT5j/GLxvTGrRrt2
7UJ2djY2bdpkOQFCCCGEkFZSWFho9zG9evUCAIx9NqRxPaKAoVd01BoZtGoGiVjArddZf93O
+gQioIOb6T41pQzZCWqEnnSC4K+GnTOEeHyiDk69DRuE9cZlCsSAtRGSwr9KJqjXUPTx8UFu
bi6uXLmCvn37ctsrKgwNS5EIqLfMKIRCw+QlI7HY8GOJVGq6ry3hAoFt8Wu1WiQlJWH27NkN
J0AIIYQQcp9odEMUALfGZ1NJXQR4bJwER+er0GWYCHotIO4IdB4swqNjmpRFM46OjkhJScGu
XbvQr18/vPXWW/jyS8NaolKpYTzn0qXNmmSzOH36NJKTk7Fo0SJMmjSprbNDCCGEENJkjX40
3yKYYYKRWCZo9Cs8G0NdZ5KTTmdYookQQgghhFjX1EfzzdOl2VwEgLhj6zZCgXuPy6VSaoQS
QkwpFArk5+e3dTYIIeSB1L4aooQQ0soUCgXSrLxZYv369XD9a3ZhWloaXn75Zcjl8tbKHiGE
PNCoIUoIaZcCAwMRGBjYbI2+6OhoBAYGYvv27dy2tLQ0rF+/3mpDFADXEA0ICEB+fj48PT2b
JU+EEPKwa96ZQIQQYgOFQoHt27fD1dUVCoUCCoUCcXFxiI6ORlxcHADAz8+P+70h+fn5UCgU
8PPz403TGFd0dDS3LSAgAAAabIimpaWZxK1QKADca5gSQghpGmqIEkJalUKh4BqcxgadQqGA
v78/QkND7YorLS0NYWFhLZFNLv66jeG0tDSuV1Qul2P79u1ITU1tsfQJIeRB164ezdfW1vLu
wxiDUqlssfhbMn1bqetO42+D9BurOeq3JbX3/D0soqOjERoaatKr6OrqioCAAK6Hsj0w9n7W
ZRwmIJfLERoa2q7ySwgh96N20RBNSkrCgAED8Oabb/Lue+DAAQwaNAiMMd59GxN/S6Rvqx07
dmDIkCHo169fm6TPp7a2FhcvXjTb3lz121D8TT2+Oc8/abrExESLDThXV1ebHrG3lsTERLPe
1rS0NLi6ukIul0OhUCAqKqqNckcIIQ+GdtEQnTx5Mp5//nnIZDKb9k1OTrbrfev2xN8S6dtq
3rx5ePfdd63msyXT57Ns2TL861//spin5qjfhuJv6vHNef5J81i/fr3ZNnsescvlcqxfvx5y
ubzFZrDXn5Rk7CE1Nj5bMm1CCHlYtEpDNCMjA+np6Sa9VTqdDseOHUN6ejqUSiUcHR0hEonA
GMP58+exf/9+lJSUcPvr9XrcuXMHly5dwuXLl1FdXW2Wjl6vx+nTp5GYmIisrCyTXkO++PlY
S//q1atISkqCUqnEwYMHoVAocPnyZXz33XfQaDQoLy/H0aNH8fvvv6OqqgrJyck4duwYNBqN
WTpdu3a12Mi0pfyMMZw7dw6JiYk4e/asWa9pWVkZDh8+jH379iEzMxNardbm8hvjFzfwblNb
6reqqgpJSUlITEzErVu37Iq/NfLHV398+OqXL/7S0lIcOXIEhw8fhkKhQGFhIZRKJfLz8/Hz
zz/j0qVLAIDKykocO3YMv/76q03xq9Vq/Prrr5DL5WCMIScnB9988w3Ky8tNjrd2/zRH/RiF
hYUhOjoa/v7+iI6ORmJiIgDbJgDJ5XJER0dDoVDA1dUV27ZtQ35+PubPn9+ovGzfvh3bt2/n
4q2bTv2Z8XK53KQnVy6X0/qihBDSRK3SEP3+++/x9NNPm4zREwgEyMjIwNq1a7k/aAqFAv/4
xz/w7bffYsuWLZgxYwa3v0KhwI4dOxATE4PQ0FCzxlpJSQmmTZuG3NxceHh4IDY2FhMnTjRJ
01r8fKylv2fPHoSGhmLbtm3YvXs3Jk+ejCNHjmDVqlXYuXMnUlJSMGPGDHz44YdYuXIl7ty5
gw8//BDjx4+3edwiX/krKysRFBSEo0ePokePHti7dy9CQkKg1+sBAMeOHcPMmTMhk8kwcOBA
xMTEICYmxqa01Wo1IiMjkZ6ejvT0dISHhyM8PBzJyclmeWyoftPT0zFjxgw4OTlBKpXCx8cH
ubm5dsXfkvnjqz8+fPXLF/+PP/6IV199lSvPc889Bz8/PzDGoNfrsXjxYmzcuBGA4d759NNP
MWvWLJviv3nzJiIiIhAfH49169YhNTUV8fHxJkMV+O6fptZPXXFxccjMzERAQAC3LmfdRmBD
jI3FqKgokwZhaGgoN3nIXmFhYdi3bx9SU1NNJiUlJiaaTZwKCAjg9omLi0NUVJTdk6sIIYTU
MyZwKisvL7f601R//vknA8CKioqYQqFgcXFxjDHGvv32W5aamsoYY2zlypVsxIgRTKVSMcYY
S0tLY926dTOLSy6XMycnJ7Pts2fPZlu3buU+q1QqNnToUHb+/Hm74udjKf3CwkImFotZVVUV
++6779iTTz7JGGNszZo17O2332aMMfbmm28yf39/ptVqGWOM1dTUMFdXV7Z3716TuJKSktiA
AQPsSp8xxhYuXMgiIiK4z3q9nrm4uLBDhw4xxhhbsGABW7hwIVOr1YwxxpRKJdu2bZtdZY+M
jGSLFi2yGMZXv9u3b2e7d+/mPk+dOpXFx8fbHH9L54+v/vjw1a+1+LVaLXv88cdZdnY2F37g
wAHWuXNn7nNERARbuHAh93n//v1s8ODBNud/1apVbOjQoVz5Dx48yHr37s3tz3f/NLV+rElN
TWUAzLZHRUWZfA4ICOC+LxhjJvUbFhbGoqKiWGpqKgsNDWWZmZkNplc/3sbuQwghhLGCggK7
f4zGBE5lrbJ806OPPoohQ4bgp59+QmlpKTZs2IBZs2bhl19+wapVq7j9fHx8uHF8zs7OFh9d
C4VCs95AxhgOHz6MRYsWcdtkMhnOnTtnsp8t8fOxlL5QKIRUKkXHjh3h4ODAhUulUqhUKu73
p59+GiKRiPvs4+ODy5cvNzl9ADh8+DB8fX2xbNkyaDQa1NbWYsKECXjkkUcAAG+99Rbmzp0L
FxcXjB49Gi+99BKmTZtmd/mtsVa/8+bNQ15eHhISEvDnn38iLy8PQ4cObdb0m5I/vvrjw1e/
1uK/evUqbt68iUGDBnH7d+vWzeQ8C4VCk95HkUhkEs6Xf6FQiCFDhnDld3V15cpvy/3T1PoB
DD2arq6uZo+8bZl5np+fj7S0NG6ppPrjN+VyOeLi4hAQEIDo6OgmLThvnBFPCCGk5bXaOqKB
gYFITk5G9+7dMW/ePOzduxcajQYdOnRotjSuX7+OJ598stnia271G5BqtRpeXl7NErdKpUJw
cDDmzJljMdzf3x9ZWVm4ePEikpOTcfDgQaxYsQKFhYXo3LmzzenodDq788YYQ2RkJM6fP48N
GzbA19cXly5dstiIaUz8zXE8X/3x4atfa/FfvnwZjDEUFxfDw8OjTfIPWL9/miP+tLQ0i7PM
FQoFb8NRoVCYNFjrrh9qXIw+ICCgWRacb08z9wkh5EHXarPmAwMD8fnnn+PZZ5/FggUL8Mkn
n6B79+5cuEqlMlk/s6amBtXV1WZj0BQKhdm+AoEA06dPx7p161BRUcFtP3LkCDIyMuyKn4+l
9PV6PTfOVa/Xc3E6ODigpqaG2y8nJ4fb7+bNm7h+/TomT55sEn9FRQXKysoanAhiKX0ACA4O
xqZNm0wm4BQXF3OTKUJDQ1FcXIyBAwdi8eLFSElJgUAgsKtX2NHRkZswAwBFRUVcPq3V740b
N7B582Z88MEH8PPzg16vR0FBgUnd8MXfkvkD+OuPD1/9Wou/T58+8PLywueff24SVpdUKuUm
FzHGkJWVBaVSyZWPL/9VVVUm9V1dXQ2VSgXGmE33T1PrBzD0NBonJtW1fv163jco+fn5cW9R
qkuhUGD9+vXYtm0bANMF5xMTExEYGGhz/gghhLS+VusRHT9+PPz9/TFx4kQIBAKMGjWK+yNx
5MgRHDhwABqNBr/99huGDh2KuLg4qFQqLFmyBB9//DG++OILpKen49SpU9BoNAgODoa3tzfm
z5+PgQMHYsOGDYiMjISvry9GjRqFyspKjBw5ElFRUTbFz8da+g4ODlyDQKvVcr1yTk5OyMjI
wNWrVwEAt27dwsyZMzFo0CBkZGTgiy++QNeuXQEACQkJ+OOPP3D8+HFuv969e2Pu3Lno27cv
b/k3btyIxYsXY/To0Zg4cSIcHR3h7u6OJUuWAAAGDRqEkJAQTJkyBQ4ODjh16hRiYmLs6oGb
MWMGtm3bhpEjR8LDwwPjx49HZGQkUlNTrdbvRx99hMDAQCxfvpybANO9e3f85z//gUwmw9Kl
S63GL5FIWjR/H3/8MW/98eGrX2vxi8Vi/Pe//8Vrr72GM2fOQCaT4fbt2ybxh4aG4oUXXkBk
ZCSkUimcnJxQUlKCNWvWICYmxmr8KSkp+PLLL1FVVYWTJ0/Cz88PH374ITd5KzY21ur9w5d/
e+Tn52P79u1cD2haWho8PT1tehS+b98+bjF8Yzz5+fnYt28f1wNaf8F5mtVOCCHtm2BM4FSW
9PUeqzs5Ojo2S2JqtRpSqdTsd+MyN8ZH10KhEBqNBmKxGFqtFg4ODtzsXZFIBKFQCJ1OB51O
B7FYzI27NMalVCrh5ubGxWdL/HyspS8QCKDX6yEWi7neUZFIxPWOCoVCLFy4EC4uLoiNjYVC
oTDJnzF+gUAAoVBosXy2ll+n06GkpARdunSxOJa2tLQUGo0G7u7ujVoqSaPRQKlUwt3d3e76
rayshFarhYuLCxhjKC8vh7OzM2/8rZU/wHr98bGlfvniLy4uhrOzM+RyOYKCgkx6Rmtra6FS
qeDi4oLa2lpotVp07NiRN35L5ddqtRCJRGblt3T/2JN/a4xLLuXn53MNRD8/vwYfo9d973xd
iYmJyM/Pt/iY3/iaUONi85bibiheQggh9issLLT7mF69egEAxj4b0rrvmjc2POv/bukPtvGP
Y/1/6x5j6TixWAx3d3ezbXzx8+FLXygUmvxr/N34uaKiAhKJBCKRyCx/tsRva/lFIhHXy1qf
QCCAm5ubxTBbSSQSdOnSxSwv9Vmq37pjQgUCgVkjtKH4Wyt/gPX642NL/fLFb7w2VCoVampq
uEfnxrzWzbela9dS/JbKb+xltnRdWbo+bc2/NcZGoaenZ5MmEzX0RqO6C85HR0dzk6NozCch
hLRf7eLNSg+6L7/8EikpKfjmm28QHx/f1tkh7dzZs2cRGxuLqqoqrF69uq2zc9+gBecJIeT+
06qP5h9WdSfJ6HQ6s8ephNSl0Wi4R+c6ne6hfTVpYGAg/Pz8EBYWZtKDWn/pJlsZx5QCoEfz
hBDSTO6rR/MPq7rDEAjhI5FIbJ6g9SAzPn6vP86zsY/1/fz8mjwsgBBCSPOihighpF2yZaF7
e9BYUUIIaX9ojCghhBBCCGkT1BB9gBkXQG9NjDEolcpWT7eu+ov9k8YxLhn2IGkP1ycxZ3zB
BCHk4UMN0QeQWq3G//t//8/kXeF13/5Ud1tdtbW1uHjxYpPSPnDgAAYNGmTXG5Gay44dOzBk
yBD069ev1dO2RXPUb2vIzs7GhAkT0Lt377bOSrNry+uTNKy6uhrh4eEmb0YjhDwcqCH6gNHr
9XjjjTfw1FNPYfz48dz2P/74AwsXLsSQIUPQoUMHzJw5Exs3bjQ5dtmyZfjXv/7VpPQnT56M
5OTkRi1G31Tz5s3Du+++225nmTdH/baGJ554AkuWLHkgJ0y15fVJGubq6orY2Fi89tprjZqB
Swi5f4l6eg16//VXplrdqblmfev1epw5cwa//PILtFotPDw8TP4gqFQq/PLLL8jKykKnTp24
Bc/VajXkcjlu376NRx99FBcuXMDx48fRvXt3SKVSXLhwARcuXMDVq1fh7OwMmUyGq1ev4vff
f8eNGzfQs2dPAPfe0X38+HGo1Wp069aNS7+4uBi//fYbfv/9d/Tv3x9KpRI//PADysvL0b17
dwCGV3T+8MMPuHbtGoRCIVauXAkA6N+/P2/8AFBWVoYff/wR586dQ3V1Nbp27WqyAH5z2Lx5
M65cuYJ//vOfJts9PDwQFBQEJycnnD59GidOnMCYMWNM9jly5AiEQiGmTJlid7p6vR53795F
QUEBrly5gj59+pg1ZJpafr7rBzC8Xz4lJQXh4eFmxzd0fdmaP77zy4evfvnyx6eqqorLv5ub
m8kLBGxhTD87OxslJSVIT0/H4sWLuXC+8ls7P7bcX3zx85XP2vmzdn3yfb8Y8d3/fJp6fZWW
luLo0aPIzc1Fly5dcOfOHQDAn3/+id9//x1qtRru7u6orKzEL7/8gtu3b+Pxxx/njd/W8vPd
f029Px555BFIJBJs2LABr776Kv1ngZD7RFlZmd3HuLi4AAA+/fyr1usRLSkpwbRp05CbmwsP
Dw/ExsZy7x0HDIt4z5kzB3q9Hg4ODpg6dSq3mPfNmzcRERGB+Ph4rFu3DqmpqYiPj8ebb74J
wPCH5N1338XcuXO59PR6PRYtWoS8vDwAhtdLBgUF4ejRo+jRowf27t2LkJAQ7vH0iRMnsGnT
Jrz99ttITU3F8uXLkZSUhJiYGACGd2LPnDkTPXr0wM2bNzF8+HCEh4dj8ODBNsV/7NgxzJw5
EzKZDAMHDkRMTAwXd3Oprq7G2rVrsXz58gb3sfRGJrVajcjISKSnpyM9PR3h4eEIDw9HcnKy
zWkrFArs2LEDMTExCA0NNfsj0tTy810/fKxdX7bkj+/8WmNL/fLlj096ejpmzJgBJycnSKVS
+Pj4IDc31+bjs7Ky8MYbb4AxBmdnZ+zdu9cknK/8fOeH7/7ii5+vfHznz9r1yff9AvDf/3ya
en39+OOPePXVVwEYrqfnnnsOfn5+YIxBr9dj8eLF3BMOgUCATz/9FLNmzbIpflvKz3d+m3J/
1PX666/j7Nmz+Omnn+w6jhByHxsTOJWVl5db/WkOs2fPZlu3buU+q1QqNnToUHb+/Hmm1+vZ
4MGD2ZkzZ7jwwsJCJpFI2MmTJxljjK1atYoNHTqUqVQqxhhjBw8eZL179+b2P3v2LJNIJKyo
qIgxxphSqWRRUVFc+MKFC1lERAT3Wa/XMxcXF3bo0CFuW0ZGBhMKhWzt2rUm+zHG2HPPPcc+
/PBDbvvAgQNZYmKizfEvWLCALVy4kKnVai5/27Zts70CbXDs2DEmEAi4OrLkv//9L/Py8rIY
FhkZyRYtWtSkPMjlcubk5GS2vanlt3b91JWUlMQGDBhgss2W64svf7ZcP3waql9b8sdn+/bt
bPfu3dznqVOnsvj4eJuO1ev1zNvbm+Xm5nLbjhw5wnr16sV95iu/LefH2v3FFz9f+Wy9vhq6
Pvm+X/jufz5Nub60Wi17/PHHWXZ2Nhd+4MAB1rlzZ+5zREQEW7hwIfd5//79bPDgwTbFb0v5
+c5vc9wfRn/7299YeHi43ccRQtpGQUGB3T9GYwKnslZZR5QxhsOHD2PRokXcNplMxk2muXr1
KnJyckwecfXs2RPe3t5IS0vDqFGjIBQKMWTIEG78n6urKzQaDbf/8OHD8dRTT3G9Hrt27cL8
+fO58MOHD8PX1xfLli2DRqNBbW0tJkyYYPJ4TygUomPHjiY9isaekx49euDq1atceVQqlclj
L77433rrLcydOxcuLi4YPXo0XnrpJUybNq3plVtHbm4uevbs2aZjJIVCocVHak0pP9/1w6eg
oID3+uLLny3XT2PZkj8+8+bNQ15eHhISEvDnn38iLy8PQ4cOtSn9Gzdu4OLFi/Dy8uK21b+G
rJXf1vNj7f7iq1++8tl6fTV0ffJ9v/Dd/3yacn1dvXoVN2/exKBBg7j96z/2FgqFJr2PIpHI
JJyvfq2V35bz25z3x8CBA5GVlWX3cYSQ+1OrLmh//fp1PPnkk2bb2V8zWIuKiuDk5MRtd3Z2
tmuc3JIlS7Bw4UIsXboUd+7cQZ8+fbgwlUqF4OBgzJkzx2ocnTp1sjhJY+nSpZg2bRr++c9/
4s6dO4iIiDBpIPDF7+/vj6ysLFy8eBHJyck4ePAgVqxYgcLCQnTu3NnmMlrTsWNHlJSUgDHW
6PFVOp2uWfJSX3OUv6Hrh48t1xdf/my9fvhYqt+mXv+MMURGRuL8+fPYsGEDfH19cenSJZsb
ASqVCjqdDmVlZWZvMaq7T0PlN+bflvPT0P3FFz9f+Vr6/uK7//k05fq6fPkyGGMoLi6Gh4dH
o/LfHNevtfPbXPcHYBhP3K1btybHQwi5P7TKGFGBQIDp06dj3bp1qKio4LYfOXIEGRkZ6NOn
D0aNGoWEhAQurKqqCteuXUNwcDD3uaamhguvrq6GSqUyWYYlKCgIMpkMQUFBJuOjACA4OBib
Nm1CSUkJt624uJh79zRgWHezbi9IXd9++y3i4uKwatUqJCQkmI3D5Is/NDQUxcXFGDhwIBYv
XoyUlBQIBAKz9BITE3HgwIEGatK6iRMnorKyEteuXWtwH61W22Bj09HR0WT5lKKiIruXuVEo
FFCpVGZredpafkv4rp+6KioqUFZWZpJvW64vvvzZcv3waah+bcmfNTdu3MDmzZvxwQcfwM/P
D3q9HgUFBSb3izWenp7o0aMHPv30U27bH3/8gbKyMq6XzVr5bT0/1u4va/HbUj5br6+Grk++
7xe++59PU66vPn36wMvLC59//rlJWF1SqZRbN5j9NWlIqVRy+ee7fq2V35bza+v9Ycv3W05O
Dvz9/a3uQwh5cAjGBE5lSV/vsbqTo6NjkxOqqKhAZGQkjh8/jlGjRqGyshIjR45EVFQUBAIB
bt68iXnz5sHNzQ3Dhg1DdnY2Zs6cieeeew4pKSlYsGABqqqq8N1338HPzw9TpkxBWloaVqxY
gdjYWC6df//73/jxxx/xzTffmKSvVCqxePFi/PLLL5g4cSIcHR3h7u6OJUuWoKysDJs2bcLR
o0fx66+/4vXXX0evXr0QERHB9UB8/fXXePfdd/Hkk09CqVSiY8eO+Nvf/oY5c+ZAKBRajb9D
hw6IiYnBzz//jClTpsDBwQGnTp2Cv78/3nnnHZN8Tpo0CRKJBD/88EOj6nnatGkYMWIEoqOj
Tbbn5ORg586dSE1Nxfnz5zF79mz4+/sjIiKC2+ePP/7ApEmT0KdPH3h4eGD8+PGIjIy0aRmf
L774Aunp6Th16hSys7MRGBgIb29vzJ8/n5ucYUv5G8J3/SQkJOCPP/7A8ePHkZWVhVdeeQW9
e/fG3Llz0bdvX6vXFwDe/PGdX1tYq1++/Fmj0WgwZcoUlJeXcxNICgoK8Ouvv2LZsmVYunQp
bxwnTpzAzJkzMXbsWHTp0gVubm7YvHkz3njjDWzcuJG3/NbOz507d3jvL2vxi0Qi3vLxnT9r
12dhYSHv9wvf/c+nqdfXmTNn8Nprr2H48OGQyWS4ffs2zpw5wzVIMzMz8cILLyA0NBRSqRRO
Tk6IjY3FihUrEBMTYzX+n3/+mbf8fPefrfcH3/fbpUuX8NRTTyE/P9/uVSMIIW2jMUuu9erV
CwAw9tmQ1muIGmm1WiiVSri5uVl8fKxWq6FSqUxdsGxcAAAgAElEQVQeEWq1WgD3xpMJhUJo
tVqIRCJotVo4ODhw+zLGoFarG2wc6HQ6lJSUoEuXLlx8er0eGo0GIpEIIpEIOp0OOp0OEomE
+yPz8ccfY9iwYXBxcYGDgwPu3r2L1atX48UXXzRZKshS/HXzVlpaCo1GA3d3d7PZ64Bh0XOB
QNDoNRxv3LiB8ePHIzMz0+SRpLFMxrFjOp0OjDGTugMMjRqlUgl3d3e7Hu8bZ8+KRCIIhUIu
PbFYDJFIBMC28vNp6Pox1ptQKGwwfcDy9WVkS/6snV9b8NWvtfzxqayshFarhYuLCxhjKC8v
t+uPOWMMd+7cQdeuXaHT6aDRaMzGivKV39L5seX+siV+vvJZO3/Wrk9jr6G17xdb73+++m3q
9VVcXAxnZ2fI5XIEBQWZ9IzW1tZCpVLBxcUFtbW10Gq16NixI2/89ny/8n1/8+Xf2vcbYwwz
ZszAlClTMHv2bIt1SAhpf+67huj96O7duxg6dChu3Lhh8oczPj4e3t7eNvVataajR49iy5Yt
+PLLLx/IRckJaU3t8f7/6aef8MILL6CiouKBWW9z8+bNqKiowIoVK9o6K4QQOzS1Idqqk5Xu
V25ubnj22WcxdepUjBw5EhqNBo888giGDRuGZ555pq2zZ2bSpEl4/PHHcfToUTz77LNtnR1C
7mvt7f4/e/YsYmNjUVVVhdWrV5u9vOJ+VFRUhL59+2Ly5MltnRVCSCujHlE7MMZQVVWFTp06
PTC9EIQQ27SX+1+j0XCPznU6Xbt9pS0h5OFAPaKtSCAQNMu6kYSQ+097uf8lEgkNuSGEPDBa
7RWfhBBCCCGE1EUN0RbAGENlZWVbZ4MQQgghpF1r84aovQumt3e7d+9GSEgI1qxZgwEDBuDk
yZNtnSVCCCGEkHapVcaI3rp1C2vWrMEXX3wBd3d3TJ8+HTqdDj/88AP69u2Lr7/+ujWy0eIK
Cgrwzjvv4Nq1a5DJZOjevTtycnIwevTots4aIYQQQki70yoN0W7dumHLli0oKCjAgAEDEBcX
BwB4//33MW3aNG4/lUqFM2fOQKlUwtfXFz169ODCiouLcenSJSgUCgQFBUGpVCI9PR2PPvoo
RowYYVM+ysrKcOLECVRVVcHT0xPDhg2DWCxGfn4+rl+/jm7dumHAgAGorKxEZmYmZDIZRo4c
aXP6crkcXl5e3CzWum8tAgyv0UtPT0dlZSXGjRtn9j5lvV6PzMxMFBYWon///vDx8TGZnWt8
dd/ly5fh5eWF4cOHm4Q3VD5CCCGEkPaoVR/Nd+jQgZvtqdFooNFo8N577wEwrI03Z84c6PV6
ODg4YOrUqVi9ejV37IkTJ7Bp0ya8/fbbSE1NxfLly5GUlISYmBib0j527BhmzpwJmUzGvXLS
eKxer8fixYuxceNGAIbZsZ9++qnJ++r50o+Pj0dCQgIKCwsRHh6O8PBwpKenc8enp6djxowZ
cHJyglQqhY+PD3Jzc7nwkpISTJs2Dbm5ufDw8EBsbCz3OkPA8FaZoKAgHD16FD169MDevXsR
EhLCvQvcWvkIIYQQQtqjVu8uu3jxIhITE3Hu3Dn4+PjglVdeAWMMs2bNwp49e+Dv7w8A8Pb2
Rt++fREYGIhRo0bhpZdeQteuXTFu3DhkZmZi586dAGwfY/rVV1+hT58+GDt2LBwcHPDll1/i
q6++AgD07dsX48aNg06nAwB06tQJL774IuRyOXc8X/pLly5F165dkZCQgC1btpilf+nSJUyf
Ph1jxowBAIwdOxaHDx9G//79ueOfe+45vP766wCAESNGYPTo0bh8+TK8vb0RFRUFLy8vLFmy
BAAwcuRIdO7cGUlJSZgyZYrV8hFCCCGEtEet3hD18PDAsGHDUFNTwz1WLigoQE5ODtcoA4Ce
PXvC29sbaWlpGDVqFADDO5A7duyI5cuXc/vZurD0W2+9hblz58LFxQWjR4/GSy+9ZDIsQCgU
cr2LALh3stfVlPTnzZuHvLw8JCQk4M8//0ReXh6GDh0KwNCYPXz4MBYtWsTtL5PJcO7cOe7z
4cOH4evri2XLlkGj0aC2thYTJkzg1jXkKx8hhBBCSHvT6g1RV1dX9OvXD/369eO2GXsVi4qK
4OTkxG13dnaGs7OzyfGdOnVq1GLO/v7+yMrKwsWLF5GcnIyDBw9ixYoVKCwsROfOnW2OpzHp
M8YQGRmJ8+fPY8OGDfD19cWlS5fMFse+fv06nnzySYtxqFQqBAcHY86cORbDm6t8hBBCCCGt
pVXHiFZXV1tcX7NPnz4YNWoUEhISuG1VVVW4du0agoODuW3l5eXQaDSNSjs0NBTFxcUYOHAg
Fi9ejJSUFAgEAi4+qVSK8vJyAPcmBSmVSpNH/3zpV1ZWQqvVmm2/ceMGNm/ejA8++AB+fn7Q
6/UoKChATU0NAEOv6vTp07Fu3TpUVFRwxx05cgQZGRkAgODgYGzatAklJSVceHFxMfLz820q
n9HOnTtNhhwQQgghhLSVVukRvX37Nj744AOkpaXBzc0Njo6OeO+999ChQwcAhobY/v37MW/e
PMyaNQvDhg1DdnY2tm7dit69e+P27dvYtGkTjh49itLSUsyaNQu9evVCREQEPDw8bMrDoEGD
EBISgilTpsDBwQGnTp1CTEwMd3xoaCheeOEFREZGQiqVwsnJCSUlJVizZg3CwsKspl9RUYG1
a9fi0KFDuHz5MubNm4cuXbrgtddeg7e3N7p164bAwEAsX76cm4DUvXt3/Oc//4FMJsPSpUux
YcMGREZGwtfXF6NGjUJlZSVGjhyJqKgoAMDGjRuxePFijB49GhMnToSjoyPc3d25MaN85TP6
9NNPAQC//PJLs5xbQgghhJDGEowJnMqSvt5jdSdHR8cmJaLX66HVaiEWi8EYg06ng0QisTi+
Uq1WQ6VSwdXV1eR4jUYDkUgEkUgEnU7HxSEU2t6pyxhDaWkpNBoN3N3dzZY2qq2thUqlgouL
C2pra6HVatGxY0fe9BljqK2thVgshlAo5MLFYjFEIhEXv7HH1MXFBYwxlJeXmw090Gq1UCqV
cHNzs1g/Op0OJSUl6NKli1k4X/kAQ09zSEgIUlJSbK43QgghhBBLCgsL7T6mV69eAICxz4a0
To+oUCiEg4MD97lu46w+qVQKqVRqdnzdbWKxuFHrYwoEAri5uTUY7uDgwOWz7u986QsEApvy
V3dMqEAgMGuEGo91d3dvMI8ikQhdu3a1GMZXvlu3buG9997DRx991OA+hBBCCCGthVY7f4h0
6dIFW7dutasXmRBCCCGkpVBD9CFirSeaEEIIIaS1tVlDVKFQYPv27XB1dYVCoYBCoUBcXByi
o6O5V4ASQgghhJAHV5s0RBUKBdfgNE5KUigU8Pf3R2hoaFtkiRBCCCGEtLI2GSwYHR2N0NBQ
k5nxrq6uCAgIQEBAQJPiNr6bnYCbzd8UVJ/NQ61WNym8tdD5bj3NcX8+DBhjUCqVVvdpqfuL
zg8hLa9NGqKJiYkWG5yurq7w8/NrVJzZ2dmYMGECevfu3cTctS+1tbW4ePGi3cf9+9//Rrdu
3bB27dpGpZuUlIQBAwbgzTffbNTxxGDHjh0YMmSIyZvE7AlvLQ/q/dNeNfX+NGrs90N7YUv+
Dxw4gEGDBpm8XMSope4v+v4jpPW02fTp9evXm20LCwtrdHxPPPEElixZ0qjXf7Zny5Ytw7/+
9S+7j1u0aBGGDx9uthSWrSZPnoznn38eMpmsUccTg3nz5uHdd99tsB75wlvLg3r/tFdNvT+N
Gvv90F7Ykv/JkycjOTnZ4rrKLXV/0fcfIa2nTcaIhoWFITo6musZ9fPzM3tUbyuVSoUzZ86g
vLwcpaWlZl9WxnClUglfX1/06NHDJNz4Os/Lly/Dy8sLw4cPN4mjrKwMJ06cQFVVFTw9PTFs
2DCb1jBVq9U4d+4cxGIxfH19ceHCBVy8eBEBAQFwcnKyK3+NWTMVAFxcXCAQCJCbm4usrCwM
GDAAPj4+Npff0dER1dXVYIzhjz/+wMWLFzFp0iSTtUqrqqqQnp6OyspKjBs3Dt26dQMAXLhw
AXfv3oVer8fQoUPh6uqKq1ev4tq1axCJRBg7dixv+rZoKH2jxp6/jIwM6HQ6dO3aFQMHDgRg
eJnA8ePHIRQK4ePjw72YgC//Xbt2tVomvnBL8vPzcf36dXTr1g0DBgxAZWUlMjMzIZPJMHLk
SLuvv4buH2vlKy4uxqVLl6BQKBAUFASlUon09HQ8+uijGDFihE3l0Ov1yMzMRGFhIfr37w8f
Hx+TPDR0fzTH9WVL/ht7/djC2v3Jd36NGvv90JzXtzV89Wct/3q9HsXFxfjzzz9x5coV9O/f
32LDsCXuL+D++P4j5EHQJj2icXFxyMzMREBAANLS0vDyyy8jOjra7niysrLwxhtvgDEGZ2dn
7N271yT87NmzmDNnDvR6PRwcHDB16lSsXr2aC///7N15XFT1/j/w12zgaGyCopkbmBsGJq5p
LgV2Lbg3MEoqvVmuCF/MJf1l3JspiZlcS783NM31fm83rLxuQFAaSlo4mKGICAhuGAEzbAPD
LJ/fH9McGRnmnGHYtPfz8eAhc5bPeX8+53OGj5/zOZ9TU1ODoKAgnDhxAn379sW+ffsQGhoK
g8EAADh58iTCw8Mhl8sxdOhQxMTEICYmRlBst27dQlRUFOLj47FhwwakpqYiPj7e7FaPtfg0
Gg2io6ORnp6O9PR0REZGIjIyEsnJyTaV0eeff46UlBTIZDLMnTsXCxcu5G5x8eUfMD5E9s47
7+DQoUPYtm0bZs2axa1LT0/HrFmz4OzsDEdHR/j6+iIvL4+L/6233sK8efO47Q0GA5YsWYKC
ggLBx7fG2vEB+87fkSNH8NRTT5mNEROJRMjIyMD7778Pxpjd8dvDYDBg6dKl2Lx5MxfbZ599
htmzZwMQVv/4rh++/J0+fRpbtmzB4sWLkZqaihUrViApKUlwGZeXl2PmzJnIy8uDp6cnYmNj
uVfgAvzXh731iy9+e+qPUM1dn3zn197vh/ao39bKT0j8SqUSn376KWJiYhAWFtYhDbTO/P1H
yANjYmAIq6qqsvrT1lJTUxkAm/YxGAzMx8eH5eXlccuOHz/O+vfvz60fPnw4y8zM5NYXFxcz
mUzGzpw5wxhjLCIigkVFRZml6erqyo4ePcoYY2zRokUsIiKCaTQaxhhjKpWKbd++XXCMa9eu
ZX5+fkytVjPGGDt8+DAbMGCA4PgYYyw6OpotWbJE8DEbe+mll9jatWu5z7dv32ZyuZwdO3aM
Mcaf/zVr1rAxY8Zw8aelpbFevXpx2+/YsYPt2bOH+xwSEsLi4+O5z1lZWUwmk7GSkhLGmLH8
Vq1axa3nOz4fvuPbc/5u377NALCSkhKmVCpZXFwcY4yxQ4cOsdTUVJviT0pKYkOGDGn2WHzr
mxMVFcUiIiK4zwcPHmTDhw/nPvPVP2vXj9D8ZWRkMLFYzN5//32z7YSYM2cO++STT7jParWa
+fn5sYsXLwq6PlqjflmL397rnw/f9cl3fhlr+fdDa9bv5ggpPyHxKxQK5uzs3Oz6trq+Ovv3
HyGdRVFRkc0/JhMDQ1i73ppXKBRwc3ODl5eX2fKWPCl/8+ZN5Obmwtvbm1vW+LZNUVERcnJy
MHjwYG5Zv3794OPjg7S0NIwfPx7Hjh3DqFGjsHz5cmi1WjQ0NGDKlCncqzhff/11zJs3D66u
rpgwYQKef/55zJw5U3CMYrEYI0aM4OJyc3ODVqsVHF9raPxq1d69e2PkyJE4f/48nn32Wd78
A4Cvry8Xv4uLCxc/YBx/VVBQgISEBNy+fRsFBQXw8/Pj1j/++ON44oknuF6NXbt2YeHChdx6
Ice3hu/49py/3r17Y8SIEfjuu+9QUVGBTZs2Yfbs2fjhhx+wdu3aVonfXmKx2Kz3RCKRmPUa
Wat/fNcPICx/YrEYXbt2xYoVK7hlQnquGGM4duwYlixZYnb8n3/+GQBw7do13uujNeqXtfjt
vf6FsHZ98p1fe7RH/W6t8hOLxR12u7ozf/8R8qBo14ZoWloaVq1a1WS5Uqls0jjlo1arodfr
UVlZaXFsKfv99nNJSYnZmDgXFxfuHe9qtRrBwcGYO3euxWOMHj0aFy5cQG5uLpKTk3H48GG8
/fbbKC4uRvfu3W2KtyXxmej1eruO1Vh9fT3X+ODLvzWMMURHR+PixYvYtGkTRo0ahStXrjT5
En3zzTcRERGBZcuWobS0FAMHDuTWtfXx7T1/gYGBSE5ORp8+fTB//nzs27cPWq0WXbp0sTv+
jsZ3/Zi2EZK/bt26tfghpxs3bmDs2LFNlgu9PlqjfjUXf1te/81pfH0K1dLvh7au30LLrzW/
39pLR3//EfIgadcxogqFAomJiU2Wb9y40ea3KXl5eaFv37747LPPuGWXLl1CZWUlDAYDBg4c
iPHjxyMhIYFbX1tbi+vXryM4OBgAEBwcjC1btqC8vJzbpqysDIWFhQCAsLAwlJWVYejQoVi6
dClSUlIgEonM/ldsTW1tLerr67nPdXV1UKvVYIwJig8wDpi/cuUK97mkpMTiNCaW3DvWqLi4
GBUVFZgxY4ag/KvVarP59+rr61FXVweDwYCbN29i69ateO+99+Dv7w+DwYCioiKz/AJAUFAQ
5HI5goKCuPFtJnzHt0bI8e09f4GBgdi/fz+mT5+ORYsW4eOPP0afPn1sjr+6uhqVlZXNnje+
9c1xdHREVVUVgLsPPahUKi4da/WP7/oRmr+qqirB5dmYSCTCCy+8gA0bNqC6uppbfvz4cWRk
ZAi+PuytX9biF1p/du7cCYVCYXMZ8F2ffOcXsO/7obXqd3OElJ+Q+JVKZZPvosba6vrqzN9/
hDxIJP28h7376kshVjeyd4oRk8TERMjlcuTk5ECpVKKwsBA7duyAl5cX5syZY1NaEokEY8aM
wcqVK5GZmYn09HQAQGZmJkpLS/HMM89gxowZ2L17N5KTk3Ht2jXs3r0bq1evxujRowEAU6ZM
wYULF/Duu+8iOzsbJ0+eRG5uLqZPnw6pVIrs7Gx88MEHKC0tRWZmJj766COEh4dj+vTpvPGl
pKQgLi4O+fn5mDRpEjw9PbFkyRLk5ORAq9Xi6aef5o0PADw9PbFp0yYcPHgQR44cQVVVFcaO
HSvovfF79+7FnTt3kJubi7Nnz2LPnj345z//yc0VaS3/33zzDTZv3oyCggJMmzbNLH6VSoXQ
0FCcPXsWR44cQX5+PpKTk2EwGHDo0CGIRCJMmDABgPG2mkQiQUlJCaKioszi4yt/a7p27cp7
fHvOHwA8/PDD+OabbxAbGwtXV1dkZGTgjTfegKenp6D4ExISsHfvXhw4cAAFBQXIzc3FuXPn
MGDAAHTv3p13PR83NzfExsbi+vXrOHHiBORyOVJSUsAYQ319vdX6FxgYyHv9WMtfeXk5YmNj
sXv3buTn56OgoABZWVnw8fERfGtxypQpOH/+PNasWYPMzEzs378fMpkM4eHhEIlEgq6PltYv
IfELrT+RkZFISkrCG2+8ISjfJnzXp7XzO2XKFAD2fT/YW7/5CCk/a/EfOHAA27Ztw86dO1FS
UoIff/wRWVlZGDBgADw8PNr0+jp+/Hin/v4jpDOprKy0eR9XV1cAwGf7/wPRxMAQlvTlXqs7
ODk5tSi4eymVSri5uaGwsJD7X5+/v3+Lpm0yYYyhtLQUPXv2hF6vh1arbTLWTaPRQK1WN3sc
vV6P8vJy9OjRw+L0NRUVFdBqtfDw8BD8BaHT6QDcHW8mFouh0+kgkUig0+nMxobxxafVaqFS
qeDh4WHTWKmqqio4OzujqqoKOp2u2S9fS/m3FL9Wq4VUKjWLv6amBjqdjpvqpaqqqsnQAsYY
NBoNd8tPyPGF4jt+S8+fiUaj4f4j1vh3IfE3NDRAJBJBLBZDLBZDr9dDr9dDKpVCIpHwrhei
oaEBarUarq6uaGhogE6nQ9euXQXXPyHXj6X8GQwGaLVaSCQSSCQSLnaZTAax2LYbLTqdDiqV
Cu7u7hbPP9/10ZL6JTR+IfWntrYWoaGhSElJsSnfQq7P5s5vYy39fgDsq99CCCm/5uI3PdEv
kUhadP3Yc33dL99/hHQGxcXFNu/Tv39/AMCk6aHt2xAlhJAHyZ07d/D3v/8dkZGReOyxxzo6
HEIIaXf2NkSp/58QQlqoR48e+OSTT2zuBSaEEGJEDVFCCGkhoUMoCCGEWEb/je8AhYWFLXrK
lhDyx2Ltu0KpVLZzNIQQ0vqoR7QdKZVKbNy4kfu9sLAQq1atQkBAADe1la3TWBFCHjxCviss
zclMCCH3G2qItqO0tDSzhmZhYSE2btyIjRs3IiwsjBqhhBAA9F1BCPnjoKfmCSGEEEJIi9j7
1DyNESWE3FcCAwMRGBgoeJz16tWrERgYiB07drRxZC33IOapLRQWFiItLa3Djt9a58nSGwYJ
+aOihmgHoweXiAnVhbtjI3fs2IGNGzdi9erVAMD9CxhfgpGamgp/f/9m02lclnFxcUhNTe2w
Vye2Rp7urRsdnaeOoFQqsWPHDgQEBDS73p60+c4R0HrnycvL6w/3nwhCmkNjRDtYWloaFixY
0NFhkE7gj14XlEolVq9ejbi4OO4tSkqlEqNHj0ZYWJhNabVlWe7YsQOFhYWCxmm2Vp46S346
kqkcGzO9pS8tLQ2FhYX44osvbE63I+qdv78/EhMTUVhYCC8vL5tjJuRB0ql6RE2vdOtIjDGo
VCrebWpqatopIutx8MVK2lZnqQv26AzXHWBsaISFhZm9ytPNzQ0BAQHN9oK1F1NvXGBgIAAI
brR11jy1ND8dJS0tDW5ubs2+5tXf37/FPaIddY4WLFjAzYxAyB9ZuzZEGxoakJub22R5UlIS
hgwZgtdee61N0rfF119/jWHDhoExZnH9nj17EBoaivXr12PIkCE4c+aMXcezB1+spG11prpg
TVtfd60lMTHR4h9+Nzc3q7fh25Kpt+zFF18EAKSmptrUM9nZ8mRvfjpKYmKixTi9vLwQEBDQ
bANVaNodcY68vLxQWFhI88GSP7x2vTW/fPlyNDQ0YPv27WbLZ8yYgeTkZLt7lppL3xamWEQi
UZN1RUVFWLlyJa5fvw65XI4+ffogJycHEyZMsPk4CoWCu52kUCha9IVnLVbStjpbXbCmra+7
1rRx48Ym82Pa0lBqrbIsLCzkblkvWLDArh5De/LUGfJjuv1t2jcxMREKhQJhYWHw9/dHYWEh
EhMT4ebm1qRnEQD3cJFCocCCBQu49QqFgmuEeXl5wcvLy2yZv7+/2bZteQu7o+qd6Rb9/fCf
AULaSrv2iDLGIJVabvs6OTlBIpGAMYaLFy/i4MGDKC8vN9umtrYWSUlJSExMxJ07d2xKn4/B
YEBpaSmuXLmCq1evoq6ursk2CoUC3t7ekMvlAICoqCi88cYbNh1HoVBg9erVUCqVcHNzw/bt
21FYWIiFCxe2aqyVlZU4duwYvvjiC5w7dw46nc6mOPnKWkiMP/30ExITE3HhwoUmvbZqtRrf
f/89/vvf/+LGjRvc8suXLyM9PR0nT57k/iBdu3YN33//PU6fPs1txxjDzz//jMTERGRlZZml
X1ZWhoyMDBw9ehQAoFKpcPjwYWRmZgqOv7n4TDpLXRDC3uuuubLWaDT48ccfoVAowBhDTk4O
vvrqK1RVVbUozgULFmD16tUYPXo0Vq9ezT1ZLKS3q7XK0rTPwoULERAQgC+++MKu27MtzVNn
y09aWhoSExO53sO4uDi8+OKL2LFjBxQKBVatWgUvLy/uVr/Jxo0bzW5zBwYGmvUAKhQKs2WN
8904D/b0ePLpyHoXEBDwh3rgjBBL2qUhqtFoEB0djfT0dKSnpyMyMhKRkZFITk42206pVOKd
d97BoUOHsG3bNsyaNYtbl56ejlmzZsHZ2RmOjo7w9fVFXl6eTelbo1Qq8emnnyImJgZhYWFN
ehnj4+ORkJCA4uJiLv309HSbysH0pWV6Q4pJWFiYTU9M88V68uRJhIeHQy6XY+jQoYiJiUFM
TIzgOK2VtRDl5eWYOXMm8vLy4OnpidjYWEydOpUbi5iVlYW5c+fCYDDAwcEBISEhWLduHQDj
uXzrrbcwb948Lj2DwYAlS5agoKAAAFBTU4OgoCCcOHECffv2xb59+xAaGgqDwQAAOH36NLZs
2YLFixcjNTUVK1asQFJSkuAysBYf0LnqgjWtcd1ZK+tbt24hKioK8fHx2LBhA1JTUxEfH9/i
W/1xcXE4d+4cAgICkJaWhhdffLHJU8uWtGZZmnr+wsLCWmV8YEvy1NnyY7r9berpMzXQwsLC
kJaWxj3QY9qmMVMDFjD2/vn7+3PjIv39/bFq1Squl9UkNTXVrGe1sLCwTW+Rd3S9+6PPlEEI
JgaGsKqqKqs/rSU6OpotWbLE4ro1a9awMWPGMLVazRhjLC0tjfXq1Ytbv2PHDrZnzx7uc0hI
CIuPjxecvlAKhYI5OztbXLd//342ceLEFqcdEBDAUlNTuc/bt2/nfl+wYAFbtWqVTek1F+ui
RYtYREQE02g0jDHGVCqV2bH4CClra+bMmcM++eQT7rNarWZ+fn7s4sWLzGAwsOHDh7PMzExu
fXFxMZPJZOzMmTOMMcaysrKYTCZjJSUlXPyNyyYiIoJFRUVxnw0GA3N1dWVHjx7llmVkZDCx
WMzef/99s+34CImPsc5XF6yx57rjK+u1a9cyPz8/bv/Dhw+zAQMGtErcqampDECT5feWjdCy
tKVMt2/fzgICAlhcXByrqKiwNfRmCcmTLXVDaJ7szY+luFetWtXk+PduU1BQwCoqKlhBQQFL
TU1ttm77+/uzVatWsXPnzlk8Nl8+U1NTWUBAgNDs8KZl6Rwx1vrnqTXjJqSjFBUV2fxjMjEw
hHWqp+Z9fX25W50uLi7QarXcuvnz52PSpFXC4+cAACAASURBVElISEjA3/72NxQUFLT4FqA1
YrG4TcZcmqYYMf3P+d5pOxQKhc09Fs3F+vrrr+P06dNwdXXF008/jX379iEoKEhwuvaUNWMM
x44dw6hRo7hlcrkcP//8M3x8fFBUVIScnBwMHjyYW9+vXz/4+PhwY8kef/xxPPHEE/j0008B
ALt27TK71XXs2DHcvHkTy5cvx//8z/9g8eLFmDJlCh566CGzsunatStWrFjBLRNyXoXEZ6+2
qAv2sHbd8ZW1WCzGiBEjuP3d3NzM9hdCoVBYvD0ppAzaqiwXLFjAzRe5cOHCJreL+bQ0T501
Py1lejgqLS3NrDf1XqtWrWr3Sd47Y70j5I+o3ecR1ev1Nu/DGEN0dDQuXryITZs2YdSoUbhy
5YpZw8Oe9NuDUqk0+2JqPN+cqYHTWl9co0ePxoULF5Cbm4vk5GQcPnwYb7/9NoqLi9G9e3er
+9pS1tbcuHEDY8eOtZg+AJSUlMDZ2Zlb7uLiAhcXF+7zm2++iYiICCxbtgylpaUYOHAgt06t
ViM4OBhz5861GkO3bt0gk8lsiltofPZoz7pg0tLrQmhZ2yMtLa3JgyKAsZz4HlBp67I0jW1M
S0vDwoUL4eXlhQULFvDG1dI8ddb8tIRSqURgYCDOnTvXJH1TA9DLywtKpZKbx3ThwoVITU1t
0mBti3GUnaXeteX4V0LuB+3aI+rk5IQrV65wn0tKSrg//Gq1GhqNhltXX1+Puro6GAwG3Lx5
E1u3bsV7770Hf39/GAwGFBUVob6+XnD6QimVyiaxmNTU1Nj80I+J6enSe3shTG/0aMmT/s3F
GhYWhrKyMgwdOhRLly5FSkoKRCKRoJ4qoWXdHJFIhBdeeAEbNmxAdXU1t/z48ePIyMjAwIED
MX78eCQkJHDramtrcf36dQQHB3PLgoKCIJfLERQUhNmzZ5sdIzg4GFu2bDF7qKasrMzsj1VV
VZXNPXMABMfX3nVh586dLR5L1tLrDuAv69raWrO6UVdXB7VabdN1p1AoLPaGbdy4kffp7ra4
riwxPehjmvtRyDjPluSps+anJUxPwN/bUwjcHbsK3H1i3TSO1dLbjFrae2sax9ncuo6udzSh
PSGApJ/3sHdffSnE6kaOjo6tcjBPT09s2rQJBw8exJEjR1BVVYWxY8ciJSUFmzdvRkFBAaZN
mwZPT08sWbIEOTk5UKlUCA0NxdmzZ3HkyBHk5+cjOTkZBoMBhw4dgkgk4qbMaS59iUTCG9uB
Awewbds27Ny5EyUlJfjxxx+RlZWFAQMGwNHREe+++y7+9a9/IScnB8XFxTh79ix69eqFnj17
Cs7/pEmTsHHjRsjlcu620NGjR/HRRx/Z9GVkLVYPDw9kZ2fjgw8+QGlpKTIzM/HRRx8hPDwc
06dP5027a9eugsramilTpuD8+fNYs2YNMjMzsX//fshkMoSHh0MkEmHGjBnYvXs3kpOTce3a
NezevZt7atVELBZDIpGgpKQEUVFRTdK/cOEC3n33XWRnZ+PkyZPIzc3F9OnTUV5ejtjYWOze
vRv5+fkoKChAVlYWfHx8BPXq8sVXXV3dIXUhMjISSUlJNj+ZD7T8upsxY4bVsv72228RFxeH
/Px8TJo0yWx/rVaLp59+WlB8iYmJkMvlyMnJ4XrHduzYAS8vL8yZM6fJ9o1vidpSlvfu1xJu
bm4IDg7mTceePNlSN+zNk5D8mB44UigUqK+vh5eXF/cEvakx6ebmho0bNyIjIwMlJSWQy+UI
CAhATk4O1/g03a5OTEzk/vPy4osvIicnB9HR0dyxPv74Yy4NLy8vyOVyrF27ltumscLCQmzc
uBFpaWk4evQo6uvrzcpk//79+Pjjj+Hv79+k7Gw9R6b4WvM8mWYhoMYouZ9VVlbavI+rqysA
4LP9/4FoYmAIS/pyr9UdnJycWhScJVqtFiqVCh4eHtyYPVPPkumzWCyGVquFVCqFTqeDg4MD
gLu9UK6urmCMoaqqqsntUkvpC2F6olsikUAsFkOv10Ov10MqlUIsFqOhoYH7vfE6IY3ce5m+
wC3dFrI3VlM8jDFUVFRAq9XCw8PD5mmthJQ1H51OB5VKBXd3d4vnQqPRQK1WN3trijEGjUaD
Ll26WFyv1+tRXl6OHj16cOkbDAZotVpIJBJIJBKubGQyGcRi224AWIqPMdYhdaG2thahoaFI
SUmx+RiAfdcdYLmsLe2v0+kgkUia7G+Naeqbxr1k1sYTWnrVI8Bfls3t1xZaI09C6kZ75qml
TI08e558X716Nfz9/W1+5abp+JbGbNp6jkxxtOZ5CgwMRGpqqi3ZIaTTKS4utnmf/v37AwAm
TQ9t/zGiMpkMPXr0MFtmqZFk+iPW+I9Z4x4tkUhksWFkKX0h7v2jKZVKzeJq3Ct87zpbKZXK
FjdCAf5YAWP5uLu7t/gYQsqaj1QqhYeHR7PrHR0drfa2i0SiZhuhgLEhfm8vpFgsbrVzZSk+
kUjU7nXhzp07+Pvf/44PP/ywxcex57oDLJe1pf1NY3KFNkKBu2PkTJOat5S91xVgfsvYGr63
7rRGnjpTfuzRGmmvWrWKexWnrZrrjezoetcaPfSEPAg61VPzhJCmevTogU8++QSPPfZYR4dC
SIcwNWZtnblCqVRyPZ+dTWJiot3/0SDkQdDuPaKk9Z+IJvcvIXWhJbf8H2SmB1Dufdq7ubI0
vdpSCHt7x1rKUp6s1Q2heeqo/LQF0xuQ+G6fW9qvtbTWeRLyQBQhfxTt+rASMeqM/zsnHYPq
gu0efvhhroFlmr8UsF6WDz/8MAICAjpteVvKE1+snT1PbSEgIAAlJSWC89y4frSG1jpPPj4+
f6jzRh5s993DSoQQQggh5MFg78NKNEaUEEIIIYR0CMEN0aKjWuibzvHepgxW5iPXarUoKipq
t1hswRhQU2O+rLS0tEXd14QQQgghDyrBDVFtLcPV/zS0ZSwc5RU9kl+qxcFJlt9vHhcXh5Ur
V+LGjRvtEo8t9uwBQkOB9euBIUOAM2eMy6urq/Hhhx9i5syZqKio6NAYCSGEEEI6A8ENUe9Q
B1w7ooW+HdqibkMkGP6GA8TSppOg5+Xl4csvv8SWLVvw5JNPtn0wNigqAlauBP7v/4C4OCAy
EsjJMa7z9vbGunXr8Nhjj2Hnzp0dGichhBBCSGcgePomsQzwDpUh/4sGDHm1mcmqGVBxWY+q
IgOc+onh7iMBRIC+AVDm6CGSAO4jJFDlG1BZoMfDk6SQPXS3samrYyj/RY+GGgaNisHSi5F+
++23JpOkV1UBCgXg7g54ewOnTgFdugATJwK/z6+NsjLgyhVAqQSCggCVCkhPB3r3BsaMMW6j
VgOZmcZ1o0YBffuaH5tvvUJhPL7pQc173kwJwPgE5eXLl5srZkIIIYSQPwybHlYa9IIDCv+r
tTh2U6dm+PaNWtw5o0O33mIUfKXFiUVqMAOgvmPAj3+vQ84uDbL/qUHJaS1ydmlwekUdt3/F
ZT1OL68DY4CDkwgFX1keICqXy1FzzwDMlBRg1izggw+ANWuA0lLj75MnA7+/DROnTwNbtgCL
FwOpqcCKFUBSEhATY1yflQXMnQsYDICDAxASAqxbd/cYfOvj44GEBKC42NgTGhlpbOjeq7q6
utWnFCGEEEIIuR/ZNKG9WAZ4PS9D/sEGDA437xU9F1cPp35iDH/DOOdoj5ES/HtkFW6d1OGR
p6R45GkZridr8UScHJIuIjzUT4yf3q037syAU0vrMG17VzgPMLaNH1sEnH2nDvcqKipq8urK
sDDg+HHg4kVg715AIgFeesnY2/mf/wCzZwPPPw/07Ak8+SRw7hxgujvOmPFn9mzjvqNHG5f7
+ACDBgGBgcC4cdbXjx8PLFtmTD8hAdi2rfky9Pb2xvnz520pdkIIIYSQB5LN0zcNCnNAwVdN
e0VvfadD7R2GzNh6/PRuHc68UwfPcVLIuhnXi8SA6xAxJF2M99sdXUQw6Izrau8Yb9U79bsb
jsTCK8b37t2LkydPYuvWrU3WOToCTz1lbISaPvv6AlevNsqsGOja1dgbaiISGcd25uQAgwff
Xd6vn7GxmZbGv94Wf/nLX/CnP/0J0dHR0Ov1tu1MCCGEEPIAsfkVnxIHYGCwDAVfNeDRl+72
iurqGPo+LcWgsGbGj1qhqwOYHtBWMzi4WBgY+rugoCAoFArk5+ej770DNIEmY0o1GuOYzca6
dbs7btSEMeO/JSWAs/Pd5S4uxh++9bbIz8/H7t27ER8fT69uJIQQQsgfWosmtH/0JQcUfKnl
ejQBoG+ADDmfNUCjZNwyjZKh+roBgHEMaeN5SHX1xsYrGODUT4xuvcW4+sXdR/JVeQY0VDMw
w9193N3d8fLLL2P9+vUW48rJudtovHULuHEDmDHj7vqqKkBrYejpwIHG2+sJCXeX1dYC168D
wcH8601qagBdozKx5OjRo/D394efn5/1DQkhhBBCHnA294gCgMQR6P+cDIWHGjDoBWMP6Og1
XfDTe/U4HlqDXuOlkD4kQhc3EYa/4Yjb6TpcO6KFTs3wW5Ye7o9JcDFBg4ZKhqzN9Ri1ogsm
fyzH91F1KM/Wo0t3ERzdxBBJgHMb6jFmzd379CKRCAaDwWJcd+4A4eHAsGFARgZw4IBx3Oav
vxofVDpxAqioMI737N/f+FS7p6exJ/XgQWD+fOO6kSOB7Gzgk0+AAQOMaVtbX10NvP8+cPSo
cSjA/PlAjx7AK68Yb9+bFbhUCpGl6QAIIYQQQv5gWvyueb0GSJ1Ti2f+1Q2iRs1Zpgc0KoYu
3UXA7+0tZuol/P2zSAwY9MZ/md74EJRxQ6CunEHuLgLTAwYd48aUmmRkZGD9+vVISkoyW75o
EeDqCsTGGqdocne/e6veYDD2hEokxh+93vgjkxnHjTam0RinaXJzs1wWltYzZnw6Xyo1pmdK
Xyq9O2bVZNeuXcjOzsaWLVssH4AQQggh5D7RYe+alzgC49fLodMws+UiCdDF/W4jFABE0t9/
JMYfiACx1NgQFTcerykC5B7GfUVSNGmEAoCvry/y8vKQn59vtry62ni7XCIBPDzMx4uKxcaH
l6RS43Kp1Pj53kYoYFzeXCO0ufUikXG5RGKe/r2NUJ1Oh6SkJDz11FPNH4AQQggh5A+iRbfm
TVwfbXE7tsWcnJyQkpKCXbt24dFHH8Xrr7+Ozz83ziXq6Ggcz7lsWbuHxeunn35CcnIylixZ
gmnTpnV0OIQQQgghHa7Ft+Y7E02jh6D0euMUTYQQQgghpG3Ze2verh7RzsLRsaMjIIQQQggh
tmr/e+uEEEIIIYSAGqKEEEIIIaSDUEOUEEIIIYR0CGqIEkIIIYSQDkENUUIIIYQQ0iGoIUoI
IYQQQjoENUQJIYQQQkiHoIYoIYQQQgjpENQQJYQQQgghHYIaooQQQgghpENQQ5QQQgghhHQI
aogSQgghhJAOQQ1RQgghhBDSIaghSgghhBBCOgQ1RAkhhBBCSIeghighhBBCCOkQ1BAlhBBC
CCEdQnBDtOioFnqNlQ0YYNC2QkR8GNBQxexORqvVoqioyP542gBjQE2N+bLS0lJUVlZ2TECE
EEIIIW1AcENUW8tw9T8NFtfl7mvAf8ZU4Zf/rW+1wJpTnKLFoYBqwI62aFxcHFauXIkbN260
XmCtZM8eIDQUWL8eGDIEOHPGuLy6uhoffvghZs6ciYqKig6NkRBCCCGkNQhuiHqHOuDaES30
FtqiQ+c4oLuPBBIHUWvGZtEjU6UI2NsNaOGh8vLy8OWXX2LLli148sknWzc4OxUVAStXAv/3
f0BcHBAZCeTkGNd5e3tj3bp1eOyxx7Bz584OjZMQQgghpDVIhW4olgHeoTLkf9GAIa86NFnv
4CwCREDVNQMqLuvh4iWG21CJ+UYMqLisR1WRAU79xHD3kZg1KOt+YyhV6CDrKoLTADEufarB
I9NkeOQpKZgB0CgZ1L8aUF1sgMtAMSRdjDvrGwBljh4iCeA+QgJVvgGVBXo8PEkK2UPmLdbf
fvsNHh4eZsuqqgCFAnB3B7y9gVOngC5dgIkTAZnMuE1ZGXDlCqBUAkFBgEoFpKcDvXsDY8YY
t1GrgcxM47pRo4C+fc2zz7deoTAeXy43fo6KanoeHn74YVy+fLnpCkIIIYSQ+4xNDysNesEB
hf/VNjsWtOiIFrfSdRBLgYyVdTjzdh13C12nZvj2jVrcOaNDt95iFHylxYlFajCDcX1Jhg7p
/6NGt4fFqL1jwJHnajB0jiNcHzWG2FDJkPfvBpzfXI+TEWpAdLeBqb5jwI9/r0POLg2y/6lB
yWktcnZpcHpFXZMY5XI5au4ZgJmSAsyaBXzwAbBmDVBaavx98mSg4fce4NOngS1bgMWLgdRU
YMUKICkJiIkxrs/KAubOBQwGwMEBCAkB1q27ewy+9fHxQEICUFxs7AmNjDQ2dO9VXV0Nuaml
SgghhBByHxPcIwoYe0W9npch/2ADBoc37RXt9ycZhv3VuLzHSCm+nFKNvoEyPDJNinNx9XDq
J8bwNxx/Xy/Bv0dW4dZJHR55SoqLOzToM00KD18JPHwluLRDg8p8PfrPMHZJOrqJ4BvpiPKL
Uvz6Uy0kjneP69RPjEeeluF6shZPxMkh6SLCQ/3E+OndpmNWi4qK4O7ubrYsLAw4fhy4eBHY
uxeQSICXXjL2dv7nP8Ds2cDzzwM9ewJPPgmcOweY7o4zZvyZPdu47+jRxuU+PsCgQUBgIDBu
nPX148cDy5YZ009IALZta/4ceHt74/z580JOFyGEEEJIp2bz9E2DwhxQ8JXlXlGx7O7v8p4i
dB8uRsUlPQDg1nc61N5hyIytx0/v1uHMO3XwHCeFrJtx+269xai58Xv3KAN0dUDXXk3DE4nN
OkPNlrsOuXu73tFFBIPOfJu9e/fi5MmT2Lp1a5P9HR2Bp54yNkJNn319gatXG+VPDHTtauwN
5Y4rMo7tzMkBBg++u7xfP2NjMy2Nf70t/vKXv+BPf/oToqOjodfrbduZEEIIIaQTsalHFAAk
DsDAYBkKvmrAoy817RVtTK8BnPobG5O6Ooa+T0sxKMzyPj7zHHFicS1+jq9HXTnDsNcc0ONx
icVtWyooKAgKhQL5+fnoe+8ATTRt4Go0xjGbjXXrdnfcqAn7ffhBSQng7Hx3uYuL8YdvvS3y
8/Oxe/duxMfHQyJp3fIhhBBCCGlPLZrQ/tGXHFDwpda8x9Fgvk3NLQMaVAx9phrbun0DZMj5
rAEa5d15lzRKhurrxh2vf6OF/6ouGPlmF0yIlcNnviMsaahk0NWxJk/v69TMbJ5TXb2x8dt4
mid3d3e8/PLLWL9+vcW0c3LuNhpv3QJu3ABmzLi7vqoK0FroCR440Hh7PSHh7rLaWuD6dSA4
mH+9SU0NoLunF/deR48ehb+/P/z8/KxvSAghhBDSydncIwoAEkeg/3MyFB5qwKAXjD2cunqG
sgt6XPhIA7EDUJ6tx7QdXeHgZOxmHL2mC356rx7HQ2vQa7wU0odE6OIm4saMOg8UI3NdPa4d
1qKhikEqF6HPVGMPqkgMFB7S4tcfdfjtvB4GHfDdG7VwHSzB4JcdUHvLgGtHtNCpGX7L0sP9
MQkuJmjQUMmQtbkeo1Z04WIXiUQwGAxNMwXgzh0gPBwYNgzIyAAOHDCO2/z1V+ODSidOABUV
xvGe/fsbn2r39DT2pB48CMyfb1w3ciSQnQ188gkwYIAxbWvrq6uB998Hjh41DgWYPx/o0QN4
5RXj7XuzEyaVQmRpbAIhhBBCyH1GNDEwhCV9udfqRk5OTk2W6TVA6pxaPPOvbhBJAW0Ng+wh
EbQ1DAYd4OhqubHE9IBGxdClu8hs6qbLuzXoPlwCmbMIEpkI9RUGXPhYg37TZRg6x4EbkyoS
G3+Y3vgEuliCu72eorvbGPR3t2s8djUjIwPr169HUlKSWVyLFgGurkBsrHGKJnf3u7fqDQZj
T6hEYvzR640/Mplx3GhjGo1xmiY3N8tlaWk9Y8an86VSY3qm9KXSu2NWTXbt2oXs7Gxs2bLF
8gEIIYQQQtpJcXGxzfv0798fADBpemjLekQBY6/o+PVy6DQMMqmIm6/z3nk77yWSAF3czbep
r2DITtAg7IwzRL837FwgxiNT9XAeYFwgvmdcpkgKWBshKf49Z6J7Goq+vr7Iy8tDfn4+Bg0a
xC2vrjY2LCUS4J5pRiEWGx9eMpFKjT+WODqabytkvUgkLH2dToekpCTMmTOn+QMQQgghhNwn
WtwQBcDN8WkvR1cRHn5ShhML1egxUgKDDpB2BboPl6D3RLtCbMLJyQkpKSnYtWsXHn30Ubz+
+uv4/HPjXKKOjsbxnMuWteohW8VPP/2E5ORkLFmyBNOmTevocAghhBBC7NbiW/NtghkfMJLK
RS1+hWdLaBo95KTXG6doIoQQQggh1nXYrfk2IQKkXdv/QRxrt9IJIYQQQkjbaJ1764QQQggh
hNiIGqKEEEIIIaRDUEOUEEIIIYR0CGqIEkIIIYSQDkENUUIIIYQQ0iE6VUO0oaGBdxvGGFQq
VZul35bHF0rTeD6pDjh+S7VG+balzh4fIYQQ8kfTKRqiSUlJGDJkCF577TXebb/++msMGzYM
jDHebVuSflscX6hPP/0UI0aMwKOPPtohx+fT0NCA3NzcJstbq3ybS9/e/Vvz/BNCCCGk9XSK
huiMGTPwpz/9CXK5XNC2ycnJEImEzzdqS/ptcXyh5s+fj7feestqnG15fD7Lly/HP/7xD4sx
tUb5Npe+vfu35vknhBBCSOtplwntMzIyoNfr0bNnTwwdOhQAoNfrcerUKYjFYvj6+sLJyQl1
dXVgjOHSpUvIzc3FtGnT4O7uDgAwGAwoKyvD7du3kZ+fj8GDBzdpWBgMBpw7dw7FxcUYPHgw
fH19uQYbX/p8rB3/2rVryM3NxYQJE5Ceno4nn3wSZWVlyMnJwbPPPou6ujooFAq4u7vD29sb
p06dQpcuXTBx4kTIZDKz4/Ts2dNiI1NI/hljuHDhAq5evQpvb288/vjjZmlVVlbi9OnTqK2t
hZeXF0aOHAmppZfaN4Mx1uz2Qsq3trYW6enpqKmpwZNPPolevXoJTr894uMrPz585cuXfkVF
Bc6ePQvGGJ544glUVVXBxcUFFRUVuHHjBnr16oUhQ4agpqYG586dg1wux7hx43jT12g0+Pnn
nyGVSjFq1ChcvnwZubm5CAgIgLOzM7e/teunNcqHEEIIuVe79IgeOXIETz31lNkYPZFIhIyM
DLz//vvcbWalUol33nkHhw4dwrZt2zBr1ixue6VSiU8//RQxMTEICwtr8gewvLwcM2fORF5e
Hjw9PREbG4upU6eaHdNa+nysHX/v3r0ICwvD9u3bsWfPHsyYMQPHjx/H2rVrsXPnTqSkpGDW
rFn44IMPsGbNGpSWluKDDz7A5MmTBY9b5Mt/TU0NgoKCcOLECfTt2xf79u1DaGgoDAYDAODk
yZMIDw+HXC7H0KFDERMTg5iYGEHH1mg0iI6ORnp6OtLT0xEZGYnIyEgkJyc3ibG58k1PT8es
WbPg7OwMR0dH+Pr6Ii8vz6b02zI+vvLjw1e+fOl/++23ePnll7n8PPPMM/D39wdjDAaDAUuX
LsXmzZsBGK+dzz77DLNnzxaU/q1btxAVFYX4+Hhs2LABqampiI+PNxuqwHf92Fs+hBBCiEUT
A0NYVVWV1R973b59mwFgJSUlTKlUsri4OMYYY4cOHWKpqamMMcbWrFnDxowZw9RqNWOMsbS0
NNarV68maSkUCubs7Nxk+Zw5c9gnn3zCfVar1czPz49dvHjRpvT5WDp+cXExk0qlrLa2lv33
v/9lY8eOZYwxtn79erZ48WLGGGOvvfYaGz16NNPpdIwxxurr65mbmxvbt2+fWVpJSUlsyJAh
Nh2fMcYiIiJYVFQU99lgMDBXV1d29OhRxhhjixYtYhEREUyj0TDGGFOpVGz79u025T06Opot
WbLE4jq+8t2xYwfbs2cP9zkkJITFx8cLTr+t4+MrPz585WstfZ1Oxx555BGWnZ3Nrf/6669Z
9+7duc9RUVEsIiKC+3zw4EE2fPhwwfGvXbuW+fn5cfk/fPgwGzBgALc93/Vjb/kQQgh5MBUV
Fdn8YzIxMIS1y6353r17Y8SIEfjuu+9QUVGBTZs2Yfbs2fjhhx+wdu1abjtfX1/udrOLiwu0
Wm2TtMRicZPeQMYYjh07hiVLlnDL5HI5fv75Z7PthKTPx9LxxWIxHB0d0bVrVzg4OHDrHR0d
oVarud+feuopSCQS7rOvry+uXr1q9/EB4NixYxg1ahSWL18OrVaLhoYGTJkyBQ899BAA4PXX
X8e8efPg6uqKCRMm4Pnnn8fMmTNtzr811sp3/vz5KCgoQEJCAm7fvo2CggL4+fm16vHtiY+v
/Pjwla+19K9du4Zbt25h2LBh3Pa9evUyO89isdis91EikZit54tfLBZjxIgRXP7d3Ny4/Au5
fuwtH0IIIcSSdmmIAkBgYCCSk5PRp08fzJ8/H/v27YNWq0WXLl1a7Rg3btzA2LFjWy291nZv
A1Kj0cDb27tV0lar1QgODsbcuXMtrh89ejQuXLiA3NxcJCcn4/Dhw3j77bdRXFyM7t27Cz6O
Xq+3OTbGGKKjo3Hx4kVs2rQJo0aNwpUrVyw2YlqSfmvsz1d+fPjK11r6V69eBWMMZWVl8PT0
7JD4AevXT2ukTwghhNyr3Z6aDwwMxP79+zF9+nQsWrQIH3/8Mfr06cOtV6vVZvNn1tfXo66u
rskYNKVS2WRbkUiEF154ARs2bEB1dTW3/Pjx48jIyLApfT6Wjm8wGLhxrgaDgUvTwcEB9fX1
3HY5OTncdrdu3cKNGzcwY8YMs/Srq6tRWVnZ7PRMlo4PAMHBwdiyZQvKy8u5ZWVlZSgsLAQA
hIWFoaysDEOHDsXSpUuRkpICkUhkIOiI7AAAIABJREFUU6+wk5MTrly5wn0uKSnh4rRWvjdv
3sTWrVvx3nvvwd/fHwaDAUVFRWZlw5d+W8YH8JcfH77ytZb+wIED4e3tjf3795uta8zR0RFV
VVUA7j40pFKpuPzxxV9bW2tW3nV1dVCr1WCMCbp+7C0fQgghxJJ26xGdPHkyRo8ejalTp0Ik
EmH8+PEIDAwEYPyD9/XXX0Or1eL8+fPw8/NDXFwc1Go13nzzTXz00Uc4cOAA0tPTcfbsWWi1
WgQHB8PHxwcLFy7E0KFDsWnTJkRHR2PUqFEYP348ampqMG7cOKxatUpQ+nysHd/BwYFrEOh0
Oq5XztnZGRkZGbh27RoA4M6dOwgPD8ewYcOQkZGBAwcOoGfPngCAhIQEXLp0CadOneK2GzBg
AObNm4dBgwbx5n/z5s1YunQpJkyYgKlTp8LJyQkeHh548803AQDDhg1DaGgonnvuOTg4OODs
2bOIiYmxqQdu1qxZ2L59O8aNGwdPT09MnjwZ0dHRSE1NtVq+H374IQIDA7FixQruAZg+ffrg
n//8J+RyOZYtW2Y1/XtnFmjt+D766CPe8uPDV77W0pdKpfj3v/+NV155BZmZmZDL5fj111/N
0g8LC8Of//xnREdHw9HREc7OzigvL8f69esRExNjNf2UlBR8/vnnqK2txZkzZ+Dv748PPviA
e3grNjbW6vXDFz8hhBDSUqKJgSEs6cu9VjdycnJqlYNpNBo4Ojo2+V2n0xmD+f3WtVgshlar
hVQqhU6ng4ODA/f0rkQigVgshl6vh16vh1Qq5cZdmtJSqVRwd3fn0hOSPh9rxxeJRDAYDJBK
pVzvqEQi4XpHxWIxIiIi4OrqitjYWCiVSrP4TOmLRCKIxWKL+ROaf71ej/LycvTo0cPiWNqK
igpotVp4eHi0aKokrVYLlUoFDw8Pm8u3pqYGOp0Orq6uYIxx0xPxpd9e8QHWy4+PkPLlS7+s
rAwuLi5QKBQICgoy6xltaGiAWq2Gq6srGhoaoNPp0LVrV970LeVfp9NBIpE0yb+l68eW+Akh
hPyxFBcX27xP//79AQCTpoe2X48oAK7hee/vlv5gm/443vtv430s7SeVSuHh4dFkGV/6fPiO
LxaLzf41/W76XF1dDZlMBolE0iQ+IekLzb9EIuF6We8lEokEz5vaHJlMhh49ejSJ5V6Wyrfx
mFCRSNSkEdpc+u0VH2C9/PgIKV++9E11Q61Wo76+nrt1boq1cdyW6q6l9C3l39TLbKleWaqf
QuMnhBBCbNEp3qz0oPv888+RkpKCr776CvHx8R0dDunksrKyEBsbi9raWqxbt66jwyGEEELa
TLv2iP5RhYSEICQkBID9T4WTB99jjz2Go0ePQiKRUH0hhBDyQKOGaDtoPAyBED4ymUzwA1qE
EELI/YxuzRNCCCGEkA5BDVFCCCGEENIhqCFKCCGEEEI6BDVEH2CmN/G0J8YYVCpVux+3sXvf
OkVaxjR37YOkM9RP0pTpTWeEkD8eaog+gDQaDf7f//t/+Pnnn7lljV9D2nhZYw0NDcjNzbXr
2F9//TWGDRtm06s5W8unn36KESNG4NFHH233YwvRGuXbHrKzszFlyhQMGDCgo0NpdR1ZP0nz
6urqEBkZafaKXkLIHwM1RB8wBoMBf/3rX/HEE09g8uTJ3PJLly4hIiICI0aMQJcuXRAeHo7N
mzeb7bt8+XL84x//sOv4M2bMQHJycoe8dWf+/Pl46623IJfL2/3YQrRG+baHxx57DG+++eYD
+eR+R9ZP0jw3NzfExsbilVdeadFbWggh9y9JP+9h7776UojVjVpr+iGDwYDMzEz88MMP0Ol0
8PT0NPuDoFar8cMPP+DChQvo1q0b9+YdjUYDhUKBX3/9Fb1798bly5dx6tQp9OnTB46Ojrh8
+TIuX76Ma9euwcXFBXK5HNeuXcMvv/yCmzdvol+/fgCMt+UuXLiAU6dOQaPRoFevXtzxy8rK
cP78efzyyy8YPHgwVCoVvvnmG1RVVaFPnz4AjO+K/+abb3D9+nWIxWKsWbMGADB48GDe9AGg
srIS3377LX7++WfU1dWhZ8+eZm9iag1bt25Ffn4+/va3v5kt9/T0RFBQEJydnfHTTz/h9OnT
mDhxotk2x48fh1gsxnPPPWfzcQ0GA3777TcUFRUhPz8fAwcObNKQsTf/fPUHAEpKSpCSkoLI
yMgm+zdXv4TGx3d++fCVL198fGpra7n43d3dzd5kJYTp+NnZ2SgvL0d6ejqWLl3KrefLv7Xz
I+T64kufL3/Wzp+1+sn3/WLCd/3zsbd+VVRU4MSJE8jLy0OPHj1QWloKALh9+zZ++eUXaDQa
eHh4oKamBj/88AN+/fVXPPLII7zpC80/3/Vn7/Xx0EMPQSaTYdOmTXj55ZfpPwuE3CcqKytt
3sfV1RUA8Nn+/7Rfj2h5eTlmzpyJvLw8eHp6IjY2FlOnTuXGoWVlZWHu3LkwGAxwcHBASEgI
91aZW7duISoqCvHx8diwYQNSU1MRHx+P1157DYDxD8lbb72FefPmccczGAxYsmQJCgoKABjf
cx4UFIQTJ06gb9++2LdvH0JDQ7nb06dPn8aWLVuwePFipKamYsWKFUhKSkJMTAwAIC0tDeHh
4ejbty9u3bqFxx9/HJGRkRg+fLig9E+ePInw8HDI5XIMHToUMTExXNqtpa6uDu+//z5WrFjR
7DaWXg2q0WgQHR2N9PR0pKenIzIyEpGRkUhOThZ8bKVSiU8//RQxMTEICwtr8kfE3vzz1R8+
1uqXkPj4zq81QsqXLz4+6enpmDVrFpydneHo6AhfX1/k5eUJ3v/ChQv461//CsYYXFxcsG/f
PrP1fPnnOz981xdf+nz54zt/1uon3/cLwH/987G3fn377bd4+eWXARjr0zPPPAN/f38wxmAw
GLB06VLuDodIJMJnn32G2bNnC0pfSP75zq8910djr776KrKysvDdd9/ZtB8h5D42MTCEVVVV
Wf1pDXPmzGGffPIJ91mtVjM/Pz928eJFZjAY2PDhw1lmZia3vri4mMlkMnbmzBnGGGNr165l
fn5+TK1WM8YYO3z4MBswYAC3fVZWFpPJZKykpIQxxphKpWKrVq3i1kdERLCoqCjus8FgYK6u
ruzo0aPcsoyMDCYWi9n7779vth1jjD3zzDPsgw8+4JYPHTqUJSYmCk5/0aJFLCIigmk0Gi6+
7du3Cy9AAU6ePMlEIhFXRpb8+9//Zt7e3hbXRUdHsyVLltgVg0KhYM7Ozk2W25t/a/WnsaSk
JDZkyBCzZULqF198QuoPn+bKV0h8fHbs2MH27NnDfQ4JCWHx8fGC9jUYDMzHx4fl5eVxy44f
P8769+/PfebLv5DzY+364kufL39C61dz9ZPv+4Xv+udjT/3S6XTskUceYdnZ2dz6r7/+mnXv
3p37HBUVxSIiIrjPBw8eZMOHDxeUvpD8853f1rg+TJ599lkWGRlp836EkI5RVFRk84/JxMAQ
1i5vVmKM4dixY1iyZAm3TC6Xcw/TXLt2DTk5OWa3uPr16wcfHx+kpaVh/PjxEIvFGDFiBDf+
z83NDVqtltv+8ccfxxNPPMH1euzatQsLFy7k1h87dgyjRo3C8uXLodVq0dDQgClTppjd3hOL
xejatatZj6Kp56Rv3764du0alx+1Wm1224sv/ddffx3z5s2Dq6srJkyYgOeffx4zZ860v3Ab
ycvLQ79+/Tp0jKRYLLZ4S82e/PPVHz5FRUW89YsvPiH1p6WExMdn/vz5KCgoQEJCAm7fvo2C
ggL4+fkJOv7NmzeRm5sLb29vbtm9dcha/oWeH2vXF1/58uVPaP1qrn7yfb/wXf987Klf165d
w61btzBs2DBu+3tve4vFYrPeR4lEYraer3yt5V/I+W3N62Po0KG4cOGCzfsRQu5P7fqKzxs3
bmDs2LFNlrPfn2AtKSmBs7Mzt9zFxcWmcXJvvvkmIiIisGzZMpSWlmLgwIHcOrVajeDgYMyd
O9dqGt26dbP4kMayZcswc+ZM/O1vf0NpaSmioqLMGgh86Y8ePRoXLlxAbm4ukpOTcfjwYbz9
9tsoLi5G9+7dBefRmq5du6K8vByMsRaPr2qrd5u3Rv6bqz98hNQvvviE1h8+lsrX3vrPGEN0
dDQuXryITZs2YdSoUbhy5YrgRoBarYZer0dlZSXc3Nya3aa5/JviF3J+mru++NLny19bX198
1z8fe+rX1atXwRhDWVkZPD09WxR/a9Rfa+e3ta4PwDieuFevXnanQwi5P7TLGFGRSIQXXngB
GzZsQHV1Nbf8+PHjyMjIwMCBAzF+/HgkJCRw62pra3H9+nUEBwdzn+vr67n1dXV1UKvVZtOw
BAUFQS6XIygoyGx8FAAEBwdjy5YtKC8v55aVlZWhsLCQ+1xVVWXWC9LYoUOHEBcXh7Vr1yIh
IaHJOEy+9MPCwlBWVoahQ4di6dKlSElJgUgkanK8xMREfP31182UpHVTp05FTU0Nrl+/3uw2
Op2u2camk5OT2fQpJSUlNk9zo1QqoVarm8zlKTT/lvDVn8aqq6tRWVlpFreQ+sUXn5D6w6e5
8hUSnzU3b97E1q1b8d5778Hf3x8GgwFFRUVm14s1Xl5e6Nu3Lz777DNu2aVLl1BZWcn1slnL
v9DzY+36spa+kPwJrV/N1U++7xe+65+PPfVr4MCB8Pb2xv79+83WNebo6MjNG8x+f2hIpVJx
8fPVX2v5F3J+hV4fQr7fcnJyMHr0aKvbEEIeHKKJgSEs6cu9VjdycnKy+0DV1dWIjo7GqVOn
MH78eNTU1GDcuHFYtWoVRCIRbt26hfnz58Pd3R0jR45EdnY2wsPD8cwzzyAlJQWLFi1CbW0t
/vvf/8Lf3x/PPfcc0tLS8PbbbyM2NpY7zv/+7//i22+/xVdffWV2fJVKhaVLl+KHH37A1KlT
4eTkBA8PD7z55puorKzEli1bcOLECfz444949dVX0b9/f0RFRXE9EF9++SXeeustjB07FiqV
Cl27dsWzzz6LuXPnQiwWW02/S5cuiImJwffff4/nnnsODg4OOHv2LEaPHo2VK1eaxTlt2jTI
ZDJ88803LSrnmTNnYsyYMVi9erXZ8pycHOzcuROpqam4ePEi5syZg9GjRyMqKorb5tKlS5g2
bRoGDhwIT09PTJ48GdHR0YKm8Tlw4ADS09Nx9uxZZGdnIzAwED4+Pli4cCH3cIaQ/DeHr/4k
JCTg0qVLOHXqFC5cuICXXnoJAwYMwLx58zBo0CCr9QsAb3x851cIa+XLF581Wq0Wzz33HKqq
qrgHSIqKivDjjz9i+fLlWLZsGW8ap0+fRnh4OCZNmoQePXrA3d0dW7duxV//+lds3ryZN//W
zk9paSnv9WUtfYlEwps/vvNnrX4WFxfzfr/wXf987K1fmZmZeOWVV/D4449DLpfj119/RWZm
JtcgPXfuHP785z8jLCwMjo6OcHZ2RmxsLN5++23ExMRYTf/777/nzT/f9Sf0+uD7frty5Qqe
eOIJFBYW2jxrBCGkY7RkyrX+/fsDACZND22/hqiJTqeDSqWCu7u7xdvHGo0GarXa7BahTqcD
cHc8mVgshk6ng0QigU6ng4ODA7ctYwwajabZxoFer0d5eTl69OjBpWcwGKDVaiGRSCCRSKDX
66HX6yGTybg/Mh999BFGjhwJV1dXODg44LfffsO6devwl7/8xWyqIEvpN46toqICWq0WHh4e
TZ5eB4yTnotEohbP4Xjz5k1MnjwZ586dM7slacqTaeyYXq8HY8ys7ABjo0alUsHDw8Om2/um
p2clEgnEYjF3PKlUColEAkBY/vk0V39M5SYWi5s9PmC5fpkIic/a+RWCr3ytxcenpqYGOp0O
rq6uYIyhqqrKpj/mjDGUlpaiZ8+e0Ov10Gq1TcaK8uXf0vkRcn0JSZ8vf9bOn7X6aeo1tPb9
IvT65ytfe+tXWVkZXFxcoFAoEBQUZNYz2tDQALVaDVdXVzQ0NECn06Fr16686dvy/cr3/c0X
v7XvN8YYZs2aheeeew5z5syxWIaEkM7nvmuI3o9+++03+Pn54ebNm2Z/OOPj4+Hj4yOo16o9
nThxAtu2bcPnn3/+QE5KTkh76ozX/3fffYc///nPqK6ufmDm29y6dSuqq6vx9ttvd3QohBAb
2NsQbdeHle5X7u7umD59OkJCQjBu3DhotVo89NBDGDlyJJ5++umODq+JadOm4ZFHHsGJEycw
ffr0jg6HkPtaZ7v+s7KyEBsbi9raWqxbt67JyyvuRyUlJRg0aBBmzJjR0aEQQtoZ9YjagDGG
2tpadOvW7YHphSCECNNZrn+tVsvdOtfr9Z32lbaEkD8G6hFtRyKRqFXmjSSE3H86y/Uvk8lo
yA0h5IHRbq/4JIQQQgghpDFqiLYBxhhqamo6OgxCCCGEkE6twxuitk6Y3tnt2bMHoaGhWL9+
PYYMGYIzZ850dEiEEEIIIZ1Su4wRvXPnDtavX48DBw7Aw8MDL7zwAvR6Pb755hsMGjQIX375
ZXuE0eaKioqwcuVKXL9+HXK5HH369EFOTg4mTJjQ0aERQgghhHQ67dIQ7dWrF7Zt24aioiIM
GTIEcXFxAIB3330XM2fO5LZTq9XIzMyESqXCqFGj0LdvX25dWVkZrly5AqVSiaCgIKhUKqSn
p6N3794YM2aMoDgqKytx+vRp1NbWwsvLCyNHjoRUKkVhYSFu3LiBXr16YciQIaipqcG5c+cg
l8sxbtw4wcdXKBTw9vbmnmJt/NYiwPgavfT0dNTU1ODJJ59s8j5lg8GAc+fOobi4GIMHD4av
r6/Z07mmV/ddvXoV3t7eePzxx83WN5c/QgghhJDOqF1vzXfp0oV72lOr1UKr1eLvf/87AOPc
eHPnzoXBYICDgwNCQkKwbt06bt/Tp09jy5YtWLx4Mf4/e/ceF2WZ/4//NQcYBuMwgqKZJ/AY
Cgp4Sk2twc0NdxMb021tsxJL8YOngk/mluUBMlnb/CSg5anPZ0tscz0By2z6I1ndZEy/KiLC
CJpiBgxyGBjmcP3+mOaWgTkywyF9Px8PHjL3dd/X6b7v4fK6rvu6c3NzsWbNGmRlZWHdunUO
pX3y5EksWLAAYrGYe+Wk6ViDwYAVK1Zg69atAIxPx37++edm76u3l35qairS0tJQXl6O+Ph4
xMfHIy8vjzs+Ly8P8+fPh6+vL0QiEcLCwlBcXMyFV1VVYe7cuSguLkZQUBA2btzIvc4QML5V
JiYmBidOnED//v2xb98+xMbGcu8Ct1U+QgghhJDuqNO7y4qKipCZmYnz588jLCwML7zwAhhj
WLhwIfbu3YuoqCgAQGhoKIYMGYLo6GhMnDgRzz33HHr37o2pU6eioKAAu3btAuD4HNOvvvoK
gwcPxpQpU+Dp6Ykvv/wSX331FQBgyJAhmDp1KvR6PQCgR48e+P3vfw+FQsEdby/9VatWoXfv
3khLS8P27dvbpH/16lU8//zzmDx5MgBgypQpOHbsGIYNG8Yd/5vf/AZ//OMfAQDjxo3DpEmT
cO3aNYSGhiIxMREhISFYuXIlAGDChAno2bMnsrKy8Oyzz9osHyGEEEJId9TpDdGgoCCMGTMG
TU1N3LByWVkZCgsLuUYZAAwYMAChoaGQy+WYOHEiAOM7kL29vbFmzRpuP0cXln7llVfw2muv
wd/fH5MmTcJzzz1nNi2Az+dzvYsAuHeyt+RK+osXL0ZpaSnS0tJw+/ZtlJaWIjw8HICxMXvs
2DEsW7aM218sFuP8+fPc52PHjiEiIgKrV6+GVqtFc3Mzpk2bxq1raK98hBBCCCHdTac3RCUS
CYYOHYqhQ4dy20y9ihUVFfD19eW2+/n5wc/Pz+z4Hj16tGsx56ioKFy4cAFFRUXIzs7G4cOH
8fbbb6O8vBw9e/Z0OJ72pM8YQ0JCAi5duoQtW7YgIiICV69ebbM49s2bNzF+/HiLcajVasye
PRuLFi2yGO6u8hFCCCGEdJZOnSPa2NhocX3NwYMHY+LEiUhLS+O2NTQ04MaNG5g9eza3rba2
Flqttl1py2QyVFZWYsSIEVixYgVycnLA4/G4+EQiEWprawHcfyiopqbGbOjfXvr19fXQ6XRt
tv/444/45JNP8P777yMyMhIGgwFlZWVoamoCYOxVff7557F582bU1dVxxx0/fhz5+fkAgNmz
Z2Pbtm2oqqriwisrK6FUKh0qn8muXbvMphwQQgghhHSVTukR/emnn/D+++9DLpcjICAAPj4+
ePfdd+Hl5QXA2BA7ePAgFi9ejIULF2LMmDG4ePEiduzYgUGDBuGnn37Ctm3bcOLECVRXV2Ph
woUYOHAgli9fjqCgIIfyMHLkSMTGxuLZZ5+Fp6cnzpw5g3Xr1nHHy2Qy/O53v0NCQgJEIhF8
fX1RVVWFDRs2IC4uzmb6dXV12LRpE44ePYpr165h8eLF6NWrF1588UWEhoaiT58+iI6Oxpo1
a7gHkPr164dPP/0UYrEYq1atwpYtW5CQkICIiAhMnDgR9fX1mDBhAhITEwEAW7duxYoVKzBp
0iRMnz4dPj4+CAwM5OaM2iufyeeffw4A+Pe//+2Wc0sIIYQQ0l68ydFzWNbXe23u5OPj41Ii
BoMBOp0OQqEQjDHo9Xp4eHhYnF+p0WigVqshkUjMjtdqtRAIBBAIBNDr9VwcfL7jnbqMMVRX
V0Or1SIwMLDN0kbNzc1Qq9Xw9/dHc3MzdDodvL297abPGENzczOEQiH4fD4XLhQKIRAIuPhN
Pab+/v5gjKG2trbN1AOdToeamhoEBARYrB+9Xo+qqir06tWrTbi98gHGnubY2Fjk5OQ4XG+E
EEIIIZaUl5c7fczAgQMBAFNmxnZOjyifz4enpyf3uWXjrDWRSASRSNTm+JbbhEJhu9bH5PF4
CAgIsBru6enJ5bPl7/bS5/F4DuWv5ZxQHo/XphFqOjYwMNBqHgUCAXr37m0xzF757ty5g3ff
fRcfffSR1X0IIYQQQjoLrXb+EOnVqxd27NjhVC8yIYQQQkhHoYboQ8RWTzQhhBBCSGejrjEH
qFQq7ul0QgghhBDiHtQQhbGhKZfLrYanpKRwD0/J5XLMmzePlkAihBBCCHFRt26IRkdHIzo6
2m2NvqSkJERHRyMjI4PbJpfLkZKSYrMhCoBriEqlUiiVSgQHB7slT4QQQgghD6sumyOqUqmQ
kZEBiUQClUoFlUqF5ORkJCUlITk5GQAQGRnJ/W6NUqmESqVCZGSk3TRNcSUlJXHbpFIpAFht
iMrlcrO4VSoVAJgtL0UIIYQQQpzXJQ1RlUrFNThNDTqVSoWoqCjIZDKn4pLL5YiLi+uIbHLx
t2wMy+VyrldUoVAgIyMDubm5HZY+IYQQQsiDqksaoklJSZDJZGa9ihKJBFKplOuh7A5MvZ8t
maYJKBQKyGQyeoiJEEIIIaSdumSOaGZmpsUGp0QicWiIvbNkZma26W2Vy+WQSCRQKBRQqVTc
KzgJIYQQQohzuuxhpZSUlDbbnBliVygUSElJgUKh6LAn2Fs/lGTqITU1PjsybUIIIYSQB12X
NETj4uKQlJSEqKgoJCUlITMzE4BjDwApFAokJSVBpVJBIpEgPT0dSqUSS5YsaVdeMjIykJGR
wcXbMp3WT8YrFAqznlyFQkFD84QQQggh7dQlDdHk5GQUFBRAKpVy63K2bARaY2osJiYmmjUI
TXM129M7GRcXhwMHDiA3N9fsoaTMzMw2D05JpVJun+TkZCQmJjr9cJUlzc3NLsfxoGCMuVwf
VJ/uodFoXArvLHS+O4877s+HAWMMNTU1NvfpqPuLzg/5temyoXnT0kwFBQXIzc21OFTfmqkR
aqnnNDg4GJmZmW5dcL6jl2i6ePEipk2bhkGDBnVoOp2tubkZRUVFTh/3P//zP+jTpw82bdrU
rnSzsrIwfPhwvPzyy+06nhjt3LkTo0aNwtChQ9sV3lke1Punu3L1/jRp7/dDd+FI/r/55huM
HDkSjLE2YR11f9H3H/m16tSGqLWhbEeelFcqldzSSabPLYfOTcPm7lhw3vREfEcbPXo0Vq5c
CQ8Pjw5PqzOtXr0af/nLX5w+btmyZRg7dixEIlG70p01axaeeeYZiMXidh1PjBYvXoy33nrL
aj3aC+8sD+r90125en+atPf7obtwJP+zZs1CdnY2eDxem7COur/o+4/8WnXq8k1yudziU+Yq
lcpuw1GlUpk1WFuuH2pajF4qlbplwfmOfnJfrVbj7NmzqK2tRXV1dZsvK1N4TU0NIiIi0L9/
f7NwxhguXLiAa9euISQkBGPHjjWL4969ezh16hQaGhoQHByMMWPGQCi0f6o1Gg3Onz8PoVCI
iIgIXLlyBUVFRZBKpfD19XUqf46kZ4m/vz94PB6Ki4tx4cIFDB8+HGFhYQ6X38fHB42NjWCM
4fLlyygqKsKMGTMQEBDAHd/Q0IC8vDzU19dj6tSp6NOnDwDgypUr+Pnnn2EwGBAeHg6JRILr
16/jxo0bEAgEmDJlit30HWEtfZP2nr/8/Hzo9Xr07t0bI0aMAADo9Xp899134PP5CAsLg7+/
v0P57927t80y2Qu3RKlU4ubNm+jTpw+GDx+O+vp6FBQUQCwWY8KECU5ff9buH1vlq6ysxNWr
V6FSqRATE4Oamhrk5eWhb9++GDdunEPlMBgMKCgoQHl5OYYNG4awsDCzPFi7P9xxfTmS//Ze
P46wdX/aO78m7f1+cOf1bYu9+rOVf4PBgMrKSty+fRslJSUYNmyYxYZhR9xfwK/j+4+Q1jq9
R9T0YFJLKSkpdt+gFBkZyb1FqSWVSoWUlBSkp6cDMF9wPjMzE9HR0e4rgBtcuHABf/rTn8AY
g5+fH/bt22cWfu7cOSxatAgGgwGenp6YM2cOPvjgAy68vr4eMTExOHHiBPr37499+/YhNjYW
BoMBAHDy5EksWLAAYrEYI0a5Yu7gAAAgAElEQVSMwLp167Bu3TqH8nbr1i0sX74cqamp2Lx5
M3Jzc5Gammo21GMrfxqNBgkJCcjLy0NeXh7i4+MRHx+P7Oxsp+royy+/RE5ODjw8PLBo0SIs
WbKEG+KyV37AeE288847OHToELZv34758+dzYXl5eZg/fz58fX0hEokQFhaG4uJiLv9vvfUW
XnvtNW5/g8GAZcuWobS01OH0bbGVPuDa+Tty5AieeuopszliPB4P+fn52LRpExhjLuffFQaD
AStWrMDWrVu5vH3++edYuHAhAMeuP3v3j73ynTp1Ctu2bcMbb7yB3NxcrFmzBllZWQ7XcVVV
FebOnYvi4mIEBQVh48aNmD59Olfn9u4PV68ve/l35fpxlLX70975dfX7oTOub1v150j+VSoV
du7ciXXr1kEmk3VJA607f/8RYtHk6DmstrbW5o+7yGQylpyczNLT01lubi7Lzc1liYmJLD09
3eL+iYmJZp8LCgpYXFyc2XGJiYmsurra7JjExER24MABxhhjycnJduPtLAaDgYWGhrLi4mJu
2/Hjx9nAgQO58Mcff5ydPXuWCy8vL2ceHh7s9OnTjDHGli5dypYvX24Wp7+/Pzt69ChjjLHX
X3+dLV26lGk0GsYYYzU1NVbr15L169ez8PBwplarGWOMHT58mA0aNMjh/DHGWEJCAlu2bJnD
abb0wgsvsPXr13Ofb9++zcRiMTt27BhjzH75165dy8aNG8flXy6Xsz59+nD7Z2RksD179nCf
58yZw1JTU7nP586dYx4eHqyiooIxZqy/lteLvfTtsZe+K+fv9u3bDACrqKhgKpWKu/YPHTrE
cnNzncp/VlYWGz58uNW07IVbs3z5crZ06VLu88GDB9njjz/OfbZ3/dm6fxwtX35+PuPz+WzT
pk1m+znipZdeYjt27OA+q9VqFh4ezi5duuTQ/eGO68tW/l29/+2xd3/aO7+Mtf/7wZ3XtzWO
1J8j+VcoFMzX19dqeEfdX939+488mMrKypz+MZkcPYd16tB8eno6JBIJlEolN1fU2sNHlkRG
RiI9PR2ZmZmQSCQW1x2Vy+WQyWTcnNHutOD8jz/+iKKiIoSEhHDbWg7blJWVobCwEMOGDeO2
DRgwAKGhoZDL5Zg4cSKOHTuGiIgIrF69GlqtFs3NzZg2bRoeeeQRAMArr7yC1157Df7+/pg0
aRKee+45zJ071+E88vl8jBo1isuXRCKBVqt1OH/u4Onpyf3et29fjBkzBj/88AN++9vf2i0/
AISFhXH59/Pz4/IPGOdflZaWIi0tDbdv30ZpaSnCw8O58LFjx+KJJ57gejU+++wzs6XBHEnf
Fnvpu3L++vbti1GjRuHbb79FdXU1tmzZgoULF+Lf//431q9f75b8u4rP55v1nggEArNeI1vX
n737B3CsfHw+H97e3lizZg23zZGeK8YYjh07hmXLlpmlf/78eQDA9evX7d4f7ri+bOXf1fvf
EbbuT3vn1xWdcX27q/74fH6XDVd35+8/Qizp1IaoqcEZHBzs0sNE1t5o1HLB+aSkJCgUim71
tia1Wg29Xo979+5ZbHyzX4afKyoqzObE+fn5wc/Pj4tj9uzZWLRokcU0oqKicOHCBRQVFSE7
OxuHDx/G22+/jfLycvTs2dOl/DuSPxO9Xu9SWi01NTVxjQ975beFMYaEhARcunQJW7ZsQURE
BK5evdrmS3TlypVYunQpVq1ahbt372Lw4MFcWEen7+r5i46ORnZ2Nvr164fFixdj37590Gq1
8PLycjn/Xc3e/WPax5Hy9ejRo90POd28eRPjx49vs93R+8Md15e1/Hfk/W9Ny/vTUe39fujo
69vR+nPn91tn6ervP0Ks6bLlmzpCd19wPjg4GP3798fnn3/Obbt8+TLu3bsHg8GAwYMHY+LE
iUhLS+PCGxoacOPGDcyePRsAMHv2bGzbtg1VVVXcPpWVlVw5ZTIZKisrMWLECKxYsQI5OTng
8Xhm/yu2paGhAU1NTdznxsZGqNVqMMYcyh9gnDB/9epV7nNFRYXFZUwsaT3XqLy8HNXV1Zg1
a5ZD5Ver1Wbr7zU1NaGxsREGgwE//vgjPvnkE7z//vuIjIyEwWBAWVmZWXkBICYmBmKxGDEx
Mdz8NhN76dviSPqunr/o6Gjs378fM2fOxOuvv46//vWv6Nevn9P5r6urw71796yeN3vh1ohE
ItTW1gK4/9BDTU0NF4+t68/e/eNo+Wprax2uz5Z4PB6ef/55bN68GXV1ddz248ePIz8/3+H7
w9Xry1b+Hb1+du3a1a4l7uzdn/bOL+Da94O7rm9rHKk/R/KvUqnafBe11FH3V3f+/iPEGsGA
kJHv/fGFOTZ3cnW5jvZKSUlBYWEhgoODzXpAJBKJ1bVETQ1RqVSKKVOmIDQ0lAvPyMjgHpZy
ZMkodxMIBBg3bhzefPNNnD17Fnl5eQCAs2fP4u7du/jNb36DWbNmYffu3cjOzsb169exe/du
7i1UADBt2jRcuHAB7733Hi5evIiTJ0+iqKgIM2fOhFAoxMWLF/Hhhx/i7t27OHv2LD7++GMs
WLAAM2fOtJu/nJwcJCcno6SkBFOmTEFQUBCWLVuGwsJCaLVaPP3003bzBwBBQUHYsmULDh48
iCNHjqC2thbjx4+HQCCwm4e9e/fizp07KCoqwpkzZ7Bnzx58+umn3FqRtsr/z3/+E1u3bkVp
aSlmzJhhlv+amhrExsbizJkzOHLkCEpKSpCdnQ2DwYBDhw6Bx+Nh0qRJAIzDagKBABUVFVi+
fLlZ/uzVvy3e3t5203fl/AHAo48+in/+85/YuHEj/P39kZ+fj1dffRVBQUEO5T8tLQ179+7F
F198gdLSUhQVFaGgoACDBg1Cz5497YbbI5FIsHHjRty4cQMnTpyAWCxGTk4OGGNoamqyef1F
R0fbvX9sla+qqgobN27E7t27UVJSgtLSUpw7dw6hoaEODy1OmzYNP/zwA9auXYuzZ89i//79
8PDwwIIFC8Dj8Ry6P9p7fTmSf0evn/j4eGRlZeHVV191qNwm9u5PW+d32rRpAFz7fnD1+rbH
kfqzlf8vvvgC27dvx65du1BRUYH//Oc/OHfuHAYNGoTAwMAOvb+OHz/erb//yIPr3r17Th/j
7+8PAPh8/1fgTY6ew7K+3mvzAB8fn3ZlzlWmZZkiIyPdsri8QqHglopyZWqAqxhjuHv3Lnr3
7g29Xg+tVttmrptGo4FarbZabr1ej6qqKvTq1cvi8jXV1dXQarUIDAx0+AtCp9MBuD/fjM/n
Q6fTQSAQQKfTmc0Ns5c/rVaLmpoaBAYGOjVXqra2Fr6+vqitrYVOp7P65Wup/Jbyr9VqIRQK
zfJfX18PnU7HLfVSW1vbZmoBYwwajYYb8nMkfUfZS7+9589Eo9Fw/3ls+bsj+W9ubgaPxwOf
zwefz4der4der4dQKIRAILAb7ojm5mao1Wr4+/ujubkZOp0O3t7eDl9/jtw/lspnMBig1Woh
EAggEAi4vHt4eIDPd25wSKfToaamBgEBARbPv737oz3Xl6P5d+T6aWhoQGxsLHJycpwqtyP3
p7Xz21J7vx8A165vRzhSf9byb3qiXyAQtOv+ceX++rV8/5EHT3l5udPHDBw4EAAwZWZs926I
EkIIca87d+7g3XffRXx8PEaPHt3V2SGE/Mq52hClvnRCCHmI9OrVCzt27HC6F5gQQjoCNUQJ
IeQh4ugUCkII6Qz0X2JCugGlUtmup5gJIYSQXzPqESWkC5leUWv6XalUIjExEVKplHslrr3X
3xJCCCG/VtQQJaQLyeVys4amUqlESkoKUlJSIJPJqBFKCCHkgUYNUUK6kEwmM/scHByM9PT0
LspN96NUKqFSqbrN29EIIYS4F80RJYR0W3K5nBqhhBDyAOtWDVHTYsBdiTGGmpoau/vU19e7
lI5pbmBGRgZSUlKQlJQEANy/znAkz6RjueOaMOmqB5e6w/1HCCHk4dKpDdHm5mYUFRW12Z6V
lYXhw4fj5Zdf7pD4nfHNN99g5MiRVt/xu2fPHsTGxmLDhg0YPnw4Tp8+7XQaKpUKSUlJiIuL
Q1xcHBITE5GYmIioqKh2vUHKXp5Jx3LHNdFSR/UCdvT9RwghhDirU+eIrl69Gs3NzW3mwM2a
NQvZ2dku9yhZi98ZprxYem1ZWVkZ3nzzTdy4cQNisRj9+vVDYWEh945eRyUlJUEmk5k1OiUS
CaRSKaRSqVvzTDqWu66JztDR9587KRQKyOVyrneYhucJIeTB1KkNUcaY1fdm+/j4oLGxEYwx
XL58GUVFRZgxYwYCAgK4fRoaGpCXl4f6+npMnToVffr0cTh+ewwGAyorK3H79m2UlJRg2LBh
bd5frVAoEBISwm1fvnx5u9LKzMy02FiWSCRO/cF1JM/37t3DqVOn0NDQgODgYIwZM8apOrJX
547ksaCgAOXl5Rg2bBjCwsLMGsxqtRpnz55FTU0NIiIi0L9/fwDAlStX8PPPP8NgMCA8PBwS
iQTXr1/HjRs3IBAIMGXKFADGc37hwgVcu3YNISEhGDt2LBd/ZWUlrl69CpVKhZiYGNTU1CAv
Lw99+/bFuHHjHMq/tfyZuOua6Ayu3n/W6lqj0eD8+fMQCoWIiIjAlStXUFRUBKlUCl9fX6fy
aFqySiqVQiKRID09HZmZmcjIyKCHuAgh5AHUKUPzGo0GCQkJyMvLQ15eHuLj4xEfH4/s7Gyz
/VQqFd555x0cOnQI27dvx/z587mwvLw8zJ8/H76+vhCJRAgLC0NxcbFT8duiUqmwc+dOrFu3
DjKZrE3vYmpqKtLS0lBeXs7Fn5eX1+46Ma0d2VJcXJxTcdjL88mTJ7FgwQKIxWKMGDEC69at
w7p16xyO31adO6Kqqgpz585FcXExgoKCsHHjRkyfPp2bi3ju3DksWrQIBoMBnp6emDNnDj74
4AMAxnP61ltv4bXXXuPiMxgMWLZsGUpLSwEA9fX1iImJwYkTJ9C/f3/s27cPsbGxMBgMAIBT
p05h27ZteOONN5Cbm4s1a9YgKyvL4TqwlT/A/deEQqFASkoKFAqFW+eIuuP+s1XXt27dwvLl
y5GamorNmzcjNzcXqampTg/1KxQKJCUlceuomshkMlrwnxBCHlSTo+ew2tpamz/ukpCQwJYt
W2YxbO3atWzcuHFMrVYzxhiTy+WsT58+XHhGRgbbs2cP93nOnDksNTXV4fgdpVAomK+vr8Ww
/fv3s8mTJ7sUP2OMJSYmMgAsMjKSJSYmsgMHDrgUn7U8v/7662zp0qVMo9Ewxhirqalh6enp
DsfrSJ3b8tJLL7EdO3Zwn9VqNQsPD2eXLl1iBoOBPf744+zs2bNceHl5OfPw8GCnT59mjDF2
7tw55uHhwSoqKrj8JyYmcvsvXbqULV++nPtsMBiYv78/O3r0KLctPz+f8fl8tmnTJrP97HEk
f4y555ooKChgiYmJLDc3lzs/Bw4cYHFxcS7F25or95+9ul6/fj0LDw/njj98+DAbNGiQU/mT
SqUsNzeX+9zyWo2LizM794QQQrqHsrIyp39MJkfPYd3qqfmwsDBuiNPPzw9arZYLW7x4MaZM
mYK0tDT8+c9/RmlpKWpra92eBz6f3+FzLZOTk1FQUACpVAq5XI558+a162l5E2t5fuWVV3Dq
1Cn4+/vj6aefxr59+xATE+NwvK7UOWMMx44dQ0REBLdNLBbj/PnzCA0NRVlZGQoLCzFs2DAu
fMCAAQgNDYVcLgcAjB07Fk888QR27twJAPjss8+wZMkSbv9jx47hxx9/xOrVq/Ff//VfeOON
NzBt2jQ88sgjZnXj7e2NNWvWcNscOb+O5M8dulMvoK37z15d8/l8jBo1ijteIpGYHW+PUqmE
XC7n6kCpVCI4OJgLVygU7Zo/TQghpHPV1dWjRHkdl68UoUR5HXV1tp8/6PQF7fV6vdPHMMaQ
kJCAS5cuYcuWLYiIiMDVq1fNGhyuxN8VIiMjufmgcrkc0dHRbn+LTlRUFC5cuICioiJkZ2fj
8OHDePvtt1FeXo6ePXvaPNaZOrfl5s2bGD9+vMX4AaCiosJsHqGfnx/8/Py4zytXrsTSpUux
atUq3L17F4MHD+bC1Go1Zs+ejUWLFtnMQ48ePeDh4eFUvh3Nn6tMjVBLqyUEBwcjMzPTrQ/q
tPf+cLSu20ulUpk1NOVyOTdVxdTwp4YoIYR0b3V1dSi7cZP73NjYiLIbNzBowAD4+FhuP3Rq
j6iPjw+uXr3Kfa6oqOD+4KvVamg0Gi6sqakJjY2NMBgM+PHHH/HJJ5/g/fffR2RkJAwGA8rK
ytDU1ORw/I5SqVRt8mJSX18PnU7nVHwtKRQKKJXKNttd/QNrLc8ymQyVlZUYMWIEVqxYgZyc
HPB4PId6qhytc2t4PB6ef/55bN68GXV1ddz248ePIz8/H4MHD8bEiRORlpbGhTU0NODGjRuY
PXs2ty0mJgZisRgxMTFYuHChWRqzZ8/Gtm3bUFVVxW2rrKw0q+Pa2lqneuZMHM2fK9dEe3oB
d+3a1e5e0vbef4D9um5oaDC7NhobG6FWqx2+/yIjI7m3KLVkWm+XHlQihJDu76efK61s/9nq
MYIBISPf++MLc2xGLBKJXMqYSVBQELZs2YKDBw/iyJEjqK2txfjx45GTk4OtW7eitLQUM2bM
QFBQEJYtW4bCwkLU1NQgNjYWZ86cwZEjR1BSUoLs7GwYDAYcOnQIPB6PWyrHWvwCgcBu3r74
4gts374du3btQkVFBf7zn//g3LlzGDRoEEQiEd577z387//+LwoLC1FeXo4zZ86gT58+6N27
t8Pl379/v1kjxkSlUiEzMxMJCQmOV6adPAcGBuLixYv48MMPcffuXZw9exYff/wxFixYgJkz
Z9qN29vb26E6t2XatGn44YcfsHbtWpw9exb79++Hh4cHFixYAB6Ph1mzZmH37t3Izs7G9evX
sXv3biQlJSEqKoqLg8/nQyAQoKKios0T6dOmTcOFCxfw3nvv4eLFizh58iSKioowc+ZMVFVV
YePGjdi9ezdKSkpQWlqKc+fOITQ01KFeXXv5q6urc/maUCqVUCqVeOmllwAYV1MwvfJTLpe3
eQ89AMTHxyMrKwuvvvqqQ2m01N77b9asWTbr+l//+heSk5NRUlKCKVOmmB2v1Wrx9NNPO5S/
KVOmICUlBWKxmPtP29GjR/Hxxx+bNdAJIYR0H/fu3eN+v11xx+I+er0evXv14j77+/sDAD7f
/xV4k6PnsKyv99pMxMfHxw1ZNdJqtaipqUFgYCA3V8/Uo2T6zOfzodVqIRQKodPp4OnpCeB+
75O/vz8YY6itrW0zTGopfkeYnuQWCATg8/nQ6/XQ6/UQCoXg8/lobm7mfm8Z5kgj12TevHmQ
yWRt3i+elJSEyMjINttdybMpX4wxVFdXQ6vVIjAw0OnlrRypc3t0Oh1qamoQEBBg8ZxoNBqo
1Wqri/kzxqDRaODl5WUxXK/Xo6qqCr169eLiNxgM0Gq1EAgEEAgEXN14eHiAz3duIMBS/hhj
brkmQkJCUFBQAIlEgoyMDMTFxUGlUmHevHlITk5uMyzf0NCA2NhY5OTkOFUGE1fuP8ByXVs6
XqfTQSAQtDneEZmZmVAqlUhMTGxXGQkhhHSe8vJy7veLlwut7jc69HHu94EDBwIApsyM7fw5
oh4eHujVolUMwGLjyPTHq+UfsZY9WTwez2KDyFL8jmj9x1IoFJrlq2WvcOswZyiVSmRkZHA9
PHK5HMHBwU43Qh3JM2Csp5ZrQTrLkTq3RygUIjAw0Gq4SCSy2evO4/GsNkIBY0O8dS8kn893
2zmzlD8ej+eW+A8cOMC94MB0bSiVShw4cKBNw/zOnTt499138dFHH7WrHIBr9x9gua4tHW+a
k+tsIxQwjhBQI5QQQh4Ond4QfZilp6dDIpFwQ7IArD6oQh4OkZGR3KLtEonE5lqyvXr1wo4d
O5zu0SWEEEK6K2qIdiJTgzM4OJjmvBEzjvQCOjPk/2tGT8cTQsjDg7pWCCHdCv0njRBCHh7U
ECWkG6BeQEIIIQ8jaogS0g1QLyAhhJCHETVECSGEEEJIl3C4IVp2VAt925cNdSiDjRfiaLVa
lJWVdVpenMEYUN/q1ap37941W/SVEEIIIeRh53BDVNvAcO2r5o7MC0d1VY/sFxpwcEqtxfDk
5GS8+eabuHnzpsXwrrRnDxAbC2zYAAwfDpw+bdxeV1eHjz76CHPnzkV1dXWX5pEQQgghpDtw
uCEaEuuJ60e00HdCW1QyXIDHX/UEX9j2LTzFxcX4+uuvsW3bNkydOrXjM+OEsjLgzTeB//s/
IDkZiI8HCn95yUBISAg++OADjB49Grt27erSfBJCCCGEdAcOryPK9wBCYj1QcqAZw/9o5W0p
DKi+okdtmQE+A/gICBUAPEDfDKgK9eAJgIBRAtSUGHCvVI9Hpwjh8cj9xqaukaHq/+nRXM+g
qWGw9IbOn3/+uc1bemprAYUCCAgAQkKA774DvLyAyZOBX17wgspK4OpVQKUCYmKAmhogLw/o
2xcYN864j1oNnD1rDIuIAPr3N0/bXrhCYUxfLDZ+bvVqdADAo48+iitXrlirZkIIIYSQh4ZT
DysNed4Tyn9oLc7d1KkZ/vVqA+6c1qFHXz5K/67FidfVYAZAfceA/7zbiMLPNLj4qQYVp7Qo
/EyDU2saueOrr+hxanUjGAM8fXgo/bvlCaJisRj1rSZg5uQA8+cDH34IrF0L3L1r/P3JJ4Ff
XseOU6eAbduAN94AcnOBNWuArCxg3Tpj+LlzwKJFgMEAeHoCc+YAH3xwPw174ampQFoaUF5u
7AmNjzc2dFurq6uD2NRSJYQQQgh5iDn1ZiW+BxD8nAdKDjZj2ALzXtGC5Cb4DODj8VeN79/u
NUaAv42pxa2TOjz2lBCPPe2BG9laPJEshsCLh0cG8PH9e03Ggxnw3YpGzEj3hu8gY9t49OvA
mXca0VpZWVmbd6fLZMDx48ClS8DevYBAALzwgrG386uvgIULgeeeA3r3BqZOBQoKANPoOGPG
n4ULjcdGRRm3h4YCQ4YA0dHAhAm2wydOBFatMsaflgZs3269DkNCQvDDDz84U+2EEEIIIQ8k
p5dvGiLzROnf2/aK3vpWh4Y7DGc3NuH79xpx+p1GBE0QwqOHMZzHB/yH8yHwMo63i/x4MOiM
YQ13jEP1PgPuZ0fg1TbtvXv34uTJk/jkk0/ahIlEwFNPGRuhps9hYcC1ay0Kywe8vY29oSY8
nnFuZ2EhMGzY/e0DBhgbm3K5/XBn/P73v8czzzyDhIQE6PV65w4mhBBCCHmAOP2ueYEnMHi2
B0r/3oyhL9zvFdU1MvR/WoghMivzR23QNQJMD2jrGDz9LEwM/UVMTAwUCgVKSkrQv/UETaDN
nFKNxjhns6UePe7PGzVhzPhvRQXg63t/u5+f8cdeuDNKSkqwe/dupKamPjTvDieEEEIIsaRd
C9oPfcETpV9ruR5NAOgv9UDh583QqBi3TaNiqLthAGCcQ9pyHVJdk7HxCgb4DOCjR18+rh24
/0h+TbEBzXUMzHD/mICAAPzhD3/Ahg0bLOarsPB+o/HWLeDmTWDWrPvhtbWA1sLU08GDjcPr
aWn3tzU0ADduALNn2w83qa8HdC3qxJKjR48iMjIS4eHhtnckhBBCCHnAOd0jCgACETDwWQ8o
DzVjyPPGHtCotV74/v0mHI+tR5+JQggf4cFLwsPjr4pwO0+H60e00KkZfj6nR8BoAS6ladB8
j+Hc1iZErPHCk38V4/9b3oiqi3p49eRBJOGDJwAKNjdh3Nr74/Q8Hg8Gg8Fivu7cARYsAEaO
BPLzgS++MM7b/Okn44NKJ04A1dXG+Z4DBxqfag8KMvakHjwILF5sDBszBrh4EdixAxg0yBi3
rfC6OmDTJuDoUeNUgMWLgV69gBdfNA7fm1W4UAiepeUACCGEEEIeMu1qiALAsPmeyH2pASHP
eYInBDx9eZjykRhMD2hqGLx68oBf2lt9nxAi9oQP95nHB6R7eoDHNw7JA0DvKCFk//ZBYxWD
OIAHpgdGLfHk5pSa6HQ6eHlZmEAK4xzRjRuNSzT9+c/3h+p79QLee8/4lLtAAOj1xp+WQ/T9
+hkfeNJojMs0SSTmcdsKf+QRY/wbNhjnoZriF1qoXW9vb2g0nfyKKkIIIYSQbqjd75oXiICJ
G8TQaZjZdp4A8Aq43wgFAJ7wlx+B8Qc8gC80Nkj5Ledr8gBxoPFYnhBtGqEAEBYWhuLiYpSU
lJhtr6szDpcLBEBgoPl8UT7f+PCSUGjcLhQaP/MtlF4katsItRfO4xm3CwTm8beeAqrT6ZCV
lYWnnnrKegKEEEIIIQ+JdveIAoD/0Ha3Y9vNx8cHOTk5+OyzzzB06FC88sor+PJL41qiIpFx
PueqVZ2eLbu+//57ZGdnY9myZZgxY0ZXZ4cQQgghpMu51BDtKkOGDMHmzZu5z3PmGH8A45B4
dzR+/HiMHz++q7NBCCGEENJt/Coboq2JRF2dA0IIIYQQ4qzOH1snhBBCCCEE1BAlhBBCCCFd
hBqihBBCCCGkS1BDlBBCCCGEdAlqiBJCCCGEkC5BDVFCCCGEENIlqCFKCCGEEEK6BDVECSGE
EEJIl6CGKCGEEEII6RLUECWEEEIIIV2CGqKEEEIIIaRLUEOUEEIIIYR0CWqIEkIIIYSQLkEN
UUIIIYQQ0iWoIUoIIYQQQroENUQJIYQQQkiXoIYoIYQQQgjpEg43RMuOaqHX2NiBAQatG3Jk
DwOaa5nL0Wi1WpSVlbmenw7AGFBfb77t7t27uHfvXtdkiBBCCCGkAzjcENU2MFz7qtliWNG+
Znw1rhb/73+a3JYxa8pztDgkrQNcaIsmJyfjzTffxM2bN92XMTfZsweIjQU2bACGDwdOnzZu
r6urw0cffYS5c+eiurH3f8oAACAASURBVLq6S/NICCGEEOIODjdEQ2I9cf2IFnoLbdERL3mi
Z6gAAk+eO/Nm0WPThZDu7QG0M6ni4mJ8/fXX2LZtG6ZOnerezLmorAx4803g//4PSE4G4uOB
wkJjWEhICD744AOMHj0au3bt6tJ8EkIIIYS4g9DRHfkeQEisB0oONGP4Hz3bhHv68gAeUHvd
gOorevgF8yEZITDfiQHVV/SoLTPAZwAfAaECswZl488MdxU6eHjz4DOIj8s7NXhshgcee0oI
ZgA0Kgb1TwbUlRvgN5gPgZfxYH0zoCrUgycAAkYJUFNiwL1SPR6dIoTHI+Yt1p9//hmBgYFm
22prAYUCCAgAQkKA774DvLyAyZMBDw/jPpWVwNWrgEoFxMQANTVAXh7Qty8wbpxxH7UaOHvW
GBYRAfTvb158e+EKhTF9sdj4efnytufh0UcfxZUrV9oGEEIIIYT8yjj1sNKQ5z2h/IfW6lzQ
siNa3MrTgS8E8t9sxOm3G7khdJ2a4V+vNuDOaR169OWj9O9anHhdDWYwhlfk65D3X2r0eJSP
hjsGHHm2HiNeEsF/qDGLzfcYiv/WjB+2NuHkUjXAu9/AVN8x4D/vNqLwMw0ufqpBxSktCj/T
4NSaxjZ5FIvFqG81ATMnB5g/H/jwQ2DtWuDuXePvTz4JNP/SA3zqFLBtG/DGG0BuLrBmDZCV
BaxbZww/dw5YtAgwGABPT2DOHOCDD+6nYS88NRVISwPKy409ofHxxoZua3V1dRCbWqqEEEII
Ib9iDveIAsZe0eDnPFBysBnDFrTtFR3wjAdG/sm4vdcYIb6eVof+0R54bIYQBclN8BnAx+Ov
in4JF+BvY2px66QOjz0lxKUMDfrNECIwTIDAMAEuZ2hwr0SPgbOMXZIiCQ9h8SJUXRLip+8b
IBDdT9dnAB+PPe2BG9laPJEshsCLh0cG8PH9e23nrJaVlSEgIMBsm0wGHD8OXLoE7N0LCATA
Cy8Yezu/+gpYuBB47jmgd29g6lSgoAAwjY4zZvxZuNB4bFSUcXtoKDBkCBAdDUyYYDt84kRg
1Spj/GlpwPbt1s9BSEgIfvjhB0dOFyGEEEJIt+b08k1DZJ4o/bvlXlG+x/3fxb156Pk4H9WX
9QCAW9/q0HCH4ezGJnz/XiNOv9OIoAlCePQw7t+jLx/1N3/pHmWArhHw7tM2ezy+WWeo2Xb/
4feH60V+PBh05vvs3bsXJ0+exCeffNLmeJEIeOopYyPU9DksDLh2rUX5+IC3t7E3lEuXZ5zb
WVgIDBt2f/uAAcbGplxuP9wZv//97/HMM88gISEBer3euYMJIYQQQroRp3pEAUDgCQye7YHS
vzdj6Atte0Vb0msAn4HGxqSukaH/00IMkVk+JvQ1EU680YDzqU1orGIY+bIneo0VWNy3vWJi
YqBQKFBSUoL+rSdoom0DV6MxztlsqUeP+/NGTdgv0w8qKgBf3/vb/fyMP/bCnVFSUoLdu3cj
NTUVAoF764cQQgghpDO1a0H7oS94ovRrrXmPo8F8n/pbBjTXMPSbbmzr9pd6oPDzZmhU99dd
0qgY6m4YD7zxTy0iE70wZqUXJm0UI3SxCJY032PQNbI2T+/r1MxsnVNdk7Hx23KZp4CAAPzh
D3/Ahg0bLMZdWHi/0XjrFnDzJjBr1v3w2lpAa6EnePBg4/B6Wtr9bQ0NwI0bwOzZ9sNN6usB
Xate3NaOHj2KyMhIhIeH296REEIIIaSbc7pHFAAEImDgsx5QHmrGkOeNPZy6JobKC3pc+FgD
vidQdVGPGRne8PQxdjNGrfXC9+834XhsPfpMFEL4CA9eEh43Z9R3MB9nP2jC9cNaNNcyCMU8
9Jtu7EHl8QHlIS1++o8OP/+gh0EHfPtqA/yHCTDsD55ouGXA9SNa6NQMP5/TI2C0AJfSNGi+
x3BuaxMi1nhxeefxeDAYDG0LBeDOHWDBAmDkSCA/H/jiC+O8zZ9+Mj6odOIEUF1tnO85cKDx
qfagIGNP6sGDwOLFxrAxY4CLF4EdO4BBg4xx2wqvqwM2bQKOHjVOBVi8GOjVC3jxRePwvdkJ
EwrBszQ3gRBCCCHkV6ZdDVEAGDbfE7kvNSDkOU/whMCTH3vD4xEetPUMBh0gesO8seTpy8OU
j8RgekBTw+DVk2e2dJP6jgGTPxTDw5cHgQcPTdUGXPirBnqNcZ3SQc96YNCzHsY5onyA6Y1P
oPMFgO9APmJP+HDx8fiAdE8Pbr+WdDodvLy8YMlTTwEbNxqXaPrzn+8P1ffqBbz3nvEpd4EA
0OuNPy2H6Pv1Mz7wpNEYl2mSSMzjthX+yCPG+DdsMM5DNcUvtHB2vL29odHYesUVIYQQQsiv
Q7sbogIRMHGDGDoNg4eQx63X2XrdztZ4AsArwHyfpmqGi2kayE77gvfLZAE/8PHYdD18Bxk3
8FvNy+QJAVszJPm/lIzXavJBWFgYiouLUVJSgiFDhnDb6+qMDUuBAGi1zCj4fOPDSyZCoeVG
ImDcT2R5VoHVcB7Psfh1Oh2ysrLw0ksvWU+AEEIIIeRXot0NUQDcGp+uEvnz8OhUD5xYokav
MQIYdIDQG+j5uAB9J7uUxTZ8fHyQk5ODzz77DEOHDsUrr7yCL780riUqEhnnc65a5dYk3eL7
779HdnY2li1bhhkzZnR1dgghhBBCXMabHD2HZX291+ZOPj4+nZMbZnzASCjmtfsVnu3RcqRb
rzcu0UQIIYQQQmwrLy/nfr94udDqfqNDH+d+HzhwIABgyszY9j0132F4gNC7cxuhwP3hcpGI
GqGEkM6nVCqhUCgshqlUqk7ODSGEdB73jnsTQghxmEqlQkpKCve7UqlEYmIipFIpFAoFMjMz
kZiY2MW5JISQjkMNUUII6SJyuRzJycncZ6VSiZSUFKSkpEAmk5mFEULIg4gaooQQ0kVkMpnZ
5+DgYKSnp3dRbgghpPN1rzmihBDyi+joaERHR1udO9laUlISoqOjkZGR0cE5a78HsUwdQalU
Qi6Xd1n67jpPmZmZHZE9Qh4o1BAlhHQ609zIjIwMpKSkICkpCQC4fwEgMjISubm5iIyMtBpP
y4d8kpOTkZubC6VS2bGZt8IdZWr90FJXl6krqFQqZGRkQCqVWg13JW575whw33kKDg5+6P4T
QYizutXQfHNzMzw9PW3uwxjDvXv34O/v3yHx2+NK+o7SaDQQWVkVvzPSby931G9H6u75e1io
VCokJSUhOTkZkl9eMaZSqRAVFdVmqNoeuVyOuLi4jsgmMjIyoFQqHZqn6a4ydZfydCVTPbak
VCq5XlKlUokDBw44HW9XXHeRkZHIzMyEUqlEcHCw03km5GHQLXpEs7KyMHz4cLz88st29/3m
m28wcuRIMMY6JP6OSN9RO3fuxKhRozB06NAuSd+e5uZmFBUVtdnurvq1Fr+rx7vz/BPXJSUl
QSaTcY0BAJBIJJBKpVZ7wTqLqTcuOjoaABxutHXXMrW3PF1FLpdDIpGY1WNLkZGR7e4R7apz
FBcXx62MQAhpq1s0RGfNmoVnnnkGYrHYoX2zs7PB4zm+2Kgz8XdE+o5avHgx3nrrLZv57Mj0
7Vm9ejX+8pe/WMyTO+rXWvyuHu/O809cl5mZafEPv0QisTkM35FMvWXz5s0DAOTm5jrVM9nd
yuRqebpKZmamxXwGBwdDKpVabaA6GndXnKPg4GAolUpaD5YQKzplaD4/Px96vR69e/fGiBEj
AAB6vR7fffcd+Hw+wsLC4OPjg8bGRjDGcPnyZRQVFWHGjBkICAgAABgMBlRWVuL27dsoKSnB
sGHD2jQsDAYDCgoKUF5ejmHDhiEsLIxrsNmL3x5b6V+/fh1FRUWYNGkS8vLyMHXqVFRWVqKw
sBC//e1v0djYCIVCgYCAAISEhOC7776Dl5cXJk+eDA8PD7N0evfubbGR6Uj5GWO4cOECrl27
hpCQEIwdO9Ysrnv37uHUqVNoaGhAcHAwxowZA6Gll9pbwRizur8j9dvQ0IC8vDzU19dj6tSp
6NOnj8Pxd0b+7NWfPfbq11781dXVOHPmDBhjeOKJJ1BbWws/Pz9UV1fj5s2b6NOnD4YPH476
+noUFBRALBZjwoQJduPXaDQ4f/48hEIhIiIicOXKFRQVFUEqlcLX15c73tb94476aSklJaXN
+pjONJQUCgU3TKtQKNrdkFAqldyQdVxcnEs9hq6UqTuUxzT8bTo2MzMTCoUCMpkMkZGRUCqV
yMzMhEQiadOzCIB7uEihUCAuLo4LVygUXCMsODgYwcHBZtsiIyPN9u3IIeyuuu5MQ/S/hv8M
ENLZOqVH9MiRI3jqqafQ3NzMbePxeMjPz8emTZu4YWaVSoV33nkHhw4dwvbt2zF//nxuf5VK
hZ07d2LdunWQyWRt/gBWVVVh7ty5KC4uRlBQEDZu3Ijp06ebpWkrfntspb93717IZDKkp6dj
z549mDVrFo4fP47169dj165dyMnJwfz58/Hhhx9i7dq1uHv3Lj788EM8+eSTZvlrb/oAUF9f
j5iYGJw4cQL9+/fHvn37EBsbC4PBAAA4efIkFixYALFYjBEjRmDdunVYt26dQ2lrNBokJCQg
Ly8PeXl5iI+PR3x8PLKzs9vk0Vr95uXlYf78+fD19YVIJEJYWBiKi4udir8j82ev/uyxV7/2
4v/Xv/6FP/zhD1x5fvOb3yAyMhKMMRgMBqxYsQJbt24FYLx3Pv/8cyxcuNCh+G/duoXly5cj
NTUVmzdvRm5uLlJTU82mKti7f1ytn5bi4uKQlJSEqKgoJCUlcU8WO9LbpVAokJSUBJVKBYlE
gvT0dCiVSixZssSpPJiOWbJkCaRSKQ4cOODS8Gx7y9TdyiOXy5GZmcn1HiYnJ2PevHnIyMiA
QqFAYmIigoODuaF+k5SUFLNh7ujoaLMeQIVCYbatZblblsGVHk97uvK6k0qlD9UDZ4Q4ZXL0
HFZbW2vzx1W3b99mAFhFRQVTqVQsOTmZMcbYoUOHWG5uLmOMsbVr17Jx48YxtVrNGGNMLpez
Pn36tIlLoVAwX1/fNttfeukltmPHDu6zWq1m4eHh7NKlS07Fb4+l9MvLy5lQKGQNDQ3sH//4
Bxs/fjxjjLENGzawN954gzHG2Msvv8yioqKYTqdjjDHW1NTEJBIJ27dvn1lcWVlZbPjw4U6l
zxhjS5cuZcuXL+c+GwwG5u/vz44ePcoYY+z1119nS5cuZRqNhjHGWE1NDUtPT3eq7AkJCWzZ
smUWw+zVb0ZGBtuzZw/3ec6cOSw1NdXh+Ds6f/bqzx579Wsrfp1Oxx577DF28eJFLvybb75h
PXv25D4vX76cLV26lPt88OBB9vjjjzuc//Xr17Pw8HCu/IcPH2aDBg3i9rd3/7haP60VFBSw
xMREFhkZyQCwxMTENvu03lZQUMCkUimrrq5mjDGz+pVKpaygoMDicZbk5uYyqVTq9D1gi7Nl
crQ8rY+zxF3lyc3NZRKJhJWWlpqlLZPJzPYDYPZZKpWa5TEuLq5NnltuS09P58rdMm1Hy9le
jpwjxtx/nlzNNyHdWVlZGfdz5Nhxqz8t9zOZHD2HdcrQfN++fTFq1Ch8++23qK6uxpYtW7Bw
4UL8+9//xvr167n9wsLCuOFmPz8/aLXaNnHx+fw2vYGMMRw7dgzLli3jtonFYpw/f95sP0fi
t8dS+nw+HyKRCN7e3vD09OTCRSIR1Go19/tTTz0FgUDAfQ4LC8O1a9dcTh8Ajh07hoiICKxe
vRparRbNzc2YNm0aHnnkEQDAK6+8gtdeew3+/v6YNGkSnnvuOcydO9fp8ttiq34XL16M0tJS
pKWl4fbt2ygtLUV4eLhb03clf/bqzx579Wsr/uvXr+PWrVsYOXIkt3+fPn3MzjOfzzfrfRQI
BGbh9vLP5/MxatQorvwSiYQrvyP3j6v101pkZCQ3rCmXyxEdHW13GDkpKQmJiYkWe7CCg4OR
mZnp8FCpqefO9CCPVCo1G05uD2fL1F3Lo1Kp2gyP2xsuT09Ph0Qi4Yb2re1j6o20NLTfGbr6
uiOEtNVpyzdFR0cjOzsb/fr1w+LFi7Fv3z5otVp4eXm5LY2bN29i/PjxbovP3Vo3IDUaDUJC
QtwSt1qtxuzZs7Fo0SKL4VFRUbhw4QKKioqQnZ2Nw4cP4+2330Z5eTl69uzpcDp6vd7pvDHG
kJCQgEuXLmHLli2IiIjA1atXLTZi2hO/O463V3/22KtfW/Ffu3YNjDFUVlYiKCioS/IP2L5/
3BG/QqGARCJp06hxZAjZtHRPbm4u97llPAqFol3zO+Pi4hAXFwe5XI4lS5YgODjYaqPDkvaW
qbuWp71M63NGRkZCJpNZXYw+MTGRa4h2lu543RFC7uu0p+ajo6Oxf/9+zJw5E6+//jr++te/
ol+/fly4Wq2GRqPhPjc1NaGxsbHNHDSVStVmXx6Ph+effx6bN29GXV0dt/348ePIz893Kn57
LKVvMBi4ea4Gg4GL09PTE01NTdx+hYWF3H63bt3CzZs3MWvWLLP46+rqcO/ePavLM1lKHwBm
z56Nbdu2oaqqittWWVnJ9U7IZDJUVlZixIgRWLFiBXJycsDj8ZzqFfbx8cHVq1e5zxUVFVw+
bdXvjz/+iE8++QTvv/8+IiMjYTAYUFZWZlY39uLvyPwB9uvPHnv1ayv+wYMHIyQkBPv37zcL
a0kkEqG2thbA/YeGampquPLZy39DQ4NZfTc2NkKtVoMx5tD942r9AMYeKEs9a5Z64Czt07Lh
IJfLuc+mRo8rczxbzqtcsmQJkpKSHCpbe8vUXcvTHiqVCtHR0UhMTGzTC9uyh1SlUnHrmC5Z
ssTiU+Qdkcfuct11RQ8wIb8GndYj+uSTTyIqKgrTp08Hj8fDxIkTuQnvx48fxzfffAOtVosf
fvgB4eHhSE5OhlqtxsqVK/Hxxx/jiy++QF5eHs6cOQOtVovZs2cjNDQUS5YswYgRI7BlyxYk
JCQgIiICEydORH19PSZMmIDExESH4rfHVvqenp5cg0Cn03G9cr6+vsjPz8f169cBAHfu3MGC
BQswcuRI5Ofn44svvkDv3r0BAGlpabh8+TK+++47br9Bgwbhtddew5AhQ+yWf+vWrVixYgUm
TZqE6dOnw8fHB4GBgVi5ciUAYOTIkYiNjcWzzz4LT09PnDlzBuvWrXOqB27+/PlIT0/HhAkT
EBQUhCeffBIJCQnIzc21Wb8fffQRoqOjsWbNGu4BmH79+uHTTz+FWCzGqlWrbMbfemUBd+fv
448/tlt/9tirX1vxC4VC/O1vf8OLL76Is2fPQiwW46effjKLXyaT4Xe/+x0SEhIgEong6+uL
qqoqbNiwAevWrbMZf05ODr788ks0NDTg9OnTiIyMxIcffsg9vLVx40ab94+9/DtKoVAgMzOz
TW9YSkqK3V4l01PbpodFTEw9ce56P7tpiFupVHIP4NjKW3vL1F3L0x6mJ+Bb9xSayggYh7Bb
1onp4Z+W5XRljVDTebBUtu5w3dGC9oRYx5scPYdlfb3X5k4+Pj5uSazlG4Na/q7T6YyZ+WXo
ms/nQ6vVQigUQqfTwdPTk3t6VyAQgM/nQ6/XQ6/XQygUcvMuTXHV1NQgICCAi8+R+O2xlT6P
x4PBYIBQKOR6RwUCAdc7yufzsXTpUvj7+2Pjxo1QqVRm+TPFz+PxwOfzLZbP0fLr9XpUVVWh
V69eFufSVldXQ6vVIjAwsF1LJWm1WtTU1CAwMNDp+q2vr4dOp4O/vz8YY9zyRPbi76z8Abbr
zx5H6tde/JWVlfDz84NCoUBMTIxZz2hzczPUajX8/f3R3NwMnU4Hb29vu/FbKr9Op4NAIGhT
fkv3jzP5t2XevHncUj2mP8qm3ipLy9q0fsOOQqFARkYGN/RrWp+x9dCzpTfzdBRXyuRoeVof
11FMT8xnZGRwvZtyuZx7RWVcXBw3DzUlJQVxcXGQyWSQSqWYN28et9anqdFmGqo3NUIBoLS0
lCtP6zgAICQkhNunpZbLUmVmZnL/QTLVSUpKClJSUiyuFuDsOTLlz53nKSkpqctfbkBIRykv
L+d+v3i50Op+o0Mf534fOHAgAGDKzNjObYg+zF588UX07NkTn3zySVdnhfwKfPvtt/jd736H
urq6Lnl5QUcwNVBaDte2XEOyNWt/1E2vTGy9HqS94zqCO8pkrzzWjutuTEPvrjy4k5SUxM0z
bU/6CoWiTWPP2XNkyoc7z1N0dDQ3z5SQB42rDdFu9a75B9WXX36JnJwciEQiDB48mBuKJsSS
c+fOYePGjWhoaMAHH3yAP//5z12dJbcw/eE3LWreXiqVymZjwBG2nu5uyd5bd9xRpu5UHle4
I25XHmZqOX+zdb6ArrvurOWLEGJEDdFOMGfOHMyZMweA60+Fkwff6NGjcfToUQgEArpeyEPF
1Jh1tvGmUqnazOPsLjIzM90255eQBxE1RDuBaS4sIY7w8PBw+AGtB5npgZa4uDiznixrDRTT
HEJHuNo71l6WymSrweVombqqPB3B9AYke8Pnlo5zF3edJ0ceiCLkYUcNUUJIt2QaBm3dGLHW
4DI9GNOdG2SWymQrv7+GMnWE5ORkp1756e6eUHedJ1dfkkDIw4AeViKEEEIIIe3i6sNKnbag
PSGEEEIIIS1RQ/QBZnoTT2dijKGmpqbT022p9VunSPuY1q59kHSH65O0ZXrTGSHk4UMN0QeQ
RqPBf//3f+P8+fPctpavIW25raXm5mYUFRW5lPY333yDkSNHOvVqTnfZuXMnRo0ahaFDh3Z6
2o5wR/12hosXL2LatGkYNGhQV2fF7bry+iTWNTY2Ij4+3uwVvYSQhwM1RB8wBoMBf/rTn/DE
E0/gySef5LZfvnwZS5cuxahRo+Dl5YUFCxZg69atZseuXr0af/nLX1xKf9asWcjOzu6SRdgX
L16Mt956C2KxuNPTdoQ76rczjB49GitXrnwgn9zvyuuTWCeRSLBx40a8+OKLZvPNCCEPvk59
at5gMKCgoADl5eUYNmwYwsLCzP4gqNVqnD17FjU1NYiIiED//v0BGHv4zp8/D6FQiIiICFy5
cgVFRUWQSqXw9fXFlStX8PPPP8NgMCA8PBwSiQTXr1/HjRs3IBAIMGXKFADGYbkLFy7g2rVr
CAkJwdixY7n0KysrcfXqVahUKsTExKDm/2fvzsOiOPL/gb/nAkflEhTcBA9QUDGogFfUqAmY
NeJuREl0N7oxUWMUvhiPwJPEzeEFceOa1V2RGK/4/W4SzMb1AsMkukSjWRgjPxVRYQQvjAFm
uAaGOer3x2RaRmamG4ZL/byeZ54wXd3Vn+6uGivV1dUaDbKzs9G7d2+MHDkSgPld8T/88AO6
deuGgQMH4i9/+QumTZuGadOm8eYPAJWVlTh58iRqa2sREBCA4cOHt+g1m45s3boVOp0O06dP
t1r+xBNPYNu2bdi3bx/eeecd/POf/2yyLWOsxfGYTCaUlZXh9u3bKCwsRFBQUJMGobPHz1d+
AKBXr152Gxn2ypfQ+PiuLx++88sXH5/a2lpkZ2ejpqYGEyZMgJ+fX7O2t+y/qqoKFRUVNl8R
6+j4HV0fIfWLL3++43N0/RyVT77fFwu++s/H2fJVUVGBM2fOgDGGJ598kntFbkVFBW7cuAE/
Pz8EBwejpqYGubm5kMvlGD16NG/+Qo+fr/45Wz/8/PywdOlSLFmyBIcPH6b/WSDkEdFuPaLl
5eWYOXMmrly5Al9fX6xbtw6TJk3ixqGdPXsW8+fPh8lkgouLC2bMmIE1a9YAAG7duoX4+Hhs
2rQJGzZsQFZWFjZt2oSXX34ZgPkfkjfffBMLFizg9mcymbB06VLuvcU1NTWIjo7G8ePH4e/v
j7179yImJoa7PX3y5Els3rwZr7/+OrKysrBy5UpkZGRg9erVAMxvx5gzZw78/f1x69YtjBgx
AnFxcRgyZIig/E+cOIE5c+ZALpdj0KBBWL16NZd3a6mrq8P69euxcuVKu+tIpdImjSGdToeE
hARkZ2cjOzsbcXFxiIuLQ2ZmpuB9q9VqfPLJJ1i9ejViY2Ob/CPi7PHzlR8+jsqXkPj4rq8j
Qs4vX3x8srOzMXv2bLi7u8PV1RWhoaG4cuWK4O3z8vLwpz/9CYwxeHh4YO/evVbpfMfPd334
6hdf/nzHx3f9HJVPvt8XgL/+83G2fH377bf4wx/+AMBcnp599lmEh4eDMQaTyYRly5ZxdzhE
IhF27tyJuXPnCspfyPHzXV9n6kdjL730Es6ePYvvvvuuWdsRQh5g46JmsKqqKoef1jBv3jy2
bds27rtWq2XDhg1jFy5cYCaTiQ0ZMoTl5ORw6SUlJUwmk7HTp08zxhh7//332bBhw5hWq2WM
MXbw4EHWr18/bv2zZ88ymUzGSktLGWOMaTQalpiYyKUvWbKExcfHc99NJhPz9PRkhw8f5pad
OnWKicVitn79eqv1GGPs2WefZR9++CG3fNCgQSw9PV1w/osXL2ZLlixhOp2Oi2/79u3CT6AA
J06cYCKRiDtHtvzzn/9kgYGBNtMSEhLY0qVLnYpBqVQyd3f3JsudPX5H5aexjIwMFhwcbLVM
SPnii09I+eFj7/wKiY9PWloa2717N/d9xowZbNOmTYK2NZlMLCQkhF25coVbdvToUda3b1/u
O9/xC7k+juoXX/58xye0fNkrn3y/L3z1n48z5ctgMLDHH3+cnT9/nkv/+uuvWY8ePbjv8fHx
bMmSJdz3/fv3syFDhgjKX8jx813f1qgfFs899xyLi4tr9naEkI5RXFzMfQ4dOWr303g9i3FR
M1i73JpnjOHIkSNYunQpt0wul3MP01y7dg35+fkICgri0vv06YOQkBAoFAqMGTMGYrEYQ4cO
5W6neXl5Qa/Xc+uPGDECTz75JNfr8emnn+K1117j0o8cOYKwsDCsWLECer0eDQ0NmDhxIrp3
786tIxaL0bVr0P6ETgAAIABJREFUV6seRUvPib+/P65du8Ydj1arxeOPPy44/1deeQULFiyA
p6cnxo4di+effx4zZ850/uQ2cuXKFfTp06dDx0iKxWKbt9ScOX6+8sOnuLiYt3zxxSek/LSU
kPj4LFy4EEVFRUhNTcXt27dRVFSEYcOGCdr/zZs3UVBQgMDAQG7Z/WXI0fELvT6O6hff+eU7
PqHly1755Pt94av/fJwpX9euXcOtW7cwePBgbn0/Pz+r4xCLxVa9jxKJxCqd7/w6On4h17c1
68egQYOQl5fX7O0IIQ+mdh0jeuPGDYwaNarJcvbrE6ylpaVWY5I8PDzg4eEhOP833ngDS5Ys
wfLly3H37l3079+fS9NqtZg+fTrmz5/vMI9u3brZfEhj+fLlmDlzJv785z/j7t27iI+Pt2og
8OUfERGBvLw8FBQUIDMzEwcPHsRbb72FkpIS9OjRQ/AxOtK1a1eUl5eDMdbi8VVt9W7z1jh+
e+WHj5DyxRef0PLDx9b5dbb8M8aQkJCACxcuYOPGjQgLC8Ply5cFNwK0Wi2MRiMqKyvtvgXG
0fFb4hdyfezVL778+Y6vresXX/3n40z5unr1KhhjKCsrg6+vb4vib43y6+j6tlb9AMzjiZs7
vpkQ8uBqlzGiIpEIs2bNwoYNG1BdXc0tP3r0KE6dOoX+/ftjzJgxSE1N5dJqa2tx/fp17qGb
2tpa1NfXc+l1dXXQarVW07BER0dDLpcjOjraanwUAEyfPh2bN29GeXk5t6ysrMzq/cBVVVVW
vSCNHThwAMnJyXj//feRmpraZBwmX/6xsbEoKyvDoEGDsGzZMhw7dgwikajJ/tLT0/H111/b
OZOOTZo0CTU1Nbh+/brddQwGg93Gppubm9X0KaWlpc2e5katVkOr1TaZy1Po8dvCV34aq66u
RmVlpVXcQsoXX3xCyg8fe+dXSHyO3Lx5E1u2bMEHH3yA8PBwmEwmFBcXW9UXRwICAuDv74+d
O3dyyy5evIjKykqul83R8Qu9Po7ql6P8hRyf0PJlr3zy/b7w1X8+zpSv/v37IzAwEJ999plV
WmOurq7cvMHs14eGNBoNFz9f+XV0/EKur9D6IeT3LT8/HxEREQ7XIYQ8PNrtFZ/V1dVISEjA
999/jzFjxqCmpgajR49GYmIiRCIRbt26hYULF8Lb2xvDhw/H+fPnMWfOHDz77LM4duwYFi9e
jNraWvz73/9GeHg4pk2bBoVCgbfeegvr1q3j9vP3v/8d3377Lf71r39Z7V+j0WDZsmX44Ycf
MGnSJLi5ucHHxwdvvPEGKisrsXnzZhw/fhw//vgjXnrpJfTt2xfx8fFcD8RXX32FN998E6NG
jYJGo0HXrl3x3HPPYf78+RCLxQ7z79KlC1avXo3//Oc/mDZtGlxcXHDmzBlERERg1apVVnFO
njwZMpkM33zzTYvO88yZMzFy5EgkJSVZLc/Pz8eOHTuQlZWFCxcuYN68eYiIiEB8fDy3zsWL
FzF58mT0798fvr6+eOqpp5CQkCBoGp99+/YhOzsbZ86cwfnz5xEVFYWQkBC89tpr3MMZQo7f
Hr7yk5qaiosXL+L7779HXl4eXnzxRfTr1w8LFizAgAEDHJYvALzx8V1fIRydX774HNHr9Zg2
bRqqqqq4B0iKi4vx448/YsWKFVi+fDlvHidPnsScOXMwfvx49OzZE97e3tiyZQv+9Kc/4aOP
PuI9fkfX5+7du7z1y1H+EomE9/j4rp+j8llSUsL7+8JX//k4W75ycnLwxz/+ESNGjIBcLsfP
P/+MnJwcrkGam5uL3/3ud4iNjYWrqyvc3d2xbt06vPXWW1i9erXD/P/zn//wHj9f/RNaP/h+
3y5fvownn3wSKpWqWXfDCCEdx9lXfLb7u+YNBgM0Gg28vb1t3j7W6XTQarVWtwgNBgOAe+PJ
xGIxDAYDJBIJDAYDXFxcuHUZY9DpdHYbB0ajEeXl5ejZsyeXn8lkgl6vh0QigUQigdFohNFo
hEwm4/6R+fjjjzF8+HB4enrCxcUFv/zyC9asWYPf//73iIuLc5h/49gqKiqg1+vh4+Njcyqf
hoYGiESiFs/hePPmTTz11FPIzc21uiVpOSbL2DGj0QjGmNW5A8yNGo1GAx8fn2bd3rc8PSuR
SCAWi7n9SaVSSCQSAMKOn4+98mM5b2Kx2O7+Advly0JIfI6urxB859dRfHxqampgMBjg6ekJ
xhg3vY9QjDHcvXsXvXr1gtFohF6vbzJWlO/4bV0fIfVLSP58x+fo+jkqn5ZeQ0e/L0LrP9/5
dbZ8lZWVwcPDA0qlEtHR0VY9ow0NDdBqtfD09ERDQwMMBgO6du3Km39zfl/5fr/54nf0+8YY
w+zZszFt2jTMmzfP5jkkhHQ+D1xD9EH0yy+/YNiwYbh586bVP5ybNm1CSEiIoF6r9nT8+HFs
3boVn3/++UM5KTkh7akz1v/vvvsOv/vd71BdXf3QzLe5ZcsWVFdX46233uroUAghzeBsQ7Rd
H1Z6UHl7e2PKlCmYMWMGRo8eDb1ej+7du2P48OF45plnOjq8JiZPnozHH38cx48fx5QpUzo6
HEIeaJ2t/p89exbr1q1DbW0t1qxZgz//+c/tHkNrKy0txYABAzB16tSODoUQ0s6oR7QZGGOo
ra1Ft27dHppeCEKIMJ2l/uv1eu7WudFo7LSvtCWEPBqoR7QdiUSiVpk3khDy4Oks9V8mk9GQ
G0LIQ6PdXvFJCCGEEEJIY9QQbQOMMdTU1HR0GIQQQgghnVqHN0SbO2F6Z7d7927ExMRg7dq1
CA4OxunTpzs6JEIIIYSQTqldxojeuXMHa9euxb59++Dj44NZs2bBaDTim2++wYABA/DVV1+1
Rxhtrri4GKtWrcL169chl8vx2GOPIT8/H2PHju3o0AghhBBCOp12aYj6+flh69atKC4uRnBw
MJKTkwEA7733HmbOnMmtp9VqkZOTA41Gg7CwMPj7+3NpZWVluHz5MtRqNaKjo6HRaJCdnY3e
vXtj5MiRguKorKzEyZMnUVtbi4CAAAwfPhxSqRQqlQo3btyAn58fgoODUVNTg9zcXMjlcowe
PVrw/pVKJQIDA7mnWBu/tQgwv0YvOzsbNTU1mDBhQpP3KZtMJuTm5qKkpARBQUEIDQ21ejrX
8uq+q1evIjAwECNGjLBKt3d8hBBCCCGdUbvemu/SpQv3tKder4der8e7774LwDw33vz582Ey
meDi4oIZM2ZgzZo13LYnT57E5s2b8frrryMrKwsrV65ERkYGVq9eLWjfJ06cwJw5cyCXy7lX
Tlq2NZlMWLZsGT766CMA5qdjd+7cafW+er79b9q0CampqSgpKUFcXBzi4uKQnZ3NbZ+dnY3Z
s2fD3d0drq6uCA0NxZUrV7j08vJyzJw5E1euXIGvry/WrVvHvc4QML9VJjo6GsePH4e/vz/2
7t2LmJgY7l3gjo6PEEIIIaQzavfusoKCAqSnp+PcuXMIDQ3Fiy++CMYY5s6diz179iAiIgIA
EBISggEDBiAqKgpjxozB888/j169emHChAnIzc3Fjh07AAgfY/rFF1+gf//+GD9+PFxcXPD5
55/jiy++AAAMGDAAEyZMgNFoBAB069YNv//976FUKrnt+fa/fPly9OrVC6mpqdi6dWuT/V++
fBmzZs3CuHHjAADjx4/HkSNHEBQUxG3/7LPP4qWXXgIAjBw5EmPHjsXVq1cREhKCxMREBAYG
4o033gAAjB49Gj169EBGRgamTZvm8PgIIYQQQjqjdm+I+vr6Yvjw4aivr+duKxcXFyM/P59r
lAFAnz59EBISAoVCgTFjxgAwvwO5a9euWLlyJbee0ImlX3nlFSxYsACenp4YO3Ysnn/+eath
AWKxmOtdBMC9k70xZ/a/cOFCFBUVITU1Fbdv30ZRURGGDRsGwNyYPXLkCJYuXcqtL5fLce7c
Oe77kSNHEBYWhhUrVkCv16OhoQETJ07k5jXkOz5CCCGEkM6m3RuiXl5eGDhwIAYOHMgts/Qq
lpaWwt3dnVvu4eEBDw8Pq+27devWosmcIyIikJeXh4KCAmRmZuLgwYN46623UFJSgh49egjO
pyX7Z4whISEBFy5cwMaNGxEWFobLly83mRz7xo0bGDVqlM08tFotpk+fjvnz59tMb63jI4QQ
QghpL+06RrSurs7m/Jr9+/fHmDFjkJqayi2rra3F9evXMX36dG5ZVVUV9Hp9i/YdGxuLsrIy
DBo0CMuWLcOxY8cgEom4/FxdXVFVVQXg3kNBGo3G6tY/3/5rampgMBiaLL958ya2bNmCDz74
AOHh4TCZTCguLkZ9fT0Ac6/qrFmzsGHDBlRXV3PbHT16FKdOnQIATJ8+HZs3b0Z5eTmXXlZW
BpVKJej4LHbs2GE15IAQQgghpKO0S4/ozz//jA8++AAKhQLe3t5wc3PDu+++iy5dugAwN8T2
79+PhQsXYu7cuRg+fDjOnz+Pbdu2oV+/fvj555+xefNmHD9+HBUVFZg7dy769u2L+Ph4+Pr6
Coph8ODBiImJwbRp0+Di4oIzZ85g9erV3PaxsbH43e9+h4SEBLi6usLd3R3l5eVYu3YtFi1a
5HD/1dXVWL9+PQ4fPoyrV69i4cKF6NmzJ/74xz8iJCQEfn5+iIqKwsqVK7kHkB577DH84x//
gFwux/Lly7Fx40YkJCQgLCwMY8aMQU1NDUaPHo3ExEQAwEcffYRly5Zh7NixmDRpEtzc3ODj
48ONGeU7PoudO3cCAH744YdWubaEEEIIIS0lGhc1g2V8tcfhSm5ubk7txGQywWAwQCqVgjEG
o9EImUxmc3ylTqeDVquFl5eX1fZ6vR4SiQQSiQRGo5HLQywW3qnLGENFRQX0ej18fHyaTG3U
0NAArVYLT09PNDQ0wGAwoGvXrrz7Z4yhoaEBUqkUYrGYS5dKpZBIJFz+lh5TT09PMMZQVVXV
ZOiBwWCARqOBt7e3zfNjNBpRXl6Onj17NknnOz7A3NMcExODY8eOCT5vhBBCCCG2lJSUcH+f
v5hvd70nQoZwf/ft2xcAMH5KTPv0iIrFYri4uHDfGzfO7ufq6gpXV9cm2zdeJpVKWzQ/pkgk
gre3t910FxcXLs7Gf/PtXyQSCYqv8ZhQkUjUpBFq2dbHx8dujBKJBL169bKZxnd8d+7cwbvv
vou//OUvdtchhBBCCGkvNNv5I6Rnz57Ytm1bs3qRCSGEEEKEEIlENqfVdDTDELVIHiESiYQa
oYQQQghpE5Znf+4nt7McoIaoIGq1mns6nRBCCCGENOXbs6fN5b162V4OUEMUgLmhqVAo7Kan
pKRwD08pFAq88MILNAUSIYQQQkgjbm7d0a9PH3SVy80vAZLL0a9vH7jdN296Y526IRoVFYWo
qKhWa/QlJSUhKioKaWlp3DKFQoGUlBSHDVEAXEM0MjISKpUKAQEBrRITIYQQQsjDws2tOwID
+iNk8CAEBvR32AgFOvBhJbVajbS0NHh5eUGtVkOtViM5ORlJSUlITk4GAISHh3N/26NSqaBW
qxEeHs67T0teSUlJ3LLIyEgAsNsQVSgUVnmr1WoAsJpeihBCCCGENF+HNETVajXX4LQ06NRq
NSIiIhAbG9usvBQKBRYtWtQWYXL5N24MKxQKrldUqVQiLS0NWVlZbbZ/QgghhJCHVYc0RJOS
khAbG2vVq+jl5YXIyEiuh7IzsPR+NmYZJqBUKhEbG0sPMRFCCCGEtFCHjBFNT0+32eD08vIS
dIu9vaSnpzfpbVUoFPDy8oJSqYRareZewUkIIYQQQpqnwx5WSklJabKsObfYlUolUlJSoFQq
2+wJ9vsfSrL0kFoan225b0IIIYSQh12HNEQXLVqEpKQkREREICkpCenp6QCEPQCkVCqRlJQE
tVoNLy8vbN++HSqVCq+99lqLYklLS0NaWhqXb+P93P9kvFKptOrJVSqVdGueEEIIIaSFOqQh
mpycjNzcXERGRnLzcjZuBNpjaSwmJiZaNQgtYzVb0ju5aNEifPnll8jKyrJ6KCk9Pb3Jg1OR
kZHcOsnJyUhMTGz2w1W2NDQ0OJ3Hw4Ix5vT5oPPZOnQ6nVPp7YWud/tpjfr5KGCMQaPROFyn
reoXXR/yoOmwW/OWqZlyc3ORlZVl81b9/SyNUFs9pwEBAUhPT2/VCefbeoqm8+fPY+LEiejX
r1+b7qe9NTQ0oKCgoNnb/f3vf4efnx/Wr1/fov1mZGQgODgYL7/8cou2J2affPIJhg4dioED
B7Yovb08rPWns3K2flq09PehsxAS/9dff43BgwfbfOd2W9Uv+v0jD6p2bYjau5Ut5El5lUrF
TZ1k+d741rnltnlrTDhveSK+rT3xxBN44403IJPJ2nxf7WnFihX461//2uztli5dihEjRsDV
1bVF+506dSp++9vfQi6Xt2h7YrZw4UK8+eabds8jX3p7eVjrT2flbP20aOnvQ2chJP6pU6ci
MzMTIpGoSVpb1S/6/SMPqnadvkmhUNh8ylytVvM2HNVqtVWDtfH8oZbJ6CMjI1tlwvm2fnJf
q9UiJycHVVVVqKioaPJjZUnXaDQICwuDv7+/VTpjDHl5ebh69SoCAwMxYsQIqzwqKytx8uRJ
1NbWIiAgAMOHD4dUyn+pdTodzp07B6lUirCwMFy6dAkFBQWIjIyEu7t7s+ITsj9bPD09IRKJ
cOXKFeTl5SE4OBihoaGCj9/NzQ11dXVgjOHixYsoKCjA5MmT4e3tzW1fW1uL7Oxs1NTUYMKE
CfDz8wMAXLp0Cb/88gtMJhOGDRsGLy8vXLt2DdevX4dEIsH48eN59y+Evf1btPT6nTp1Ckaj
Eb169cKgQYMAAEajEd9//z3EYjFCQ0Ph6ekpKP5evXo5PCa+dFtUKhVu3LgBPz8/BAcHo6am
Brm5uZDL5Rg9enSzy5+9+uPo+MrKynD58mWo1WpER0dDo9EgOzsbvXv3xsiRIwUdh8lkQm5u
LkpKShAUFITQ0FCrGOzVj9YoX0Lib2n5EcJR/eS7vhYt/X1ozfLtCN/5cxS/yWRCWVkZbt++
jcLCQgQFBdlsGLZF/QIejN8/Qu7X7j2ilgeTGktJSeF9g1J4eDj3FqXG1Go1UlJSsH37dgDW
E86np6cjKiqq9Q6gFeTl5eFPf/oTGGPw8PDA3r17rdLPnj2L+fPnw2QywcXFBTNmzMCaNWu4
9JqaGkRHR+P48ePw9/fH3r17ERMTA5PJBAA4ceIE5syZA7lcjkGDBmH16tVYvXq1oNhu3bqF
+Ph4bNq0CRs2bEBWVhY2bdpkdavHUXw6nQ4JCQnIzs5GdnY24uLiEBcXh8zMzGado88//xzH
jh2DTCbD/Pnz8dprr3G3uPiOHzCXiXfeeQcHDhzA1q1bMXv2bC4tOzsbs2fPhru7O1xdXREa
GoorV65w8b/55ptYsGABt77JZMLSpUtRVFQkeP+OONo/4Nz1O3ToEJ5++mmrMWIikQinTp3C
+vXrwRhzOn5nmEwmLFu2DB999BEX286dOzF37lwAwsofX/3hO76TJ09i8+bNeP3115GVlYWV
K1ciIyND8DkuLy/HzJkzceXKFfj6+mLdunWYNGkSd8756oez5YsvfmfKj1D26iff9XX296E9
yrej8yckfrVajU8++QSrV69GbGxshzTQOvPvHyE2jYuawaqqqhx+WktsbCxLTk5m27dvZ1lZ
WSwrK4slJiay7du321w/MTHR6ntubi5btGiR1XaJiYmsoqLCapvExET25ZdfMsYYS05O5s23
vZhMJhYSEsKuXLnCLTt69Cjr27cvlz5kyBCWk5PDpZeUlDCZTMZOnz7NGGNsyZIlLD4+3ipP
T09PdvjwYcYYY4sXL2ZLlixhOp2OMcaYRqOxe35tef/999mwYcOYVqtljDF28OBB1q9fP8Hx
McZYQkICW7p0qeB9Nvbiiy+y999/n/t++/ZtJpfL2ZEjRxhj/Mf/9ttvs5EjR3LxKxQK5ufn
x62flpbGdu/ezX2fMWMG27RpE/f97NmzTCaTsdLSUsaY+fw1Li98++fDt39nrt/t27cZAFZa
WsrUajVX9g8cOMCysrKaFX9GRgYLDg62uy++dHvi4+PZkiVLuO/79+9nQ4YM4b7zlT9H9Ufo
8Z06dYqJxWK2fv16q/WEmDdvHtu2bRv3XavVsmHDhrELFy4Iqh+tUb4cxe9s/efDVz/5ri9j
Lf99aM3ybY+Q8yckfqVSydzd3e2mt1X96uy/f+ThVFxc3OyPxbioGaxdb81v374dXl5eUKlU
3FhRew8f2RIeHo7t27cjPT0dXl5eNucdVSgUiI2N5caMdqYJ52/evImCggIEBgZyyxrftiku
LkZ+fj6CgoK4ZX369EFISAgUCgXGjBmDI0eOICwsDCtWrIBer0dDQwMmTpyI7t27AwBeeeUV
LFiwAJ6enhg7diyef/55zJw5U3CMYrEYQ4cO5eLy8vKCXq8XHF9rcHFx4f7u3bs3hg8fjp9+
+gnPPfcc7/EDQGhoKBe/h4cHFz9gHn9VVFSE1NRU3L59G0VFRRg2bBiXPmLECDz55JNcr8an
n35qNTWYkP07wrd/Z65f7969MXToUHz33XeoqKjAxo0bMXfuXPzwww94//33WyV+Z4nFYqve
E4lEYtVr5Kj88dUfQNjxicVidO3aFStXruSWCem5YozhyJEjWLp0qdX+z507BwC4du0ab/1o
jfLlKH5n678Qjuon3/V1RnuU79Y6f2KxuMNuV3fm3z9CbGnXhqilwRkQEODUw0T23mjUeML5
pKQkKJXKTvW2Jq1WC6PRiMrKSpuNb/br7efS0lKrMXEeHh7w8PDg8pg+fTrmz59vcx8RERHI
y8tDQUEBMjMzcfDgQbz11lsoKSlBjx49nIpfSHwWRqPRqX01Vl9fzzU++I7fEcYYEhIScOHC
BWzcuBFhYWG4fPlykx/RN954A0uWLMHy5ctx9+5d9O/fn0tr6/07e/2ioqKQmZmJxx57DAsX
LsTevXuh1+vRpUsXp+PvaHz1x7KOkOPr1q1bix9yunHjBkaNGtVkudD60Rrly178bVn/7Wlc
P4Vq6e9DW5dvoeevNX/f2ktH//4RYk+HTd/UFjr7hPMBAQHw9/fHzp07uWUXL15EZWUlTCYT
+vfvjzFjxiA1NZVLr62txfXr1zF9+nQAwPTp07F582aUl5dz65SVlXHHGRsbi7KyMgwaNAjL
li3DsWPHIBKJrP6v2JHa2lrU19dz3+vq6qDVasEYExQfYB4wf/nyZe57aWmpzWlMbLl/rFFJ
SQkqKiowdepUQcev1Wqt5t+rr69HXV0dTCYTbt68iS1btuCDDz5AeHg4TCYTiouLrY4XAKKj
oyGXyxEdHc2Nb7Pg278jQvbv7PWLiorCZ599hilTpmDx4sX429/+hscee6zZ8VdXV6OystLu
deNLt8fV1RVVVVUA7j30oNFouHwclT+++iP0+KqqqgSfz8ZEIhFmzZqFDRs2oLq6mlt+9OhR
nDp1SnD9cLZ8OYpfaPnZsWNHi6a446uffNcXcO73obXKtz1Czp+Q+NVqdZPfosbaqn515t8/
QuyR9Akc/N5LL85wuJKz03W0VEpKCvLz8xEQEGDVA+Ll5WV3LlFLQzQyMhLjx49HSEgIl56W
lsY9LCVkyqjWJpFIMHLkSKxatQo5OTnIzs4GAOTk5ODu3bt49tlnMXXqVOzatQuZmZm4du0a
du3axb2FCgAmTpyIvLw8vPfeezh//jxOnDiBgoICTJkyBVKpFOfPn8eHH36Iu3fvIicnBx9/
/DHmzJmDKVOm8MZ37NgxJCcno7CwEOPHj4evry+WLl2K/Px86PV6PPPMM7zxAYCvry82btyI
/fv349ChQ6iqqsKoUaMgkUh4Y9izZw/u3LmDgoICnDlzBrt378Y//vEPbq5IR8f/zTff4KOP
PkJRUREmT55sFb9Go0FMTAzOnDmDQ4cOobCwEJmZmTCZTDhw4ABEIhHGjh0LwHxbTSKRoLS0
FPHx8Vbx8Z1/R7p27cq7f2euHwD85je/wTfffIN169bB09MTp06dwquvvgpfX19B8aempmLP
nj3Yt28fioqKUFBQgNzcXPTr1w89evTgTefj5eWFdevW4fr16zh+/DjkcjmOHTsGxhjq6+sd
lr+oqCje+uPo+MrLy7Fu3Trs2rULhYWFKCoqwtmzZxESEiL41uLEiRPx008/4e2330ZOTg4+
++wzyGQyzJkzByKRSFD9aGn5EhK/0PITFxeHjIwMvPrqq4KO24Kvfjq6vhMnTgTg3O+Ds+Wb
j5Dz5yj+ffv2YevWrdixYwdKS0vx448/4uzZs+jXrx98fHzatH4dPXq0U//+kYdXZWVls7fx
9PQEAOz87AuIxkXNYBlf7XG4gZubW4uCc5ZlWqbw8PBWmVxeqVRyU0U5MzTAWYwx3L17F716
9YLRaIRer28y1k2n00Gr1do9bqPRiPLycvTs2dPm9DUVFRXQ6/Xw8fER/ANhMBgA3BtvJhaL
YTAYIJFIYDAYrMaG8cWn1+uh0Wjg4+PTrLFSVVVVcHd3R1VVFQwGg90fX1vHbyt+vV4PqVRq
FX9NTQ0MBgM31UtVVVWToQWMMeh0Ou6Wn5D9C8W3/5ZePwudTsf9z2Pjv4XE39DQAJFIBLFY
DLFYDKPRCKPRCKlUColEwpsuRENDA7RaLTw9PdHQ0ACDwYCuXbsKLn9C6o+t4zOZTNDr9ZBI
JJBIJFzsMpkMYnHzbg4ZDAZoNBp4e3vbvP589aMl5Uto/ELKT21tLWJiYnDs2LFmHbeQ+mnv
+jbW0t8HwLnyLYSQ82cvfssT/RKJpEX1x5n69aD8/pGHT0lJSbO36du3LwBg/JSYzt0QJYQQ
0rru3LmDd999F3FxcXjiiSc6OhxCyAPO2YYo9aUTQsgjpGfPnti2bVuze4EJIaQtUEOUEEIe
IUKHUBCpQXYYAAAgAElEQVRCSHug/yUmpBNQqVQteoqZEEIIeZBRjyghHcjyilrL3yqVComJ
iYiMjOReicv3+ltCCCHkQUUNUUI6kEKhsGpoqlQqpKSkICUlBbGxsdQIJYQQ8lCjhighHSg2
Ntbqe0BAALZv395B0XQ+KpUKarW607wdjRBCSOuiMaKEkE5LoVBQI5QQQh5inaohapkMuCMx
xqDRaHjXqampcWo/lrGBaWlpSElJQVJSEgBw/20OITGTttUaZcKiox5c6gz1jxBCyKOlXRui
DQ0NKCgoaLI8IyMDwcHBePnll9sk/+b4+uuvMXjwYLvv+N29ezdiYmKwdu1aBAcH4/Tp083e
h1qtRlJSEhYtWoRFixYhMTERiYmJiIiIaNEbpPhiJm2rNcpEY23VC9jW9Y8QQghprnYdI7pi
xQo0NDQ0GQM3depUZGZmOt2jZC//5rDEYuu1ZcXFxVi1ahWuX78OuVyOxx57DPn5+dw7eoVK
SkpCbGysVaPTy8sLkZGRiIyMbNWYSdtqrTLRHtq6/rUmpVIJhULB9Q7T7XlCCHk4tWtDlDFm
973Zbm5uqKurA2MMFy9eREFBASZPngxvb29undraWmRnZ6OmpgYTJkyAn5+f4Pz5mEwmlJWV
4fbt2ygsLERQUFCT91crlUoEBgZyy+Pj41u0r/T0dJuNZS8vr2b9gysk5srKSpw8eRK1tbUI
CAjA8OHDm3WO+M65kBhzc3NRUlKCoKAghIaGWjWYtVotcnJyoNFoEBYWBn9/fwDApUuX8Msv
v8BkMmHYsGHw8vLCtWvXcP36dUgkEowfPx6A+Zrn5eXh6tWrCAwMxIgRI7j8y8rKcPnyZajV
akRHR0Oj0SA7Oxu9e/fGyJEjBcVvLz6L1ioT7cHZ+mfvXOt0Opw7dw5SqRRhYWG4dOkSCgoK
EBkZCXd392bFaJmyKjIyEl5eXti+fTvS09ORlpZGD3ERQshDqF1uzet0OiQkJCA7OxvZ2dmI
i4tDXFwcMjMzrdZTq9V45513cODAAWzduhWzZ8/m0rKzszF79my4u7vD1dUVoaGhuHLlSrPy
d0StVuOTTz7B6tWrERsb26R3cdOmTUhNTUVJSQmXf3Z2dovPiWXuyMYWLVrUrDz4Yj5x4gTm
zJkDuVyOQYMGYfXq1Vi9erXg/B2dcyHKy8sxc+ZMXLlyBb6+vli3bh0mTZrEjUU8e/Ys5s+f
D5PJBBcXF8yYMQNr1qwBYL6mb775JhYsWMDlZzKZsHTpUhQVFQEAampqEB0djePHj8Pf3x97
9+5FTEwMTCYTAODkyZPYvHkzXn/9dWRlZWHlypXIyMgQfA4cxQe0fplQKpVISUmBUqls1TGi
rVH/HJ3rW7duIT4+Hps2bcKGDRuQlZWFTZs2NftWv1KpRFJSEjePqkVsbCxN+E8IIQ+rcVEz
WFVVlcNPa0lISGBLly61mfb222+zkSNHMq1WyxhjTKFQMD8/Py49LS2N7d69m/s+Y8YMtmnT
JsH5C6VUKpm7u7vNtM8++4yNGzfOqfwZYywxMZEBYOHh4SwxMZF9+eWXTuVnL+bFixezJUuW
MJ1OxxhjTKPRsO3btwvOV8g5d2TevHls27Zt3HetVsuGDRvGLly4wEwmExsyZAjLycnh0ktK
SphMJmOnT59mjDF29uxZJpPJWGlpKRd/YmIit/6SJUtYfHw8991kMjFPT092+PBhbtmpU6eY
WCxm69evt1qPj5D4GGudMpGbm8sSExNZVlYWd32+/PJLtmjRIqfyvZ8z9Y/vXL///vts2LBh
3PYHDx5k/fr1a1Z8kZGRLCsri/veuKwuWrTI6toTQgjpHIqLi5v9sRgXNYN1qqfmQ0NDuVuc
Hh4e0Ov1XNrChQsxfvx4pKam4s9//jOKiopQVVXV6jGIxeI2H2uZnJyM3NxcREZGQqFQ4IUX
XmjR0/IW9mJ+5ZVXcPLkSXh6euKZZ57B3r17ER0dLThfZ845YwxHjhxBWFgYt0wul+PcuXMI
CQlBcXEx8vPzERQUxKX36dMHISEhUCgUAIARI0bgySefxCeffAIA+PTTT/Haa69x6x85cgQ3
b97EihUr8D//8z94/fXXMXHiRHTv3t3q3HTt2hUrV67klgm5vkLiaw2dqRfQUf3jO9disRhD
hw7ltvfy8rLano9KpYJCoeDOgUqlQkBAAJeuVCpbNH6aEEJI59buE9objcZmb8MYQ0JCAi5c
uICNGzciLCwMly9ftmpwOJN/RwgPD+fGgyoUCkRFRbX6W3QiIiKQl5eHgoICZGZm4uDBg3jr
rbdQUlKCHj16ONy2OefckRs3bmDUqFE28weA0tJSq3GEHh4e8PDw4L6/8cYbWLJkCZYvX467
d++if//+XJpWq8X06dMxf/58hzF069YNMpmsWXELjc9ZlkaordkSAgICkJ6e3qoP6rS0fgg9
1y2lVqutGpoKhYIbqmJp+FNDlBBCHj7t2iPq5uaGy5cvc99LS0u5f/C1Wi10Oh2XVl9fj7q6
OphMJty8eRNbtmzBBx98gPDwcJhMJhQXF6O+vl5w/kKp1eomsVjU1NTAYDA0K7/GlEolVCpV
k+XO/gNrL+bY2FiUlZVh0KBBWLZsGY4dOwaRSCSop0roObdHJBJh1qxZ2LBhA6qrq7nlR48e
xalTp9C/f3+MGTMGqampXFptbS2uX7+O6dOnc8uio6Mhl8sRHR2NuXPnWu1j+vTp2Lx5M8rL
y7llZWVlVue4qqqqWT1zFkLjc6ZMtKQXcMeOHS3uJW1p/QP4z3Vtba1V2airq4NWqxVc/8LD
w7m3KDVmmW+XHlQihJCHk6RP4OD3XnpxhsOVXF1dW2Vnvr6+2LhxI/bv349Dhw6hqqoKo0aN
wrFjx/DRRx+hqKgIkydPhq+vL5YuXYr8/HxoNBrExMTgzJkzOHToEAoLC5GZmQmTyYQDBw5A
JBJxU+XYy18ikfDGtm/fPmzduhU7duxAaWkpfvzxR5w9exb9+vWDq6sr3nvvPfzv//4v8vPz
UVJSgjNnzsDPzw+9evUSfPyfffaZVSPGQq1WIz09HQkJCcJPJk/MPj4+OH/+PD788EPcvXsX
OTk5+PjjjzFnzhxMmTKFN++uXbsKOueOTJw4ET/99BPefvtt5OTk4LPPPoNMJsOcOXMgEokw
depU7Nq1C5mZmbh27Rp27dqFpKQkREREcHmIxWJIJBKUlpY2eSJ94sSJyMvLw3vvvYfz58/j
xIkTKCgowJQpU1BeXo5169Zh165dKCwsRFFREc6ePYuQkBBBvbp88VVXVztdJlQqFVQqFebN
mwfAPJuC5ZWfCoWiyXvoASAuLg4ZGRl49dVXBe2jsZbWv6lTpzo8199++y2Sk5NRWFiI8ePH
W22v1+vxzDPPCIpv/PjxSElJgVwu5/6n7fDhw/j444+tGuiEEEI6j8rKymZv4+npCQDY+dkX
EI2LmsEyvtrjcAM3N7cWBWeLXq+HRqOBj48PN1bP0qNk+S4Wi6HX6yGVSmEwGODi4gLgXu+T
p6cnGGOoqqpqcpvUVv5CWJ7klkgkEIvFMBqNMBqNkEqlEIvFaGho4P5unCakkWvxwgsvIDY2
tsn7xZOSkhAeHt5kuTMxW+JijKGiogJ6vR4+Pj7Nnt5KyDnnYzAYoNFo4O3tbfOa6HQ6aLVa
u5P5M8ag0+nQpUsXm+lGoxHl5eXo2bMnl7/JZIJer4dEIoFEIuHOjUwmg1jcvBsBtuJjjLVK
mQgMDERubi68vLyQlpaGRYsWQa1W44UXXkBycnKT2/K1tbWIiYnBsWPHmnUMFs7UP8D2uba1
vcFggEQiabK9EOnp6VCpVEhMTGzRMRJCCGk/JSUlzd6mb9++AIDxU2LavyH6KHvhhRcQHh4O
Ly8vrodHoVAgICCg2VM3kYeDUqlEWloaYmNjubJgaYTd3zC/c+cO3n33XcTFxeGJJ57ooIjb
nqVBTgghpPNztiHa7g8rPcq2b98OLy8v7pYsALsPqpBHQ3h4ODdpu5eXl8MGWM+ePbFt27Zm
9+gSQgghnRU1RNuRpcEZEBBAY96IFbVazXsrujm3/B9k9HQ8IYQ8OqhrhRDSqdD/pBFCyKOD
GqKEdALUC0gIIeRR9EDcmp9ckucw/XjfYe0UScvwxX+i33CH6c2dC5U8eKgXkBBCyKOIekQJ
IYQQQkiHENwQLT6sh7Hpy4balMnBC3GYwYD6m7fbL5hmYAyoqbFe1lBeAUN1je0NCCGEEEIe
QYIbovpahqtfNLRlLBz1ZSMyX6zF/vFVNtOvb9uJovV/he72nXaJpzl27wZiYoC1a4HgYOD0
afNyY00tbqTtwcXFK6DXNP8tBIQQQgghDxvBDdHAGBdcO6SHsR3aol7BEgx51QViadO38Giv
leCXDAUG/HkVPEaFtX0wzVBcDKxaBfzf/wHJyUBcHJCfb06T9/VH/xVL0W3QQJR+/nWHxkkI
IYQQ0hkIflhJLAMCY2Qo/LIBwS/ZeWUfAyouGVFVbIJbHzG8QySACDA2AOp8I0QSwHuoBJpC
EyqLjPjNeClk3e81Ng11DOX/z4iGGgadhsHWGzr15WrI7psAvqoKUCoBb28gMBD4/nugSxdg
3DhAJjOvU1YGXL4MqNVAdDSg0QDZ2UDv3sDIkeZ1tFogJ8ecFhYG+Ptb75svXak0718uN3+3
vBp9X6OXDrj06gltocrRqSaEEEIIeSQ062GlAbNcoPq33ubYTYOW4dtXa3HntAHdeotR9C89
ji/WgpkA7R0Tfny3Dvmf6nD+HzqUntQj/1MdTq6s47avuGTEyRV1YAxwcROh6F+2B4iKu7jC
qNVaLTt2DJg9G/jwQ+Dtt4G7d81/P/UU8Ovr2HHyJLB5M/D660BWFrByJZCRAaxebU4/exaY
Px8wmQAXF2DGDGDNmnv74EvftAlITQVKSsw9oXFx5obu/Yy1tRDbeWc6IYQQQsijpFnTN4ll
QMDzMhTub0DQHOte0dzkerj1EWPIq64AgJ7DJfjn8CrcOmHA409L8fgzMlzP1OPJZDkkXUTo
3keM/75Xb96YAd8vq8Pk7V3h3s/cNn5iMXDmnTrcr/7mbcg8PayWxcYCR48CFy4Ae/YAEgnw
4ovm3s4vvgDmzgWefx7o1QuYMAHIzQV27Ph118z8mTvXvG1EhHl5SAgwYAAQFQWMHu04fcwY
YPlyc/6pqcDWrfbPobyvP2ouFjTntBNCCCGEPJSaPX3TgFgXFP2raa/ore8MqL3DkLOuHv99
rw6n36mD72gpZN3M6SIx4BkshqSL+X67q4cIJoM5rfaO+Va9W5974UhsdBre+eoQNGdyMfCD
pCZprq7A00+bG6GW76GhwNWrjQ5WDHTtau4NtRCJzGM78/OBoKB7y/v0MTc2FQr+9ObwiZqE
HhPHofD9D8GMpuZtTAghhBDyEGn2hPYSF6D/dBmK/tWAgS/e6xU11DH4PyPFgFg740cdMNQB
zAjoqxlcPGwMDP2V99NPofp8PuqKb8C1t1+T9PvHlOp05jGbjXXrdm/cqIVlvvjSUsDd/d5y
Dw/zhy+9OepKbuBO+r8RuHolRBKaxpUQQgghj64WtYQGvuiCoq/0XI8mAPhHypC/swE69b23
AOnUDNXXzb1+Bi2zmofUUG9uvIIBbn3E6NZbjKtf3nskX3PFhIZqBtao01Dm5QHf309FyZZP
bMaVn3+v0XjrFnDjBjB16r30qipAb2Poaf/+5tvrqan3ltXWAtevA9On86db1NQAhkbnxJby
b7PR/YnB6D44yPGKhBBCCCEPuRa94lPiCvSdJoPqQAMGzDL3gEa83QX//aAeR2Nq4DdGCml3
Ebp4iTDkVVfczjbg2iE9DFqGX84a4f2EBBdSdWioZDj7UT3CVnbBU3+T4z/xdSg/b0SXHiK4
eokhkgC5G+qBlxrtXCQCM9m+pX3nDjBnDjB4MHDqFLBvn3nc5s8/mx9UOn4cqKgwj/fs29f8
VLuvr7kndf9+YOFCc9rw4cD588C2bUC/fua8HaVXVwPr1wOHD5uHAixcCPTsCfzxj+bb942J
JBKIbE0HQAghhBDyiBGNi5rBMr7a43AlNze3JsuMOiBrXi2e/d9uEDVqzjIjoNMwdOkhAn5t
bzFLL+Gv30ViwGQ0/5cZzQ9BmVcE6soZ5N4iMCNgMjBIuois3tVemXsOJVs+Qeiev3PLjvcd
hsWLAU9PYN068xRN3t73btWbTOaeUInE/DEazR+ZzDxutDGdzjxN030zRDlMZ8z8dL5Uas7P
kr9Uat5f4/hLv/gatZcLMeDPq7hl9K55QgghhDyISkpK+Fe6T9++fQEA46fEtPxd8xJXYMxa
OQw660aSSAJ08b7XCAUAkfTXj8T8gQgQS80NUXHj8ZoiQO5j3lYkBfdgU2PdBw9E3bUS1BXf
sFpeXW2+XS6RAD4+1uNFxWLzw0tSqXm5VGr+fn8jFDAvt9cItZcuEpmXSyTW+VsenLJgBiMq
TpyC59iR9ndACCGEEPKIaNGteQvPge3/sI2kWzeE7t2G0i++hrx/H/R+4Xl8/rl5LlFXV/N4
zuXL2z0sXlV5F1Bx4hQem/ciNUQJIYQQQuBkQ7SjyPv5IyDxf7jvM2aYP4D5lnhn5D5sKNyH
De3oMAghhBBCOo0HoiF6vO+wjg7BKbzx0xhQQgghhDyCaCJLQgghhBDSIaghSgghhBBCOgQ1
RAkhhBBCSIeghighhBBCCOkQ1BAlhBBCCCEdghqihBBCCCGkQ1BDlBBCCCGEdAhqiBJCCCGE
kA5BDVFCCCGEENIhqCFKCCGEEEI6BDVECSGEEEJIh6CGKCGEEEII6RDUECWEEEIIIR2CGqKE
EEIIIaRDUEOUEEIIIYR0CGqIEkIIIYSQDkENUUIIIYQQ0iEEN0SLD+th1DlYgQEmfStExIcB
DVXM6Wz0ej2Ki4udj6cNMAbU1Fgvu3v3LiorKzsmIEIIIYSQNiC4IaqvZbj6RYPNtIK9Dfhi
ZBX+39/rWy0we0qO6XEgshpwoi2anJyMVatW4caNG60XWCvZvRuIiQHWrgWCg4HTp83Lq6ur
8Ze//AUzZ85ERUVFh8ZICCGEENIaBDdEA2NccO2QHkYbbdFB81zQI0QCiYuoNWOz6fFJUkTu
6Qa0cFdXrlzBV199hc2bN2PChAmtG5yTiouBVauA//s/IDkZiIsD8vPNaYGBgVizZg2eeOIJ
7Nixo0PjJIQQQghpDVKhK4plQGCMDIVfNiD4JZcm6S7uIkAEVF0zoeKSER4BYngNklivxICK
S0ZUFZvg1kcM7xCJVYOy7heGu0oDZF1FcOsnxsVPdHh8sgyPPy0FMwE6NYP2ZxOqS0zw6C+G
pIt5Y2MDoM43QiQBvIdKoCk0obLIiN+Ml0LW3brF+ssvv8DHx8dqWVUVoFQC3t5AYCDw/fdA
ly7AuHGATGZep6wMuHwZUKuB6GhAowGys4HevYGRI83raLVATo45LSwM8Pe3Pny+dKXSvH+5
3Pw9Pr7pdfjNb36DS5cuNU0ghBBCCHnANOthpQGzXKD6t97uWNDiQ3rcyjZALAVOrarD6bfq
uFvoBi3Dt6/W4s5pA7r1FqPoX3ocX6wFM5nTS08ZkP0/WnT7jRi1d0w4NK0Gg+a5wnOgOcSG
SoYr/2zATx/V48QSLSC618DU3jHhx3frkP+pDuf/oUPpST3yP9Xh5Mq6JjHK5XLU3DcA89gx
YPZs4MMPgbffBu7eNf/91FNAw689wCdPAps3A6+/DmRlAStXAhkZwOrV5vSzZ4H58wGTCXBx
AWbMANasubcPvvRNm4DUVKCkxNwTGhdnbujer7q6GnJLS5UQQggh5AEmuEcUMPeKBjwvQ+H+
BgTNador2ue3Mgz+k3l5z+FSfDWxGv5RMjw+WYrc5Hq49RFjyKuuv6ZL8M/hVbh1woDHn5bi
QpoOj02WwidUAp9QCS6m6VBZaETfqeYuSVcvEULjXFF+QYqf/1sLieu9/br1EePxZ2S4nqnH
k8lySLqI0L2PGP99r+mY1eLiYnh7e1sti40Fjh4FLlwA9uwBJBLgxRfNvZ1ffAHMnQs8/zzQ
qxcwYQKQmwtY7o4zZv7MnWveNiLCvDwkBBgwAIiKAkaPdpw+ZgywfLk5/9RUYOtW+9cgMDAQ
P/30k5DLRQghhBDSqTV7+qYBsS4o+pftXlGx7N7f8l4i9BgiRsVFIwDg1ncG1N5hyFlXj/++
V4fT79TBd7QUsm7m9bv1FqPmxq/dowww1AFd/ZqGJxJbdYZaLfcMvne73tVDBJPBep09e/bg
xIkT2LJlS5PtXV2Bp582N0It30NDgatXGx2fGOja1dwbyu1XZB7bmZ8PBAXdW96nj7mxqVDw
pzfH73//e/z2t79FQkICjEZj8zYmhBBCCOlEmtUjCgASF6D/dBmK/tWAgS827RVtzKgD3Pqa
G5OGOgb/Z6QYEGt7m5AFrjj+ei3ObapHXTnD4Jdd0HOExOa6LRUdHQ2lUonCwkL43z9AE00b
uDqdecxmY9263Rs3asF+HX5QWgq4u99b7uFh/vClN0dhYSF27dqFTZs2QSJp3fNDCCGEENKe
WjSh/cAXXVD0ld66x9FkvU7NLRMaNAyPTTK3df0jZcjf2QCd+t68Szo1Q/V184bXv9EjPLEL
hr/RBWPXyRGy0BW2NFQyGOpYk6f3DVpmNc+pod7c+G08zZO3tzf+8Ic/YO3atTbzzs+/12i8
dQu4cQOYOvVeelUVoLfRE9y/v/n2emrqvWW1tcD168D06fzpFjU1gOG+Xtz7HT58GOHh4Rg2
bJjjFQkhhBBCOrlm94gCgMQV6DtNBtWBBgyYZe7hNNQzlOUZkfexDmIXoPy8EZPTusLFzdzN
GPF2F/z3g3ocjamB3xgppN1F6OIl4saMuvcXI2dNPa4d1KOhikEqF+GxSeYeVJEYUB3Q4+cf
DfjlJyNMBuC7V2vhGSRB0B9cUHvLhGuH9DBoGX45a4T3ExJcSNWhoZLh7Ef1CFvZhYtdJBLB
ZDI1PSgAd+4Ac+YAgwcDp04B+/aZx23+/LP5QaXjx4GKCvN4z759zU+1+/qae1L37wcWLjSn
DR8OnD8PbNsG9OtnzttRenU1sH49cPiweSjAwoVAz57AH/9ovn1vdcGkUohsjU0ghBBCCHnA
iMZFzWAZX+1xuJKbm1uTZUYdkDWvFs/+bzeIpIC+hkHWXQR9DYPJALh62m4sMSOg0zB06SGy
mrrp0i4degyRQOYugkQmQn2FCXl/06HPFBkGzXPhxqSKxOYPM5qfQBdLcK/XU3RvHZPx3nqN
x66eOnUKa9euRUZGhlVcixcDnp7AunXmKZq8ve/dqjeZzD2hEon5YzSaPzKZedxoYzqdeZom
Ly/b59JWOmPmp/OlUnN+lvyl0ntjVi0+/fRTnD9/Hps3b7a9A0IIIYSQdlJSUtLsbfr27QsA
GD8lpmU9ooC5V3TMWjkMOgaZVMTN13n/vJ33E0mALt7W69RXMJxP1SH2tDtEvzbsPCDG45OM
cO9nXiC+b1ymSAo4GiEp/vXIRPc1FENDQ3HlyhUUFhZiwIAB3PLqanPDUiIB7ptmFGKx+eEl
C6nU/LHF1dV6XSHpIpGw/A0GAzIyMjBv3jz7OyCEEEIIeUC0uCEKgJvj01muniL8ZoIMx1/T
oudwCUwGQNoV6DFEgt7jnAqxCTc3Nxw7dgyffvopBg4ciFdeeQWff26eS9TV1Tyec/nyVt1l
q/jvf/+LzMxMLF26FJMnT+7ocAghhBBCnNbiW/NtgpkfMJLKRS1+hWdL6Bo95GQ0mqdoIoQQ
Qgghjjl7a751ujRbiwiQdm3fRihw73a5qys1Qgkh7U+lUkGpVNpMU6vV7RwNIYS0n9a9700I
IUQwtVqNlJQU7m+VSoXExERERkZCqVQiPT0diYmJHRwlIYS0HWqIEkJIB1EoFEhOTua+q1Qq
pKSkICUlBbGxsVZphBDyMKKGKCGEdJDY2Fir7wEBAdi+fXsHRUMIIe2vc40RJYSQX0VFRSEq
Ksru2Mn7JSUlISoqCmlpaW0cWcs9jMfUFlQqFRQKRYftv7WuU3p6eluER8hDhRqihJB2Zxkb
mZaWhpSUFCQlJQEA918ACA8PR1ZWFsLDw+3m0/ghn+TkZGRlZUGlUrVt8Ha0xjHd/9BSRx9T
R1Cr1UhLS0NkZKTddGfy5rtGQOtdp4CAgEfufyIIaa5OdWu+oaEBLi4uDtdhjKGyshKenp5t
kj8fZ/YvlE6ng6udWfHbY/8t1Rrnty119vgeFWq1GklJSUhOTobXr68YU6vViIiIaHKrmo9C
ocCiRYvaIkykpaVBpVIJGqfZWsfUWY6nI1nOY2MqlYrrJVWpVPjyyy+bnW9HlLvw8HCkp6dD
pVIhICCg2TET8ijoFD2iGRkZCA4Oxssvv8y77tdff43BgweDMca7bkvyb4v9C/XJJ59g6NCh
GDhwYIfsn09DQwMKCgqaLG+t82svf2e3b83rT5yXlJSE2NhYrjEAAF5eXoiMjLTbC9ZeLL1x
UVFRACC40dZZj6mlx9NRFAoFvLy8rM5jY+Hh4S3uEe2oa7Ro0SJuZgRCSFOdoiE6depU/Pa3
v4VcLhe0bmZmJkQi4ZONNif/tti/UAsXLsSbb77pMM623D+fFStW4K9//avNmFrj/NrL39nt
W/P6E+elp6fb/Iffy8vL4W34tmTpLXvhhRcAAFlZWc3qmexsx+Ts8XSU9PR0m3EGBAQgMjLS
bgNVaN4dcY0CAgKgUqloPlhC7GiXW/OnTp2C0WhEr169MGjQIACA0WjE999/D7FYjNDQULi5
uaGurg6MMVy8eBEFBQWYPHkyvL29AQAmkwllZWW4ffs2CgsLERQU1KRhYTKZkJubi5KSEgQF
BSE0NJRrsPHlz8fR/q9du4aCggKMHTsW2dnZmDBhAsrKypCfn4/nnnsOdXV1UCqV8Pb2RmBg
IIFCJDQAACAASURBVL7//nt06dIF48aNg0wms9pPr169bDYyhRw/Ywx5eXm4evUqAgMDMWLE
CKu8KisrcfLkSdTW1iIgIADDhw+H1NZL7e1gjNldX8j5ra2tRXZ2NmpqajBhwgT4+fkJzr89
4uM7f3z4zi9f/hUVFThz5gwYY3jyySdRVVUFDw8PVFRU4MaNG/Dz80NwcDBqamqQm5sLuVyO
0aNH8+av0+lw7tw5SKVShIWF4dKlSygoKEBkZCTc3d257R3Vn9Y4P42lpKQ0mR+zOQ0lpVLJ
3aZV/n/27j0u6ir/H/hrZriIxmUERTNvYN4wUMBbWmqBrSu0gWJaWVmKhvDFW8FXY8sUhVxZ
W90VyMzb97cVtbmmAjGlS1K2MCarIqIgeMMMmJHL4DCX8/tjdj4yMsznMww39f18PHjIfC7n
9jlnOJ7P+ZyPXN7mjkRZWRl3yzoyMtKmEUNb8tQd8mO8/W08NyMjA3K5HBEREQgICEBZWRky
MjIglUpbjCwC4B4uksvliIyM5PbL5XKuE+bl5QUvLy+TbQEBASbHduQt7K6qd8Zb9PfDfwYI
6WydMiL6zTff4JlnnkFTUxO3TSQSIS8vD5s2beJuMysUCrz77rs4ePAgduzYgfnz53PHKxQK
fPzxx0hISEBERESLP4DV1dWYM2cOSkpK4OnpicTEREyfPt0kTkvh87EU/969exEREYG0tDTs
2bMHs2bNwtGjR7F+/Xrs2rUL2dnZmD9/Pj788EOsW7cOt27dwocffoinn37aJH1tjR8A6uvr
ERISgmPHjmHgwIHYt28fwsPDodfrAQDHjx/HggUL4OTkhJEjRyIhIQEJCQmC4lar1YiNjUVu
bi5yc3MRHR2N6OhoZGVltUhja+Wbm5uL+fPnw8XFBY6OjvD19UVJSYlV4Xdk+vjKjw9f+fKF
/9133+Gll17i8vPcc88hICAAjDHo9XqsWLECW7duBWBoO7t378bChQsFhX/9+nXExMQgJSUF
mzdvRk5ODlJSUkymKvC1H1vLp7nIyEjEx8cjMDAQ8fHx3JPFQka75HI54uPjoVAoIJVKkZaW
hrKyMixdutSqNBjPWbp0KYKCgvDFF1/YdHu2rXnqbvmRyWTIyMjgRg+TkpIwb948pKenQy6X
Iy4uDl5eXtytfqPk5GST29zBwcEmI4ByudxkW/N8N8+DLSOefLqy3gUFBT1UD5wRYpUpwWGs
trbW4o+tbty4wQCwyspKplAoWFJSEmOMsYMHD7KcnBzGGGPr1q1j48ePZyqVijHGmEwmY/36
9WsRllwuZy4uLi22v/rqq2znzp3cZ5VKxfz8/NjZs2etCp+PufgrKiqYnZ0da2hoYP/85z/Z
hAkTGGOMbdy4kb311luMMcZef/11FhgYyLRaLWOMsTt37jCpVMr27dtnElZmZiYbMWKEVfEz
xlhUVBSLiYnhPuv1eubm5sYOHz7MGGNs2bJlLCoqiqnVasYYY0qlkqWlpVmV99jYWLZ8+XKz
+/jKNz09ne3Zs4f7HBYWxlJSUgSH39Hp4ys/Pnzlayl8rVbLHnvsMXbmzBlu/9dff8169+7N
fY6JiWFRUVHc5y+//JKNHj1acPrXr1/P/Pz8uPwfOnSIDRkyhDuer/3YWj73KigoYHFxcSwg
IIABYHFxcS2OuXdbQUEBCwoKYjU1NYwxZlK+QUFBrKCgwOx55uTk5LCgoCCr24Al1uZJaH7u
Pc+c9spPTk4Ok0qlrLS01CTuiIgIk+MAmHwOCgoySWNkZGSLNDfflpaWxuW7edxC89lWQq4R
Y+1/nWxNNyHdWXl5udU/RlOCw1in3Jrv378/xowZg++//x41NTXYsmULFi5ciB9//BHr16/n
jvP19eVuN7u6ukKj0bQISywWtxgNZIzhyJEjWL58ObfNyckJp0+fNjlOSPh8zMUvFovh6OiI
nj17wsHBgdvv6OgIlUrF/f7MM89AIpFwn319fXHx4kWb4weAI0eOwN/fH6tXr4ZGo0FTUxOm
TZuGRx55BADwxhtvYPHixXBzc8PkyZPxwgsvYM6cOVbn3xJL5btkyRKUlpYiNTUVN27cQGlp
Kfz8/No1flvSx1d+fPjK11L4ly9fxvXr1zFq1Cju+H79+plcZ7FYbDL6KJFITPbzpV8sFmPM
mDFc/qVSKZd/Ie3H1vK5V0BAAHdbUyaTITg4mPc2cnx8POLi4syOYHl5eSEjI0PwrVLjyJ3x
QZ6goCCT28ltYW2eumt+FApFi9vjfLfL09LSIJVKuVv7rR1jHI00d2u/M3R1vSOEtNRpyzcF
BwcjKysLAwYMwJIlS7Bv3z5oNBr06NGj3eK4evUqJkyY0G7htbd7O5BqtRre3t7tErZKpUJo
aCgWLVpkdn9gYCAKCwtRXFyMrKwsHDp0CGvXrkVFRQV69+4tOB6dTmd12hhjiI2NxdmzZ7Fl
yxb4+/vjwoULZjsxbQm/Pc7nKz8+fOVrKfyLFy+CMYaqqip4enp2SfoBy+2nPcKXy+WQSqUt
OjVCbiEbl+7JycnhPjcPRy6Xt2l+Z2RkJCIjIyGTybB06VJ4eXm12ukwp6156q75aSvj+pwB
AQGIiIhodTH6uLg4riPaWbpjvSOE3NVpT80HBwdj//79mDlzJpYtW4a//OUvGDBgALdfpVJB
rVZzn+/cuYPGxsYWc9AUCkWLY0UiEebOnYvNmzejrq6O23706FHk5eVZFT4fc/Hr9Xpunqte
r+fCdHBwwJ07d7jjioqKuOOuX7+Oq1evYtasWSbh19XV4fbt260uz2QufgAIDQ3Ftm3bUF1d
zW2rqqriRiciIiJQVVWFkSNHYsWKFcjOzoZIJLJqVNjZ2RkXLlzgPldWVnLptFS+165dw/bt
2/HBBx8gICAAer0e5eXlJmXDF35Hpg/gLz8+fOVrKfyhQ4fC29sb+/fvN9nXnKOjI2prawHc
fWhIqVRy+eNLf0NDg0l5NzY2QqVSgTEmqP3YWj6AYQTK3MiauRE4c8c07zjIZDLus7HTY8sc
z+bzKpcuXYr4+HhBeWtrnrprftpCoVAgODgYcXFxLUZhm4+QKhQKbh3TpUuXmn2KvCPS2F3q
XVeMABNyP+i0EdGnn34agYGBmD59OkQiESZNmsRNeD969Ci+/vpraDQa/PLLL/Dz80NSUhJU
KhVWrlyJjz76CAcOHEBubi5OnjwJjUaD0NBQ+Pj4YOnSpRg5ciS2bNmC2NhY+Pv7Y9KkSaiv
r8fEiRMRFxcnKHw+luJ3cHDgOgRarZYblXNxcUFeXh4uX74MALh58yYWLFiAUaNGIS8vDwcO
HEDfvn0BAKmpqTh37hx++OEH7rghQ4Zg8eLFGDZsGG/+t27dihUrVmDy5MmYPn06nJ2d4eHh
gZUrVwIARo0ahfDwcMyePRsODg44efIkEhISrBqBmz9/PtLS0jBx4kR4enri6aefRmxsLHJy
ciyW75/+9CcEBwdjzZo13AMwAwYMwN/+9jc4OTlh1apVFsO/d2WB9k7fRx99xFt+fPjK11L4
dnZ2+Pvf/46XX34Z+fn5cHJywq+//moSfkREBJ5//nnExsbC0dERLi4uqK6uxsaNG5GQkGAx
/OzsbHz22WdoaGjATz/9hICAAHz44Yfcw1uJiYkW2w9f+oWSy+XIyMhoMRqWnJzMO6pkfGrb
+LCIkXEkrr3ez268xV1WVsY9gGMpbW3NU3fNT1sYn4C/d6TQmEfAcAu7eZkYH/5pnk9b1gg1
XgdzeesO9Y4WtCekdaIpwWEs86u9Fg9ydnZul8iavzGo+e9ardaQmP/euhaLxdBoNLCzs4NW
q4WDgwP39K5EIoFYLIZOp4NOp4OdnR0379IYllKphLu7OxeekPD5WIpfJBJBr9fDzs6OGx2V
SCTc6KhYLEZUVBTc3NyQmJgIhUJhkj5j+CKRCGKx2Gz+hOZfp9Ohuroaffr0MTuXtqamBhqN
Bh4eHm1aKkmj0UCpVMLDw8Pq8q2vr4dWq4WbmxsYY9zyRHzhd1b6AMvlx0dI+fKFX1VVBVdX
V8jlcoSEhJiMjDY1NUGlUsHNzQ1NTU3QarXo2bMnb/jm8q/VaiGRSFrk31z7sSb9lsybN49b
qsf4R9k4WmVuWZt737Ajl8uRnp7O3fo1rs94761nc2/m6Si25Elofu49r6MYn5hPT0/nRjdl
Mhn3isrIyEhuHmpycjIiIyMRERGBoKAgzJs3j1vr09hpM96qN3ZCAaC0tJTLz71hAIC3tzd3
THPNl6XKyMjg/oNkLJPk5GQkJyebXS3A2mtkTF97Xqf4+Pguf7kBIR2loqLC6nMGDx4MAJg6
M7xzO6IPs5dffhm9e/fG9u3buzop5D7w/fff4/nnn0ddXV2XvLygIxg7KM1v1zZfQ/Jerf1R
N74y8d71IPnO6wjtkSe+/LR2XndjvPVuy4M78fHx3DzTtsQvl8tbdPasvUbGdLTndQoODubm
mRLyoLG1I9qt3jX/oPrss8+QnZ0NR0dHDB06lLsVTYg5p06dQmJiIhoaGrBhwwb88Y9/7Ook
tQvjH37jouZtpVAoLHYGhLD0dHdzfG/daY88daf82KI9wrblYabm8zfvTRfQdfWutXQRQgyo
I9oJwsLCEBYWBsD2p8LJg++JJ57A4cOHIZFIqL6Qh4qxM2tt502hULSYx9ldZGRktNucX0Ie
RNQR7QTGubCECGFvby/4Aa0HmfGBlsjISJORrNY6KMY5hELYOjrWVubyZKnDJTRPXZWfjmB8
AxLf7XNz57WX9rpOQh6IIuRhJxnkPer9V14Ms3gQdaQIIZ3t0Ucf5TpYxoX4AcvL4Dz66KMI
CgrqliNjgPk88aW1u+epIwQFBaGyslJwnpvXj/bQXtfJx8fnobpu5OF0+/Ztq89xc3MDAOze
/zk9rEQIIYQQQtrG1oeVOm1Be0IIIYQQQpqjjugDzPgmns7EGINSqez0eJu7961TpG2Ma9c+
SLpD/SQtGd90Rgh5+FBH9AGkVqvxv//7vzh9+jS3rflrSJtva66pqQnFxcU2xf31119j1KhR
Vr2as718/PHHGDNmDB5//PFOj1uI9ijfznDmzBlMmzYNQ4YM6eqktLuurJ+kdY2NjYiOjjZ5
RS8h5OFAHdEHjF6vx2uvvYYnn3wSTz/9NLf93LlziIqKwpgxY9CjRw8sWLAAW7duNTl39erV
+POf/2xT/LNmzUJWVlaXLMK+ZMkSvPPOO+3+4EJ7aY/y7QxPPPEEVq5c+UA+ud+V9ZO0TiqV
IjExES+//HKb5psRQu5fnfrUvF6vR35+Pn788UdotVp4enqa/EFQqVT48ccfUVhYiF69enGv
f1Sr1ZDL5fj111/Rv39/nD9/Hj/88AMGDBgAR0dHnD9/HufPn8fly5fh6uoKJycnXL58Gf/5
z39w7do1DBo0CIDhtlxhYSF++OEHqNVq9OvXj4u/qqoKv/zyC/7zn/9g+PDhUCqV+Pbbb1Fb
W4sBAwYAMLwr/ttvv8WVK1cgFouxbt06AMDw4cN5wwcMT5Z99913OH36NBobG9G3b1+Ixe37
f4Ht27fj0qVLLRZB9/T0REhICFxcXPDvf/8bJ06cwJQpU0yOOXr0KMRiMWbPnm11vHq9Hr/9
9hvKy8tx6dIlDB06tEVHxtb889UfAKisrER2djaio6NbnN9a/RKaPr7ry4evfPnSx6ehoYFL
v7u7Ox555BGrzjfGf+bMGVRXVyM3NxcrVqzg9vPl39L1EdK++MLny5+l62epfvJ9vxjxtX8+
ttavmpoaHDt2DCUlJejTpw9u3boFALhx4wb+85//QK1Ww8PDA/X19fjxxx/x66+/4rHHHuMN
X2j++dqfre3jkUcegb29PbZs2YKXXnqJ/rNAyH3C1qfmO21EtLq6GnPmzEFJSQk8PT2RmJiI
6dOnc/PQTp06hUWLFkGv18PBwQFhYWHYsGEDAOD69euIiYlBSkoKNm/ejJycHKSkpOD1118H
YPhD8s4772Dx4sVcfHq9HsuXL+feW1xfX4+QkBAcO3YMAwcOxL59+xAeHs7dnj5x4gS2bduG
t956Czk5OVizZg0yMzORkJAAwPB2jAULFmDgwIG4fv06xo0bh+joaIwePVpQ+MePH8eCBQvg
5OSEkSNHIiEhgQu7vTQ2NmLTpk1Ys2ZNq8fY2dm1eAe6Wq1GbGwscnNzkZubi+joaERHRyMr
K0tw3AqFAh9//DESEhIQERHR4o+Irfnnqz98LNUvIenju76WCClfvvTxyc3Nxfz58+Hi4gJH
R0f4+vqipKRE8PmFhYV47bXXwBiDq6sr9u3bZ7KfL/9814evffGFz5c/vutnqX7yfb8A/O2f
j63167vvvsNLL70EwFCfnnvuOQQEBIAxBr1ejxUrVnB3OEQiEXbv3o2FCxcKCl9I/vmury3t
o7lXXnkFp06dwvfff2/VeYSQ+9iU4DBWW1tr8ac9vPrqq2znzp3cZ5VKxfz8/NjZs2eZXq9n
o0ePZvn5+dz+iooKZm9vz3766SfGGGPr169nfn5+TKVSMcYYO3ToEBsyZAh3/KlTp5i9vT2r
rKxkjDGmVCpZXFwctz8qKorFxMRwn/V6PXNzc2OHDx/mtuXl5TGxWMw2bdpkchxjjD333HPs
ww8/5LaPHDmSZWRkCA5/2bJlLCoqiqnVai59aWlpwgtQgOPHjzORSMSVkTl///vfmbe3t9l9
sbGxbPny5TalQS6XMxcXlxbbbc2/pfrTXGZmJhsxYoTJNiH1iy99QuoPn9bKV0j6+KSnp7M9
e/Zwn8PCwlhKSoqgc/V6PfPx8WElJSXctqNHj7LBgwdzn/nyL+T6WGpffOHz5U9o/WqtfvJ9
v/C1fz621C+tVssee+wxdubMGW7/119/zXr37s19jomJYVFRUdznL7/8ko0ePVpQ+ELyz3d9
26N9GP3+979n0dHRVp9HCOka5eXlVv8YTQkOY53yZiXGGI4cOYLly5dz25ycnLiHaS5fvoyi
oiKTW1yDBg2Cj48PZDIZJk2aBLFYjDFjxpgsLqzRaLjjx40bhyeffJIb9fjkk0+wdOlSbv+R
I0fg7++P1atXQ6PRoKmpCdOmTTO5vScWi9GzZ0+TEUXjyMnAgQNx+fJlLj8qlcrkthdf+G+8
8QYWL14MNzc3TJ48GS+88ALmzJlje+E2U1JSgkGDBnXpHEmxWGz2lpot+eerP3zKy8t56xdf
+oTUn7YSkj4+S5YsQWlpKVJTU3Hjxg2UlpbCz89PUPzXrl1DcXExvL29uW331iFL+Rd6fSy1
L77y5cuf0PrVWv3k+37ha/98bKlfly9fxvXr1zFq1Cju+Htve4vFYpPRR4lEYrKfr3wt5V/I
9W3P9jFy5EgUFhZafR4h5P7Uqa/4vHr1KiZMmNBiO/vvE6yVlZVwcXHhtru6ulo1T27lypWI
iorCqlWrcOvWLQwdOpTbp1KpEBoaikWLFlkMo1evXmYf0li1ahXmzJmDP/7xj7h16xZiYmJM
Ogh84QcGBqKwsBDFxcXIysrCoUOHsHbtWlRUVKB3796C82hJz549UV1dDcZYm+dXddS7zdsj
/63VHz5C6hdf+oTWHz7mytfW+s8YQ2xsLM6ePYstW7bA398fFy5cENwJUKlU0Ol0uH37dqtv
gbGUf2P6hVyf1toXX/h8+evo9sXX/vnYUr8uXrwIxhiqqqrg6enZpvS3R/21dH3bq30AhvnE
/fr1szkcQsj9oVPmiIpEIsydOxebN29GXV0dt/3o0aPIy8vD0KFDMWnSJKSmpnL7GhoacOXK
FYSGhnKf79y5w+1vbGyESqUyWYYlJCQETk5OCAkJMZkfBQChoaHYtm0bqquruW1VVVUm7weu
ra01GQVp7uDBg0hKSsL69euRmpraYh4mX/gRERGoqqrCyJEjsWLFCmRnZ0MkErWILyMjA19/
/XUrJWnZ9OnTUV9fjytXrrR6jFarbbWz6ezsbLJ8SmVlpdXL3CgUCqhUqhZreQrNvzl89ae5
uro63L592yTdQuoXX/qE1B8+rZWvkPRZcu3aNWzfvh0ffPABAgICoNfrUV5ebtJeLPHy8sLA
gQOxe/dubtu5c+dw+/ZtbpTNUv6FXh9L7ctS+ELyJ7R+tVY/+b5f+No/H1vq19ChQ+Ht7Y39
+/eb7GvO0dGRWzeY/fehIaVSyaWfr/5ayr+Q6yu0fQj5fisqKkJgYKDFYwghD45Oe8VnXV0d
YmNj8cMPP2DSpEmor6/HxIkTERcXB5FIhOvXr2PJkiVwd3fH2LFjcebMGSxYsADPPfccsrOz
sWzZMjQ0NOCf//wnAgICMHv2bMhkMqxduxaJiYlcPH/961/x3Xff4R//+IdJ/EqlEitWrMCP
P/6I6dOnw9nZGR4eHli5ciVu376Nbdu24dixY/j555/xyiuvYPDgwYiJieFGIL766iu88847
mDBhApRKJXr27Inf//73WLRoEcRiscXwe/TogYSEBPzrX//C7Nmz4eDggJMnTyIwMBBvv/22
STpnzJgBe3t7fPvtt20q5zlz5mD8+PGIj4832V5UVIRdu3YhJycHZ8+exauvvorAwEDExMRw
x5w7dw4zZszA0KFD4enpiaeffhqxsbGClvE5cOAAcnNzcfLkSZw5cwbBwcHw8fHB0qVLuYcz
hOS/NXz1JzU1FefOncMPP/yAwsJCvPjiixgyZAgWL16MYcOGWaxfAHjTx3d9hbBUvnzps0Sj
0WD27Nmora3lHiApLy/Hzz//jNWrV2PVqlW8YZw4cQILFizA1KlT0adPH7i7u2P79u147bXX
sHXrVt78W7o+t27d4m1flsKXSCS8+eO7fpbqZ0VFBe/3C1/752Nr/crPz8fLL7+McePGwcnJ
Cb/++ivy8/O5DmlBQQGef/55REREwNHRES4uLkhMTMTatWuRkJBgMfx//etfvPnna39C2wff
99uFCxfw5JNPoqyszOpVIwghXcPWV3x2+rvmtVotlEol3N3dzd4+VqvVUKlUJrcItVotgLvz
ycRiMbRaLSQSCbRaLRwcHLhjGWNQq9Wtdg50Oh2qq6vRp08fLjy9Xg+NRgOJRAKJRAKdTged
Tgd7e3vuj8xHH32EsWPHws3NDQ4ODvjtt9+wYcMG/OEPfzBZKshc+M3TVlNTA41GAw8PjxZP
rwOGRc9FIlGb13C8du0ann76aRQUFJjckjTmyTh3TKfTgTFmUnaAoVOjVCrh4eFh1e1949Oz
EokEYrGYi8/Ozg4SiQSAsPzzaa3+GMtNLBa3Gj9gvn4ZCUmfpesrBF/5Wkofn/r6emi1Wri5
uYExhtraWqv+mDPGcOvWLfTt2xc6nQ4ajabFXFG+/Ju7PkLal5Dw+fJn6fpZqp/GUUNL3y9C
2z9f+dpav6qqquDq6gq5XI6QkBCTkdGmpiaoVCq4ubmhqakJWq0WPXv25A3fmu9Xvu9vvvRb
+n5jjGH+/PmYPXs2Xn31VbNlSAjpfu67juj96LfffoOfnx+uXbtm8oczJSUFPj4+gkatOtOx
Y8ewY8cOfPbZZw/kouSEdKbu2P6///57PP/886irq3tg1tvcvn076urqsHbt2q5OCiHECrZ2
RDv1YaX7lbu7O2bOnImwsDBMnDgRGo0GjzzyCMaOHYtnn322q5PXwowZM/DYY4/h2LFjmDlz
Zlcnh5D7Wndr/6dOnUJiYiIaGhqwYcOGFi+vuB9VVlZi2LBhmDVrVlcnhRDSyWhE1AqMMTQ0
NKBXr14PzCgEIUSY7tL+NRoNd+tcp9N121faEkIeDjQi2olEIlG7rBtJCLn/dJf2b29vT1Nu
CCEPjE57xSchhBBCCCHNUUe0AzDGUF9f39XJIIQQQgjp1rq8I2rtgund3Z49exAeHo6NGzdi
xIgR+Omnn7o6SYQQQggh3VKnzBG9efMmNm7ciAMHDsDDwwNz586FTqfDt99+i2HDhuGrr77q
jGR0uPLycrz99tu4cuUKnJycMGDAABQVFWHy5MldnTRCCCGEkG6nUzqi/fr1w44dO1BeXo4R
I0YgKSkJAPD+++9jzpw53HEqlQr5+flQKpXw9/fHwIEDuX1VVVW4cOECFAoFQkJCoFQqkZub
i/79+2P8+PGC0nH79m2cOHECDQ0N8PLywtixY2FnZ4eysjJcvXoV/fr1w4gRI1BfX4+CggI4
OTlh4sSJguOXy+Xw9vbmnmJt/tYiwPAavdzcXNTX1+Opp55q8T5lvV6PgoICVFRUYPjw4fD1
9TV5Otf46r6LFy/C29sb48aNM9nfWv4IIYQQQrqjTr0136NHD+5pT41GA41Gg/feew+AYW28
RYsWQa/Xw8HBAWFhYdiwYQN37okTJ7Bt2za89dZbyMnJwZo1a5CZmYmEhARBcR8/fhwLFiyA
k5MT98pJ47l6vR4rVqzA1q1bARiejt29e7fJ++r54k9JSUFqaioqKioQHR2N6Oho5Obmcufn
5uZi/vz5cHFxgaOjI3x9fVFSUsLtr66uxpw5c1BSUgJPT08kJiZyrzMEDG+VCQkJwbFjxzBw
4EDs27cP4eHh3LvALeWPEEIIIaQ76vThsuLiYmRkZOD06dPw9fXFiy++CMYYFi5ciL179yIw
MBAA4OPjg2HDhiE4OBiTJk3CCy+8gL59++Kpp55CQUEBdu3aBUD4HNPPP/8cQ4cOxdSpU+Hg
4IDPPvsMn3/+OQBg2LBheOqpp6DT6QAAvXr1wh/+8AfI5XLufL74V61ahb59+yI1NRU7duxo
Ef+FCxcwd+5cTJkyBQAwdepUHDlyBMOHD+fOf+655/DKK68AAMaPH4/Jkyfj4sWL8PHxQVxc
HLy9vbFy5UoAwMSJE9G7d29kZmZi9uzZFvNHCCGEENIddXpH1NPTE2PHjsWdO3e428rl5eUo
KiriOmUAMGjQIPj4+EAmk2HSpEkADO9A7tmzJ9asWcMdJ3Rh6TfeeAOLFy+Gm5sbJk+e6fVh
AQAAIABJREFUjBdeeMFkWoBYLOZGFwFw72Rvzpb4lyxZgtLSUqSmpuLGjRsoLS2Fn58fAENn
9siRI1i+fDl3vJOTE06fPs19PnLkCPz9/bF69WpoNBo0NTVh2rRp3LqGfPkjhBBCCOluOr0j
KpVK8fjjj+Pxxx/nthlHFSsrK+Hi4sJtd3V1haurq8n5vXr1atNizoGBgSgsLERxcTGysrJw
6NAhrF27FhUVFejdu7fgcNoSP2MMsbGxOHv2LLZs2QJ/f39cuHChxeLYV69exYQJE8yGoVKp
EBoaikWLFpnd3175I4QQQgjpLJ06R7SxsdHs+ppDhw7FpEmTkJqaym1raGjAlStXEBoaym2r
ra2FRqNpU9wRERGoqqrCyJEjsWLFCmRnZ0MkEnHhOTo6ora2FsDdh4KUSqXJrX+++Ovr66HV
altsv3btGrZv344PPvgAAQEB0Ov1KC8vx507dwAYRlXnzp2LzZs3o66ujjvv6NGjyMvLAwCE
hoZi27ZtqK6u5vZXVVWhrKxMUP6Mdu3aZTLlgBBCCCGkq3TKiOivv/6KDz74ADKZDO7u7nB2
dsZ7772HHj16ADB0xL788kssWbIECxcuxNixY3HmzBns3LkTQ4YMwa+//opt27bh2LFjqKmp
wcKFCzF48GDExMTA09NTUBpGjRqF8PBwzJ49Gw4ODjh58iQSEhK48yMiIvD8888jNjYWjo6O
cHFxQXV1NTZu3IjIyEiL8dfV1WHTpk04fPgwLl68iCVLlqBPnz54+eWX4ePjg379+iE4OBhr
1qzhHkAaMGAA/va3v8HJyQmrVq3Cli1bEBsbC39/f0yaNAn19fWYOHEi4uLiAABbt27FihUr
MHnyZEyfPh3Ozs7w8PDg5ozy5c9o9+7dAIAff/yxXa4tIYQQQkhbiaYEh7HMr/ZaPMjZ2dmm
SPR6PbRaLezs7MAYg06ng729vdn5lWq1GiqVClKp1OR8jUYDiUQCiUQCnU7HhSEWCx/UZYyh
pqYGGo0GHh4eLZY2ampqgkqlgpubG5qamqDVatGzZ0/e+BljaGpqgp2dHcRiMbffzs4OEomE
C984Yurm5gbGGGpra1tMPdBqtVAqlXB3dzdbPjqdDtXV1ejTp0+L/Xz5AwwjzeHh4cjOzhZc
boQQQggh5lRUVFh9zuDBgwEAU2eGd86IqFgshoODA/e5eefsXo6OjnB0dGxxfvNtdnZ2bVof
UyQSwd3dvdX9Dg4OXDqb/84Xv0gkEpS+5nNCRSJRi06o8VwPD49W0yiRSNC3b1+z+/jyd/Pm
Tbz33nv405/+1OoxhBBCCCGdhVY7f4j06dMHO3futGoUmRBCCCGko1BH9CFiaSSaEEIIIaSz
0dCYAAqFgns6nRBCCCGEtA/qiMLQ0ZTJZK3uT05O5h6ekslkmDdvHi2BRAghhBBio27dEQ0O
DkZwcHC7dfri4+MRHByM9PR0bptMJkNycrLFjigAriMaFBSEsrIyeHl5tUuaCCGEEEIeVl02
R1ShUCA9PR1SqRQKhQIKhQJJSUmIj49HUlISACAgIID7vTVlZWVQKBQICAjgjdMYVnx8PLct
KCgIAFrtiMpkMpOwFQoFAJgsL0UIIYQQQqzXJR1RhULBdTiNHTqFQoHAwEBERERYFZZMJkNk
ZGRHJJMLv3lnWCaTcaOicrkc6enpyMnJ6bD4CSGEEEIeVF3SEY2Pj0dERITJqKJUKkVQUBA3
QtkdGEc/mzNOE5DL5YiIiKCHmAghhBBC2qhL5ohmZGSY7XBKpVJBt9g7S0ZGRovRVplMBqlU
CrlcDoVCwb2CkxBCCCGEWKfLHlZKTk5usc2aW+xyuRzJycmQy+Ud9gT7vQ8lGUdIjZ3Pjoyb
EEIIIeRB1yUd0cjISMTHxyMwMBDx8fHIyMgAIOwBILlcjvj4eCgUCkilUqSlpaGsrAxLly5t
U1rS09ORnp7Ohds8nnufjJfL5SYjuXK5nG7NE0IIIYS0UZd0RJOSklBQUICgoCBuXc7mncDW
GDuLcXFxJh1C41zNtoxORkZG4osvvkBOTo7JQ0kZGRktHpwKCgrijklKSkJcXJzVD1eZ09TU
ZHMYDwrGmM3lQeXZPtRqtU37Owtd787THu3zYcAYg1KptHhMR7Uvuj7kftNlt+aNSzMVFBQg
JyfH7K36exk7oeZGTr28vJCRkdGuC8539BJNZ86cwbRp0zBkyJAOjaezNTU1obi42Orz/vrX
v6Jfv37YtGlTm+LNzMzEiBEj8Prrr7fpfGLw8ccfY8yYMXj88cfbtL+zPKjtp7uytX0atfX7
obsQkv6vv/4ao0aNAmOsxb6Oal/0/UfuV53aEW3tVraQJ+XLysq4pZOMn5vfOjfeNm+PBeeN
T8R3tCeeeAIrV66Evb19h8fVmVavXo0///nPVp+3fPlyjBs3Do6Ojm2Kd9asWfjd734HJyen
Np1PDJYsWYJ33nmn1XLk299ZHtT2013Z2j6N2vr90F0ISf+sWbOQlZUFkUjUYl9HtS/6/iP3
q05dvkkmk5l9ylyhUPB2HBUKhUmHtfn6ocbF6IOCgtplwfmOfnJfpVIhPz8ftbW1qKmpafFl
ZdyvVCrh7++PgQMHmuxnjKGwsBAXL16Et7c3xo0bZxLG7du3ceLECTQ0NMDLywtjx46FnR3/
pVar1Th9+jTs7Ozg7++P8+fPo7i4GEFBQXBxcbEqfULiM8fNzQ0ikQglJSUoLCzEiBEj4Ovr
Kzj/zs7OaGxsBGMM586dQ3FxMWbMmAF3d3fu/IaGBuTm5qK+vh5PPfUU+vXrBwA4f/48fvvt
N+j1evj5+UEqleLy5cu4cuUKJBIJpk6dyhu/EK3Fb9TW65eXlwedToe+ffti5MiRAACdTocf
fvgBYrEYvr6+cHNzE5T+vn37WswT335zysrKcPXqVfTr1w8jRoxAfX09CgoK4OTkhIkTJ1pd
/1prP5byV1VVhQsXLkChUCAkJARKpRK5ubno378/xo8fLygfer0eBQUFqKiowPDhw+Hr62uS
htbaR3vULyHpb2v9EcJS++S7vkZt/X5oz/ptCV/5WUq/Xq9HVVUVbty4gUuXLmH48OFmO4Yd
0b6A++P7j5B7dfqIqPHBpOaSk5N536AUEBDAvUWpOYVCgeTkZKSlpQEwXXA+IyMDwcHB7ZeB
dlBYWIjXXnsNjDG4urpi3759JvtPnTqFRYsWQa/Xw8HBAWFhYdiwYQO3v76+HiEhITh27BgG
DhyIffv2ITw8HHq9HgBw/PhxLFiwAE5OThg5ciQSEhKQkJAgKG3Xr19HTEwMUlJSsHnzZuTk
5CAlJcXkVo+l9KnVasTGxiI3Nxe5ubmIjo5GdHQ0srKyrCqjzz77DNnZ2bC3t8eiRYuwdOlS
7hYXX/4BQ5149913cfDgQezYsQPz58/n9uXm5mL+/PlwcXGBo6MjfH19UVJSwqX/nXfeweLF
i7nj9Xo9li9fjtLSUsHxW2IpfsC26/fNN9/gmWeeMZkjJhKJkJeXh02bNoExZnP6baHX67Fi
xQps3bqVS9vu3buxcOFCAMLqH1/74cvfiRMnsG3bNrz11lvIycnBmjVrkJmZKbiMq6urMWfO
HJSUlMDT0xOJiYmYPn06V+Z87cPW+sWXflvqj1CttU++62vr90Nn1G9L5Sck/QqFAh9//DES
EhIQERHRJR207vz9R4hZU4LDWG1trcWf9hIREcGSkpJYWloay8nJYTk5OSwuLo6lpaWZPT4u
Ls7kc0FBAYuMjDQ5Ly4ujtXU1JicExcXx7744gvGGGNJSUm84XYWvV7PfHx8WElJCbft6NGj
bPDgwdz+0aNHs/z8fG5/RUUFs7e3Zz/99BNjjLGoqCgWExNjEqabmxs7fPgwY4yxZcuWsaio
KKZWqxljjCmVylbL15z169czPz8/plKpGGOMHTp0iA0ZMkRw+hhjLDY2li1fvlxwnM29+OKL
bP369dznGzduMCcnJ3bkyBHGGH/+161bx8aPH8+lXyaTsX79+nHHp6ensz179nCfw8LCWEpK
Cvf51KlTzN7enlVWVjLGDOXXvL7wxc+HL35brt+NGzcYAFZZWckUCgVX9w8ePMhycnKsSn9m
ZiYbMWJEq3Hx7W9NTEwMi4qK4j5/+eWXbPTo0dxnvvpnqf0IzV9eXh4Ti8Vs06ZNJscJ8eqr
r7KdO3dyn1UqFfPz82Nnz54V1D7ao35ZSr+t7Z8PX/vku76Mtf37oT3rd2uElJ+Q9Mvlcubi
4tLq/o5qX939+488mMrLy63+MZoSHMY69dZ8WloapFIpysrKuLmirT18ZE5AQADS0tKQkZEB
qVRqdt1RmUyGiIgIbs5od1pw/tq1ayguLoa3tze3rfltm/LychQVFWH48OHctkGDBsHHxwcy
mQyTJk3CkSNH4O/vj9WrV0Oj0aCpqQnTpk3DI488AgB44403sHjxYri5uWHy5Ml44YUXMGfO
HMFpFIvFGDNmDJcuqVQKjUYjOH3twcHBgfu9f//+GDt2LH755Rf8/ve/580/APj6+nLpd3V1
5dIPGOZflZaWIjU1FTdu3EBpaSn8/Py4/ePGjcOTTz7JjWp88sknJkuDCYnfEr74bbl+/fv3
x5gxY/D999+jpqYGW7ZswcKFC/Hjjz9i/fr17ZJ+W4nFYpPRE4lEYjJqZKn+8bUfQFj+xGIx
evbsiTVr1nDbhIxcMcZw5MgRLF++3CT+06dPAwAuX77M2z7ao35ZSr+t7V8IS+2T7/raojPq
d3uVn1gs7rLb1d35+48Qczq1I2rscHp5edn0MFFrbzRqvuB8fHw85HJ5t3pbk0qlgk6nw+3b
t812vtl/bz9XVlaazIlzdXWFq6srF0ZoaCgWLVpkNo7AwEAUFhaiuLgYWVlZOHToENauXYuK
igr07t3bpvQLSZ+RTqezKa7m7ty5w3U++PJvCWMMsbGxOHv2LLZs2QJ/f39cuHChxZfoypUr
ERUVhVWrVuHWrVsYOnQot6+j47f1+gUHByMrKwsDBgzAkiVLsG/fPmg0GvTo0cPm9Hc1vvZj
PEZI/nr16tXmh5yuXr2KCRMmtNgutH20R/1qLf0d2f5b07x9CtXW74eOrt9Cy689v986S1d/
/xHSmi5bvqkjdPcF5728vDBw4EDs3r2b23bu3Dncvn0ber0eQ4cOxaRJk5Camsrtb2howJUr
VxAaGgoACA0NxbZt21BdXc0dU1VVxeUzIiICVVVVGDlyJFasWIHs7GyIRCKT/xVb0tDQgDt3
7nCfGxsboVKpwBgTlD7AMGH+woUL3OfKykqzy5iYc+9co4qKCtTU1GDWrFmC8q9SqUzW37tz
5w4aGxuh1+tx7do1bN++HR988AECAgKg1+tRXl5ukl8ACAkJgZOTE0JCQrj5bUZ88VsiJH5b
r19wcDD279+PmTNnYtmyZfjLX/6CAQMGWJ3+uro63L59u9Xrxre/NY6OjqitrQVw96EHpVLJ
hWOp/vG1H6H5q62tFVyezYlEIsydOxebN29GXV0dt/3o0aPIy8sT3D5srV+W0i+0/uzatatN
S9zxtU++6wvY9v3QXvW7NULKT0j6FQpFi++i5jqqfXXn7z9CWiMZ5D3q/VdeDLN4kK3LdbRV
cnIyioqK4OXlZTICIpVKW11L1NgRDQoKwtSpU+Hj48PtT09P5x6WErJkVHuTSCQYP3483n77
beTn5yM3NxcAkJ+fj1u3buG5557DrFmz8OmnnyIrKwuXL1/Gp59+yr2FCgCmTZuGwsJCvP/+
+zhz5gyOHz+O4uJizJw5E3Z2djhz5gw+/PBD3Lp1C/n5+fjoo4+wYMECzJw5kzd92dnZSEpK
wqVLlzB16lR4enpi+fLlKCoqgkajwbPPPsubPgDw9PTEli1b8OWXX+Kbb75BbW0tJkyYAIlE
wpuGvXv34ubNmyguLsbJkyexZ88e/O1vf+PWirSU/2+//RZbt25FaWkpZsyYYZJ+pVKJ8PBw
nDx5Et988w0uXbqErKws6PV6HDx4ECKRCJMnTwZguK0mkUhQWVmJmJgYk/Txlb8lPXv25I3f
lusHAI8++ii+/fZbJCYmws3NDXl5eXjzzTfh6ekpKP2pqanYu3cvDhw4gNLSUhQXF6OgoABD
hgxB7969effzkUqlSExMxJUrV3Ds2DE4OTkhOzsbjDHcuXPHYv0LDg7mbT+W8lddXY3ExER8
+umnuHTpEkpLS3Hq1Cn4+PgIvrU4bdo0/PLLL1i3bh3y8/Oxf/9+2NvbY8GCBRCJRILaR1vr
l5D0C60/0dHRyMzMxJtvviko30Z87dPS9Z02bRoA274fbK3ffISUn6X0HzhwADt27MCuXbtQ
WVmJn3/+GadOncKQIUPg4eHRoe3r6NGj3fr7jzy4bt++bfU5bm5uAIDd+z+HaEpwGMv8aq/F
E5ydnduUOFsZl2UKCAhol8Xl5XI5t1SULVMDbMUYw61bt9C3b1/odDpoNJoWc93UajVUKlWr
+dbpdKiurkafPn3MLl9TU1MDjUYDDw8PwV8QWq0WwN35ZmKxGFqtFhKJBFqt1mRuGF/6NBoN
lEolPDw8rJorVVtbCxcXF9TW1kKr1bb65Wsu/+bSr9FoYGdnZ5L++vp6aLVabqmX2traFlML
GGNQq9XcLT8h8QvFF39br5+RWq3m/vPY/Hch6W9qaoJIJIJYLIZYLIZOp4NOp4OdnR0kEgnv
fiGampqgUqng5uaGpqYmaLVa9OzZU3D9E9J+zOVPr9dDo9FAIpFAIpFwabe3t4dYbN3NIa1W
C6VSCXd3d7PXn699tKV+CU2/kPrT0NCA8PBwZGdnW5VvIe2ztevbXFu/HwDb6rcQQsqvtfQb
n+iXSCRtaj+2tK/75fuPPHgqKiqsPmfw4MEAgKkzw7t3R5QQQkj7unnzJt577z1ER0fjiSee
6OrkEELuc7Z2RGksnRBCHiJ9+vTBzp07rR4FJoSQjkAdUUIIeYgInUJBCCGdgf5LTEg3UFZW
1qanmAkhhJD7GY2IEtKFjK+oNf5eVlaGuLg4BAUFca/E5Xv9LSGEEHK/oo4oIV1IJpOZdDTL
ysqQnJyM5ORkREREUCeUEELIA406ooR0oYiICJPPXl5eSEtL66LUdD9lZWVQKBTd5u1ohBBC
2hfNESWEdFsymYw6oYQQ8gDrVh1R42LAXYkxBqVSyXtMfX29TfEY5wamp6cjOTkZ8fHxAMD9
aw0haSYdqz3qhFFXPbjUHdofIYSQh0undkSbmppQXFzcYntmZiZGjBiB119/vUPCt8bXX3+N
UaNGtfqO3z179iA8PBwbN27EiBEj8NNPP1kdh0KhQHx8PCIjIxEZGYm4uDjExcUhMDCwTW+Q
4ksz6VjtUSea66hRwI5uf4QQQoi1OnWO6OrVq9HU1NRiDtysWbOQlZVl84hSa+Fbw5gWc68t
Ky8vx9tvv40rV67AyckJAwYMQFFREfeOXqHi4+MRERFh0umUSqUICgpCUFBQu6aZdKz2qhOd
oaPbX3uSy+WQyWTc6DDdnieEkAdTp3ZEGWOtvjfb2dkZjY2NYIzh3LlzKC4uxowZM+Du7s4d
09DQgNzcXNTX1+Opp55Cv379BIfPR6/Xo6qqCjdu3MClS5cwfPjwFu+vlsvl8Pb25rbHxMS0
Ka6MjAyznWWpVGrVH1whab59+zZOnDiBhoYGeHl5YezYsVaVEV+ZC0ljQUEBKioqMHz4cPj6
+pp0mFUqFfLz86FUKuHv74+BAwcCAM6fP4/ffvsNer0efn5+kEqluHz5Mq5cuQKJRIKpU6cC
MFzzwsJCXLx4Ed7e3hg3bhwXflVVFS5cuACFQoGQkBAolUrk5uaif//+GD9+vKD0t5Y+o/aq
E53B1vbXWlmr1WqcPn0adnZ28Pf3x/nz51FcXIygoCC4uLhYlUbjklVBQUGQSqVIS0tDRkYG
0tPT6SEuQgh5AHXKrXm1Wo3Y2Fjk5uYiNzcX0dHRiI6ORlZWlslxCoUC7777Lg4ePIgdO3Zg
/vz53L7c3FzMnz8fLi4ucHR0hK+vL0pKSqwK3xKFQoGPP/4YCQkJiIiIaDG6mJKSgtTUVFRU
VHDh5+bmtrlMjGtHNhcZGWlVGHxpPn78OBYsWAAnJyeMHDkSCQkJSEhIEBy+pTIXorq6GnPm
zEFJSQk8PT2RmJiI6dOnc3MRT506hUWLFkGv18PBwQFhYWHYsGEDAMM1feedd7B48WIuPL1e
j+XLl6O0tBQAUF9fj5CQEBw7dgwDBw7Evn37EB4eDr1eDwA4ceIEtm3bhrfeegs5OTlYs2YN
MjMzBZeBpfQB7V8n5HI5kpOTIZfL23WOaHu0P0tlff36dcTExCAlJQWbN29GTk4OUlJSrL7V
L5fLER8fz62jahQREUEL/hNCyINqSnAYq62ttfjTXmJjY9ny5cvN7lu3bh0bP348U6lUjDHG
ZDIZ69evH7c/PT2d7dmzh/scFhbGUlJSBIcvlFwuZy4uLmb37d+/n02ZMsWm8BljLC4ujgFg
AQEBLC4ujn3xxRc2hddampctW8aioqKYWq1mjDGmVCpZWlqa4HCFlLklr776Ktu5cyf3WaVS
MT8/P3b27Fmm1+vZ6NGjWX5+Pre/oqKC2dvbs59++okxxtipU6eYvb09q6ys5NIfFxfHHR8V
FcViYmK4z3q9nrm5ubHDhw9z2/Ly8phYLGabNm0yOY6PkPQx1j51oqCggMXFxbGcnBzu+nzx
xRcsMjLSpnDvZUv74yvr9evXMz8/P+78Q4cOsSFDhliVvqCgIJaTk8N9bl5XIyMjTa49IYSQ
7qG8vNzqH6MpwWGsWz017+vry93idHV1hUaj4fYtWbIEU6dORWpqKv74xz+itLQUtbW17Z4G
sVjc4XMtk5KSUFBQgKCgIMhkMsybN69NT8sbtZbmN954AydOnICbmxueffZZ7Nu3DyEhIYLD
taXMGWM4cuQI/P39uW1OTk44ffo0fHx8UF5ejqKiIgwfPpzbP2jQIPj4+EAmkwEAxo0bhyef
fBIff/wxAOCTTz7B0qVLueOPHDmCa9euYfXq1fif//kfvPXWW5g2bRoeeeQRk7Lp2bMn1qxZ
w20Tcn2FpK89dKdRQEvtj6+sxWIxxowZw50vlUpNzudTVlYGmUzGlUFZWRm8vLy4/XK5vE3z
pwkhhHRvnb6gvU6ns/ocxhhiY2Nx9uxZbNmyBf7+/rhw4YJJh8OW8LtCQEAANx9UJpMhODi4
3d+iExgYiMLCQhQXFyMrKwuHDh3C2rVrUVFRgd69e1s815oyt+Tq1auYMGGC2fABoLKy0mQe
oaurK1xdXbnPK1euRFRUFFatWoVbt25h6NCh3D6VSoXQ0FAsWrTIYhp69eoFe3t7q9ItNH22
MnZCza2W4OXlhYyMjHZ9UKet7UNoWbeVQqEw6WjKZDJuqoqx408dUUIIefB06oios7MzLly4
wH2urKzk/uCrVCqo1Wpu3507d9DY2Ai9Xo9r165h+/bt+OCDDxAQEAC9Xo/y8nLcuXNHcPhC
KRSKFmkxqq+vh1artSq85uRyOcrKylpst/UPbGtpjoiIQFVVFUaOHIkVK1YgOzsbIpFI0EiV
0DJvjUgkwty5c7F582bU1dVx248ePYq8vDwMHToUkyZNQmpqKrevoaEBV65cQWhoKLctJCQE
Tk5OCAkJwcKFC03iCA0NxbZt21BdXc1tq6qqMinj2tpaq0bmjISmz5Y60ZZRwF27drV5lLSt
7Q/gL+uGhgaTutHY2AiVSiW4/QUEBHBvUWrOuN4uPahECCEPJskg71Hvv/JimMWDHB0d2yUy
T09PbNmyBV9++SW++eYb1NbWYsKECcjOzsbWrVtRWlqKGTNmwNPTE8uXL0dRURGUSiXCw8Nx
8uRJfPPNN7h06RKysrKg1+tx8OBBiEQibqmc1sKXSCS8aTtw4AB27NiBXbt2obKyEj///DNO
nTqFIUOGwNHREe+//z7+7//+D0VFRaioqMDJkyfRr18/9O3bV3D+9+/fb9KJMVIoFMjIyEBs
bKzwwuRJs4eHB86cOYMPP/wQt27dQn5+Pj766CMsWLAAM2fO5A27Z8+egsrckmnTpuGXX37B
unXrkJ+fj/3798Pe3h4LFiyASCTCrFmz8OmnnyIrKwuXL1/Gp59+ivj4eAQGBnJhiMViSCQS
VFZWtngifdq0aSgsLMT777+PM2fO4Pjx4yguLsbMmTNRXV2NxMREfPrpp7h06RJKS0tx6tQp
+Pj4CBrV5UtfXV2dzXWirKwMZWVlePXVVwEYVlMwvvJTJpO1eA89AERHRyMzMxNvvvmmoDia
a2v7mzVrlsWy/u6775CUlIRLly5h6tSpJudrNBo8++yzgtI3depUJCcnw8nJiftP2+HDh/HR
Rx+ZdNAJIYR0H7dv37b6HDc3NwDA7v2fQzQlOIxlfrXX4gnOzs5tSpw5Go0GSqUSHh4e3Fw9
44iS8bNYLIZGo4GdnR20Wi0cHBwA3B19cnNzA2MMtbW1LW6TmgtfCOOT3BKJBGKxGDqdDjqd
DnZ2dhCLxWhqauJ+b75PSCfXaN68eYiIiGjxfvH4+HgEBAS02G5Lmo3pYoyhpqYGGo0GHh4e
Vi9vJaTM+Wi1WiiVSri7u5u9Jmq1GiqVqtXF/BljUKvV6NGjh9n9Op0O1dXV6NOnDxe+Xq+H
RqOBRCKBRCLhysbe3h5isXU3AsyljzHWLnXC29sbBQUFkEqlSE9PR2RkJBQKBebNm4ekpKQW
t+UbGhoQHh6O7Oxsq/JgZEv7A8yXtbnztVotJBJJi/OFyMjIQFlZGeLi4tqUR0IIIZ2noqLC
6nMGDx4MAJg6M7zzO6IPs3nz5iEgIABSqZQb4ZHJZPDy8rJ66SbyYJDL5UhPT0dERARXF4yd
sHs75jdv3sR7772H6OhoPPHEE12U4o5n7JATQgjp/mztiHb6w0oPs7S0NEilUu6DGCwVAAAb
X0lEQVSWLIBWH1QhD4eAgABu0XapVGqxA9anTx/s3LnT6hFdQgghpLuijmgnMnY4vby8aM4b
MaFQKHhvRVtzy/9+Rk/HE0LIw4OGVggh3Qr9J40QQh4e1BElpBugUUBCCCEPI+qIEtIN0Cgg
IYSQhxF1RAkhhBBCSJcQ3BEtP6yBruXLhjqU3sILcTQaDcrLyzstLdZgDKivN91269atNi36
SgghhBDyoBLcEdU0MFz8vKkj08JRXNAh68UGfDm11uz+pKQkvP3227h69WqnpMcae/YA4eHA
xo3AiBHATz8ZttfV1eFPf/oT5syZg5qami5NIyGEEEJIdyC4I+od7oDL32ig64S+qHSEBKPf
dIDYruVbeEpKSvDVV19h27ZteOqppzo+MVYoLwfefhv4f/8PSEoCoqOBoiLDPm9vb2zYsAFP
PPEEdu3a1aXpJIQQQgjpDgSvIyq2B7zD7XHpiyaMeKWVV/YxoOa8DrXlejgPEsPdRwKIAF0T
oCjSQSQB3MdIoLykx+1SHR6dagf7R+52NrWNDNX/0aGpnkGtZDD3hs7ffvsNHh4eJttqawG5
HHB3B7y9gR9+AHr0AKZMAeztDcdUVQEXLgAKBRASAiiVQG4u0L8/MH684RiVCsjPN+zz9wcG
DjSNm2+/XG6I38nJ8PmeV6MDAB599FGcP3++tWImhBBCCHloWPWw0rC5Dij7p8bs3E2tiuG7
Nxtw8yctevUXo/QfGhxbpgLTA6qbevz8XiOKPlHjzN/UqDyhQdEnapxY08idX3NehxOrG8EY
4OAsQuk/zE8QdXJyQv09EzCzs4H584EPPwTWrQNu3TL8/vTTwH9fx44TJ4Bt24C33gJycoA1
a4DMTCAhwbD/1Clg0SJArwccHICwMGDDhrtx8O1PSQFSU4GKCsNIaHS0oaN7r7q6OjgZe6qE
EEIIIQ8xq96sJLYHvF6wx6UvmzB8gemoaEHSHTgPEmP0m44AgD5jJfj72FpcP67FY8/Y4bFn
7XElS4Mnk5wg6SHCI4PE+Pf7dwwnM+CHFY2YkdYTLkMMfeMnlgEn323EvcrLy+Hu7m6yLSIC
OHoUOHsW2LsXkEiAF180jHZ+/jmwcCHwwgtA377AU08BBQWA8e44Y4afhQsN5wYGGrb7+ADD
hgHBwcDEiZb3T5oErFplCD81Fdixo/Uy9Pb2xi+//GJNsRNCCCGEPJCsXr5pWIQDSv/RclT0
+vdaNNxkyE+8g3+/34if3m2E50Q72Pcy7BeJAbcRYkh6GO63O7qKoNca9jXcNNyqdx50NzmS
Hi3j3rt3L44fP47t27e32OfoCDzzjKETavzs6wtcvNgss2KgZ0/DaKiRSGSY21lUBAwffnf7
oEGGzqZMxr/fGn/4wx/wu9/9DrGxsdDpdNadTAghhBDyALH6XfMSB2BoqD1K/9GEx1+8Oyqq
bWQY+KwdhkW0Mn/UAm0jwHSApo7BwdXMxND/CgkJgVwux6VLlzDw3gmaQIs5pWq1Yc5mc716
3Z03asSY4d/KSsDF5e52V1fDD99+a1y6dAmffvopUlJSHpp3hxNCCCGEmNOmBe0ff9EBpV9p
uBFNABgYZI+i3U1QKxi3Ta1gqLuiB2CYQ9p8HVLtHUPnFQxwHiRGr/5iXPzi7iP5yhI9muoY
mP7uOe7u7njppZewceNGs+kqKrrbabx+Hbh6FZg16+7+2lpAY2bq6dChhtvrqal3tzU0AFeu
AKGh/PuN6usBbbMyMefw4cMICAiAn5+f5QMJIYQQQh5wVo+IAoDEERg82x5lB5swbK5hBDRw
XQ/8+4M7OBpej36T7GD3iAg9pCKMftMRN3K1uPyNBloVw2+ndHB/QoKzqWo03WY4tfUO/Nf0
wNN/ccK/YhpRfUaHHr1FcJSKIZIABZvvYPy6u/fpRSIR9Hq92XTdvAksWACMGgXk5QEHDhjm
bf76q+FBpWPHgJoaw3zPwYMNT7V7ehpGUr/8EliyxLBv7FjgzBlg505gyBBD2Jb219UBmzYB
hw8bpgIsWQL06QO8/LLh9r1JgdvZQWRuOQBCCCGEkIeMaEpwGMv8aq/Fg5ydnVts06mBnFcb
8Nz/9YKoWXeW6QC1kqFHbxHw3/4WM44S/vezSAzodYZ/mc7wEJThQKCxmsHJXQSmA/Raxs0p
NcrLy8PGjRuRmZlpsn3ZMsDNDUhMNCzR5O5+91a9Xm8YCZVIDD86neHH3t4wb7Q5tdqwTJNU
ar4szO1nzPB0vp2dITxj+HZ2d+esGn3yySc4c+YMtm3bZj4CQgghhJD7REVFhdXnDB48GAAw
dWZ42981L3EEJm10glbNTLaLJEAP97udUAAQ2f33R2L4gQgQ2xk6ouLm8zVFgJOH4VyRHVp0
QgHA19cXJSUluHTpksn2ujrD7XKJBPDwMJ0vKhYbHl6yszNst7MzfL63EwoYtrfWCW1tv0hk
2C6RmIZ/bydUq9UiMzMTzzzzTOsREEIIIYQ8JNp0a97I7fE292PbzNnZGdnZ2fjkk0/w+OOP
44033sBnnxnWEnV0NMznXLWq05PF69///jeysrKwfPlyzJgxo6uTQwghhBDS5dp8a747UTd7
CEqnMyzRRAghhBBCOpatt+ZtGhHtLhwduzoFhBBCCCHEWp1/b50QQgghhBBQR5QQQgghhHQR
6ogSQgghhJAuQR1RQgghhBDSJagjSgghhBBCugR1RAkhhBBCSJegjighhBBCCOkS1BElhBBC
CCFdgjqihBBCCCGkS9gBhld4VlZWtnpQfX19pyWIEEIIIYTcHxwcHKw+p7KyEv379wfw345o
ZWUlLly40L4pI4QQQgghxIytW7f+//buPSiq83zg+Hd3jSByLxgDJvWGChEVoQGkqWmjtuZn
bRNrUsUOWjRJ27SYRJMYG5KQZpI4KmXGUEyiJZqaAQyxhHpDC1SChkYRnKogiKDcl3BnXXbZ
8/vD2a24XBYESZrnM+M4e855z/u8717Oc855zwsgt+aFEMOoo6NjpEO4LVlZWXR2do50GAOm
KAo6nW7Y9m8wGIZt3/1RFKXfu3T9xdfT+s7OTvR6/W3FJoQYOElEb2E0Grl8+TIVFRUjUl7c
GXV1daSnp9Pa2tpteVNTE6mpqSQmJvLFF19gMpnueGyKonDq1CmMRqPVOlvja2xs5NChQ8Md
aq8MBgPvv/8+JSUlQ7Y/vV5v1d6urq5hS7hqamr45z//OeDbTiaTadDJq6Io6PV6urq6BlUe
4PDhw0RHR7N3715+9atf8Z///GfQ+zLHZJaens6aNWtYtWrVbe1zsPUD5OTkEBERYbUc+o+v
r/V6vZ64uDiuXr06NIELIWwyytYN33//fZKTk5k9ezbPPfccXl5eZGdn89577+Ht7c0rr7yC
k5PTcMZ6R8THx5Ofn8/MmTN5/vnn73h5Mbw6OzvZsWMHbm5uLF26tNtntqGhge3bt/Pcc89h
Mpl46aWXKCkpITw83LK+oKCAoKAgnJ2dURSF3NxcAgICcHBw6LPetrY2tm3bRk5ODr6+vqxf
v57JkydbbXfhwgUSEhIoLCwkIyOj27r+4jMzGAy8+uqrODk5sXjx4sF21aCZTCbeeustFixY
wKxZswDb29+bhIQEzp07R0BAACdPnkSr1fLII49QXV3N6dOnOXjwIGp17+fV+/fv58MPP8Tb
25t3330XjUbDxYsXef755wkODiYqKgoXF5duZf72t7+xcuVKAE6cOEFsbCzf/e53iY2NBW4k
+ytXriQsLIx169axfft2zpw5g5+fH3PmzKGhoYGuri5+//vf9/v5SElJYc+ePajVah5++GE6
OjqoqKggMjKSwMBAm/uppqaGhIQEkpKSsLOzw8PDg/Lycu6///4+y3311Vfs3buXjIwMXFxc
mD9/PiaTiX//+994e3sTExMDwJIlSxg9ejR79+61OSZb2Fo/wAMPPMCWLVtQqVRW++kvvr7W
Ozk5sXbtWjZt2kRMTAx333330DVQCNErmxPRyMhIkpOTefzxx/Hy8gJg/vz5FBcXExwc/D+R
hMKNs2+VSoVGoxmW8oqiUFJSwunTpwGYO3cuPj4+1NfXc+HCBbRaLe7u7vj6+lJXV0dpaSnO
zs7MmDEDb2/vQbdL3Oj7zZs3s3jxYn70ox9ZrS8uLua+++7jO9/5DgAhISHk5uYSHh6OXq9n
8+bNrF+/ntdee425c+fS1tZGZWUl8+bN67duR0dHXnjhBbKysoiIiOgxCWtsbOSLL77gl7/8
JYWFhVafob7iu7mN8fHx+Pj4UFtbO6D+GSoHDhzAYDB06xdb2g9w/fp1CgoK0Ol0zJo1C3d3
dwA8PDxISEhArVbj7OxMVlYWzzzzDHDjKtf169dxcHBAURRKS0u5du0a3t7eTJ06FZVKxS9+
8QsmTZrEG2+8QWNjIx4eHjQ0NBAREcHjjz9uFUddXR2NjY3MmDEDgAcffJDc3FyOHj1qGWR/
+PBh3N3d+elPf8rdd9/N7373OyIiIti0aRPjx49HURQiIyNJSkpizZo1ffbZ8uXLyc3NZcaM
GTz11FPAjeR0y5YtJCUlWbbrrX1mxcXFeHl5YWdnB8Bjjz3W7/sF4O7uTlRUFDU1Ndx77708
+eSTAKxevZro6Ohu27q6ulolgeXl5TQ3N9PV1YWfnx92dnbU19dTVVWFoijMnDmTUaN6P9zY
Ur/JZKKlpQWtVktlZSUTJkywtLO/+Gxd7+7uzs9//nNiY2N56623+tyPEGJo2HxrXq1WM2rU
KKvbVPb29lY/BsnJyWzYsGFEbmsOlsFgIC4ujszMTCorK8nMzCQyMpKXX36ZvLy8ISmv0+l4
4YUXePPNN9FqtRQXF/P666/zyiuvoCgKR48eJT4+nrfffhuj0cihQ4f45JNPyM7O7vE2lBiY
7OxsjEYjP/jBD2hqarLq09DQUEsSAHDp0iXLlaSysjKmTJnCPffcw6JFi1i5ciWNjY1s3LjR
5oPVmDFjuv1/Kzc3N1avXs306dMBrPbbV3xmx48fZ/LkyQO62jiU9Ho9H330EU888YTVuv7a
X1hYSExMDGPHjmX06NFERkZy7do1AFasWGG54mlnZ4e9vb2l3JIlS3BwcECn07Fp0yby8/MZ
N24cR44cITo62vI7FBgYyNKlS3nnnXeoq6ujoKCA5cuX9xjLzVdDzTw8PJgzZw7Hjx/HaDTS
2NiIp6enZf/mdplPIFQqFePGjbMa/tEbe3v7bsmao6Njt1v0/bUvJSWFtLQ0amtriYuLIy4u
jsLCQpvqNhs9erQlBqPRiNFoJCIiot9yBoOBd955h127dlmWqVQqEhMTOX/+/JDU39bWRnp6
Ort37+a1114btiRx4cKFXLp0ifz8/GHZvxCiO5uviA6Eq6sr48aN+0adTd51111ERUWh0Wg4
e/Ys/v7+REVFDWn5nTt38tVXXxEYGMgzzzyDoigsXbqU06dPU1ZWxhtvvMGGDRuoqqpi3759
GAwGvve97/GHP/zhG9WXX1dZWVm4urqSkZFBTU0NWVlZhIeHs2jRIqttMzMzURSFtWvXAjBx
4kRqa2v5+OOPCQ8PJyUlhZ/85Cc4Ozvf6Wb0GB+AVqulsLCQZ599loMHD45IXBcvXqSpqQkf
H58Bl62oqGD+/PnMnDkTAH9/f06ePNlrsnirnTt34u3tbdne19eXpUuXkpeXR0hICAARERFE
RUWxceNG3nvvvR6/V/X19Wi1Wvz8/LotN982T0pKYsKECcybN4/S0tJeH4ypq6ujpKSEX//6
1zb3gaIodHZ2Ul5ezpEjR3j22Wdtbt/y5ctxdXUlLS1tQL9dt6qoqCArK4uSkhKmTJnCD3/4
w37LTJ06laeffpqtW7daTvCcnJzw9va2SugHW7+zszOrVq3i0qVLFBQUDGrKGFuMGjUKHx8f
cnJymDt37rDUIYT4rwEnordeRVIUxeqWy6JFi3o8uF++fJmtW7d2WzZv3jzLwPHbXf91d+rU
KZqamtDr9Zw7dw6j0YijoyOenp6MGTMGtVpNdHQ0kZGRHDt2jGnTpvHiiy9KEjpEKioqePLJ
Jy1JiZ+fH3/84x8JCwtj7Nixlu1yc3M5ceIEf/rTnywHO3t7e8u4tOLiYnQ6Hf7+/uTn5zN1
6tQ7OjSlp/gURWH37t2sWrWKlpYWOjo6MBgMNDc3M3bs2D5viw6lq1evMm7cuB5vmfZnyZIl
VFVVkZaWRkNDA5WVlUyZMsXm8qdOnWLatGnEx8fT1dWFwWBg9uzZ3a7AqtVqJk2aRE5ODufP
nycgIMBqP/v27WPFihU91vHggw8SGxtLWloa27ZtY9++fVYPlR06dAiNRoNarSY2NpZ7773X
5jYUFRWRmJjIZ599xlNPPUVYWNiA2jcU3NzcmDp1Kp2dnQP67QkLC+ODDz7g4MGDPPbYYxw+
fHhQY5T7q1+lUg37b+J9991HaWnpsNYhhLhhQEcnFxcXq+lY2tracHNz67bMZDJhMBisDkb3
3HOP1Zn6zQPCb3f9UFEU5baGFfRWXq/Xo9FoCA8P7/MH2tfXl7y8PK5cucK5c+fkrHyIuLm5
0dLSYnk9adIkjEYjOp3Okoh++eWXZGdns3nzZjQaDfX19Xh6egI3khidTscnn3xiGWIRFhbG
yZMn+e1vfzuomIxGI3/9619Zt26dTdv3Fp+iKLi5uZGSkgLAlStXqKmpITExkSeeeILx48cP
Kr6Bsre3p6WlxTJWuj/m9q9du5YdO3ZQVlbG008/jY+PDxUVFQNKsvR6PaGhoX1+t9LS0ggO
DiYsLIw333yTXbt2dXtISavVUl1dbbkqeysnJyceeOABAgICLGPBb01EFy9ebPnMDNSMGTOI
jIxk7ty5xMTEEBISgoeHh83tGwpOTk5MmDCBCRMmDKicWq1mxYoVJCYmsmTJEi5evMjPfvaz
O1b/UGpubraMTxZCDK8BTd80a9YsTp06ZXltNBppaWmxSkR37NjBqlWrrJKxMWPGMH369G7/
XF1dh2z9UHBwcKCjo8MyhUdDQwNarbbbleCsrCwSEhI4ceLEgMqHhoai0WhITk62JETNzc0U
FxdTXV1NZ2cn27dvx2Qy8eKLLwLw+uuvU1NTM6Rt/LYKDAzkyy+/tLwuKipi+vTplod/rl27
xq5du9i4cSMajQadTkdiYmK3fXzwwQesXr0ao9FIVVUVCxYssPmAdf36dYBu34szZ85YXa00
T/1z69jCvuJTq9WsW7eOqKgooqKiePjhh5k8eTJRUVF3LAkFmDNnDjqdjrq6Oqt1fbW/vr6e
1NRU1qxZw7Rp01AUhZqamh6nQTIajT1ObxQaGsr+/fu7nWw0Nzdb/mpcYWEhNTU1fP/73yck
JISQkBDefvvtbvF8/PHHPd5KvnlezmXLlvHjH//Y0hZzu8wn6YOdukmv11v2FRQUxKJFi9iy
ZYslvv7aBzfGkd7O1E96vb7f6bA6Ojpob2/vcdz6ggULMJlMREdH89BDDw1L/a2trej1+l6H
RPQVny3r4cbDV+ax2kKI4aW5b4rva48/+n80NDT0u/GsWbNIT0+noKCA8vJy/vWvf7Fs2TKr
RNTe3h4vL69+pwz5OnJzcyMtLY1r166RkpLCiRMnUKlU+Pr6Wh6WiIuLIy8vj4aGBqshCH2V
DwgI4OrVqxQVFZGamsrx48fJycnBZDLh4ODAyy+/TElJCWPHjmXZsmV89tlntLe3c/ToUby8
vJg4ceII9Mj/Dj8/P/Ly8jhz5gxVVVVkZmayYcMGyxUx8/v197//naSkJD766CP8/PwIDg4G
bpyAuLm5MWfOHDQaDZ9//jlVVVUEBgZarlr1pr29nW3btlFWVkZRUREFBQUcO3aM5ORkHnro
IcuYyoMHD7Jnzx5qamooLy/H1dXVMktFf/GZHThwgE8//ZTLly/T1tY2oOl/bpeDgwOXL1+m
tbUVf39/m9s/c+ZMLly4QG5uLpWVleTl5aEoiuX7c//996PVaklMTCQjI4OrV6+i1Wq56667
LP0ze/ZsSktLSUxMpKysjLNnz1JRUUFQUBB79uzhz3/+M4888ojldn99fT379++nqKiIoKAg
2tvbOXToUI9DfXbv3k1mZiaTJk0iMDAQOzs7jh8/Tnp6OjU1NXh4eLB7926qq6spKSlh9OjR
A3pgLDU1lSNHjlBdXY2npycTJ04kICCAzz//nDNnzhAcHExAQECv7dPr9SQmJnLs2DGuXLlC
bW0t58+fx93d3aaT9cbGRnbu3El2dja1tbU0Nzfj7+/fbeaGtLQ0jhw5QkZGBlVVVVRUVFBU
VMT48eMtY6XVajUmk4lz587xm9/8xuZb6LbUn5GRwYEDB/jHP/5BQ0MDFy5c4NKlS4wfPx4X
F5d+47MlfrgxvCQpKYmXXnpp2MahCiFuzPJxrbYRVdjCR5WUD98d0J/4bGtrQ6PRDPnYpK8L
o9FIc3MzarW6x6k+zE9zjho1qsexd/2VN5lMNDU1oVKpLOtNJpPln1qtRq1W09XVhaIoqNXq
25pSSnTX3t6OwWCwOkAbjUZL38ON90lRFEu/63S6bp95vV6P0WjsNr60N4qi0NXVhUajsXwe
zMturtNoNKJSqSwHdPjvU9j9xXdrO8zb3KnxoWb19fVERUWxc+dOy9hZW9tvvqLn6OiIoih0
dHRY+vfm74f5NWDVPvM0Py4uLpa6zH1yc3+Yl5mHEcTHxxMWFtbjuNGbt731/bj5iqp5m57G
zvfl5v3fWra1tRVHR0dLW3pqn6IoGI1GS/+a+8o8VrU/PfXtze+VOUZzG/uqIzs7m87OThYu
XGhz+4ei/ttdb+7HmJgYQkNDe3zOQQgxdNLT0zlVeHlwiagQQvQlPz+fTz/9lOjo6DueCA/W
+fPn8fX1lYcDB8k8TOEvf/kL69ev/0aeOKempqLT6az+SIQQYuiZE9FvxhFCCPGNEhAQgKen
J2fPniUoKGikw7HJrdM1iYHZsmULhYWFlgfpvmkaGhrw9va2GuoihBheqrCFjyo5R1PZsGHD
SMcihBBCCCG+BbZu3cr3Fz1244poa2srr776aq8b/6/8+U4hhBBCCPH1MaDpm4QQQgghhBgq
kogKIYQQQogRIYmoEEIIIYQYEZKICiGEEEKIESGJqBBCCCGEGBGSiAohhBBCiBEhiagQQggh
hBgRkogKIYQQQogRIYmoEEIIIYQYEZKICiGEEEKIESGJqBBCCCGEGBGSiAohhBBCiBEhiagQ
QgghhBgRkogKIYQQQogRIYmoEEIIIYQYEaMAjMbOPjdqbGy4I8EIIYQQQohvD7kiKoQQQggh
RoQawGAwjHQcQgghhBDiW8Kce6oAwhY+qoxoNEIIIYQQ4lvl84xPVf8PByv30HfpPYcAAAAA
SUVORK5CYII=

--n8g4imXOkfNTN/H1--




Acknowledgement sent to Dylan Thurston <dpthurst@HIDDEN>:
New bug report received and forwarded. Copy sent to bug-auctex@HIDDEN. Full text available.
Report forwarded to bug-auctex@HIDDEN:
bug#20115; Package auctex. Full text available.
Please note: This is a static page, with minimal formatting, updated once a day.
Click here to see this page with the latest information and nicer formatting.
Last modified: Mon, 25 Nov 2019 12:00:02 UTC

GNU bug tracking system
Copyright (C) 1999 Darren O. Benham, 1997 nCipher Corporation Ltd, 1994-97 Ian Jackson.