Lars Ingebrigtsen <larsi@HIDDEN>
to control <at> debbugs.gnu.org
.
Full text available.Received: (at 55636) by debbugs.gnu.org; 26 May 2022 20:45:21 +0000 From debbugs-submit-bounces <at> debbugs.gnu.org Thu May 26 16:45:21 2022 Received: from localhost ([127.0.0.1]:60123 helo=debbugs.gnu.org) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <debbugs-submit-bounces <at> debbugs.gnu.org>) id 1nuKMD-0005Zy-A5 for submit <at> debbugs.gnu.org; Thu, 26 May 2022 16:45:21 -0400 Received: from esa1.eurocontrol.c3s2.iphmx.com ([68.232.133.181]:13265) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <prvs=1382c6a57=philippe.waroquiers@HIDDEN>) id 1nuKMA-0005Zi-9S for 55636 <at> debbugs.gnu.org; Thu, 26 May 2022 16:45:19 -0400 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=eurocontrol.int; s=ectl2; t=1653597918; x=1654202718; h=from:to:cc:subject:date:message-id:references: in-reply-to:content-transfer-encoding:mime-version; bh=Z6B/DsjRNZ2Cs4VmD0lrTNM3cJ6910HeMm61tXqdU+c=; b=UU6JvyIZcWBSKIEVoixSKqvyJ6kQOkZRw1R6LMPlLSEGG4HJbyhqla1K gR06HPGdj4jeRb2zJhespsR+SCJG9RUMxKpAFTe6sultDvq5fhB0UXZfR f2r8dxDkvFD6nwfgll3v3vgb/0/7qISjeRKMc5xkm65B3DxK3AetsRyfv bzoOYqIgzv3wZlRvTM+ngPte0he1TAWTtYVVkJ+uUfaodmoHw642iiGrV TbZKCvD7OHBMQaps9ipOmfO7dc0l8LpS9jA8C3ykJu8anujdPlzcqc0Mq jhDPQ/Q8S6lrh2vh82TOT2yvbC26KOWvy+PzMzrAKsanu5z9Ar9lYOw/9 w==; X-SignedOrEncrypted: False Received: from unknown (HELO drsmtpl01.eurocontrol.int) ([153.98.68.246]) by esa1.eurocontrol.c3s2.iphmx.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 26 May 2022 22:45:12 +0200 Received: from SSPEX113.sky.corp.eurocontrol.int (sspex113.sky.corp.eurocontrol.int [172.19.3.4]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (Client CN "mailservices.eurocontrol.int", Issuer "EUROCONTROL Certificate Authority 2016" (not verified)) by drsmtpl01.eurocontrol.int (Postfix) with ESMTPS id 0B51B24008A; Thu, 26 May 2022 22:45:09 +0200 (CEST) Received: from SSPEX112.sky.corp.eurocontrol.int (172.19.3.3) by SSPEX113.sky.corp.eurocontrol.int (172.19.3.4) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.1.2375.28; Thu, 26 May 2022 22:45:08 +0200 Received: from SSPEX112.sky.corp.eurocontrol.int ([fe80::841c:58fd:5e16:13b3]) by SSPEX112.sky.corp.eurocontrol.int ([fe80::841c:58fd:5e16:13b3%9]) with mapi id 15.01.2375.028; Thu, 26 May 2022 22:45:08 +0200 From: WAROQUIERS Philippe <philippe.waroquiers@HIDDEN> To: Eli Zaretskii <eliz@HIDDEN> Subject: RE: bug#55636: 27.2; etags performance fix when working with very big TAGS files Thread-Topic: bug#55636: 27.2; etags performance fix when working with very big TAGS files Thread-Index: AQHYcFEPzgigVMgGzkm5D085LKSq8a0v1dh0gAAX1QCAAK7NlIAAcH4AgAArHjCAAAynl4AAGvRAgAAoZ6iAABR58A== Date: Thu, 26 May 2022 20:45:08 +0000 Message-ID: <d7e91e5851bd4c7e922c37d4be659caa@HIDDEN> References: <80qa6b58uq3.fsf@HIDDEN> <83r14hpm6s.fsf@HIDDEN> <c64340bed8d64a96946bb8d3351f096e@HIDDEN> <83k0a8q3ua.fsf@HIDDEN> <9719dc6296ae4fafb5ccba1c0dab51ea@HIDDEN> <d5a6b9b21efe4656b9a9a8000d92510f@HIDDEN> <83tu9cnxe2.fsf@HIDDEN> <5b7d2e64517641c581a9ed67857694c6@HIDDEN> <83leuonm8m.fsf@HIDDEN> In-Reply-To: <83leuonm8m.fsf@HIDDEN> Accept-Language: en-US, en-BE Content-Language: en-US X-MS-Has-Attach: X-MS-TNEF-Correlator: x-originating-ip: [172.19.15.150] Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: quoted-printable MIME-Version: 1.0 X-Spam-Score: -2.3 (--) X-Debbugs-Envelope-To: 55636 Cc: "55636 <at> debbugs.gnu.org" <55636 <at> debbugs.gnu.org>, "DE BACKER Jurgen \(EXT\)" <jurgen.de-backer.ext@HIDDEN>, VAN VLIERBERGHE Stef <stef.van-vlierberghe@HIDDEN> X-BeenThere: debbugs-submit <at> debbugs.gnu.org X-Mailman-Version: 2.1.18 Precedence: list List-Id: <debbugs-submit.debbugs.gnu.org> List-Unsubscribe: <https://debbugs.gnu.org/cgi-bin/mailman/options/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=unsubscribe> List-Archive: <https://debbugs.gnu.org/cgi-bin/mailman/private/debbugs-submit/> List-Post: <mailto:debbugs-submit <at> debbugs.gnu.org> List-Help: <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=help> List-Subscribe: <https://debbugs.gnu.org/cgi-bin/mailman/listinfo/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=subscribe> Errors-To: debbugs-submit-bounces <at> debbugs.gnu.org Sender: "Debbugs-submit" <debbugs-submit-bounces <at> debbugs.gnu.org> X-Spam-Score: -3.3 (---) > > So, what we can observe there is that the C function Fexpand_file_name = makes 236_905 calls > > > > to Ffind_File_name_handler > > > > This Ffind_file_name_handler function makes 1.2 million calls to fast_s= tring_match. > > > > > > > > On this screenshot, we cannot see the CPU directly consumed by the func= tions, > > > > but looking at the direct cpu shows that expand-file-name cost is most= ly due to the fast_string_match closure > > The Lisp profile tells quite a different story: according to that, > expand-file-name is not a hotspot. > > So I still don't see that expand-file-name is the place to optimize > your use case. > > Did you succeed in reproducing the 10-sec delay with the original > code, and then ten-fold speedup if expand-file-name is called only on > non-absolute file names? I have tried to reproduce the 10 seconds delay to no success. With or without the expand-file-name called only on non absolute file names= , I now see emacs always using about 4 seconds of cpu to load the TAGS files= . So, at this point: * I do not understand why we observed 3 different speed: sub-second, 4 seconds and 10 seconds * we now see that loading the TAGS files takes around 4 seconds, so is s= till a heavy operation that maybe could be optimised but not clear anymore what is= the costly part. Thanks Philippe ____ This message and any files transmitted with it are legally privileged and i= ntended for the sole use of the individual(s) or entity to whom they are ad= dressed. If you are not the intended recipient, please notify the sender by= reply and delete the message and any attachments from your system. Any una= uthorised use or disclosure of the content of this message is strictly proh= ibited and may be unlawful. Nothing in this e-mail message amounts to a contractual or legal commitment= on the part of EUROCONTROL, unless it is confirmed by appropriately signed= hard copy. Any views expressed in this message are those of the sender.
bug-gnu-emacs@HIDDEN
:bug#55636
; Package emacs
.
Full text available.Received: (at 55636) by debbugs.gnu.org; 26 May 2022 19:11:04 +0000 From debbugs-submit-bounces <at> debbugs.gnu.org Thu May 26 15:11:04 2022 Received: from localhost ([127.0.0.1]:60042 helo=debbugs.gnu.org) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <debbugs-submit-bounces <at> debbugs.gnu.org>) id 1nuIss-00011s-L7 for submit <at> debbugs.gnu.org; Thu, 26 May 2022 15:11:04 -0400 Received: from eggs.gnu.org ([209.51.188.92]:32976) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <eliz@HIDDEN>) id 1nuIsq-00011d-Ji for 55636 <at> debbugs.gnu.org; Thu, 26 May 2022 15:10:56 -0400 Received: from fencepost.gnu.org ([2001:470:142:3::e]:41240) by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from <eliz@HIDDEN>) id 1nuIsk-0001PZ-1r; Thu, 26 May 2022 15:10:50 -0400 DKIM-Signature: v=1; a=rsa-sha256; q=dns/txt; c=relaxed/relaxed; d=gnu.org; s=fencepost-gnu-org; h=References:Subject:In-Reply-To:To:From:Date: mime-version; bh=Hhb27BZ9bjZobDAfdkj/nEpOexUoNrv7bbJjo8Z2EPM=; b=o6PoTauB62nF H/UoTXX9GHGWrjfFezL5eZsRsUeOZ08op/REo9zyw9mMC+2SZOnDmz9qtwwbTw1qa6mKzCn8xr5oH 5Bv9JWNHPH6cQC7yfkdiO+zdvgjgyGFBtaZYvRvV1oG1N7SwInLO1cf7CWPapiJ21IR4idFoDuGZS yLpPCUHww9HcRwanM2FJ9FwhksU57+B8TPVnvELKzlBH3rrbsHyJZ0xe1IG9/ElnfzdThu4DVwaoh F1HWFSkIUbM/c65Bit9viKEFiYX7UGdu5JhqDijBMNYHTzLkWBe0e5Atw0y3DEo5fjrCm+/PT+Eav hd5OS2HIy/7qOaP3r70dMw==; Received: from [87.69.77.57] (port=3873 helo=home-c4e4a596f7) by fencepost.gnu.org with esmtpsa (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from <eliz@HIDDEN>) id 1nuIsY-0002pd-Um; Thu, 26 May 2022 15:10:48 -0400 Date: Thu, 26 May 2022 22:10:33 +0300 Message-Id: <83leuonm8m.fsf@HIDDEN> From: Eli Zaretskii <eliz@HIDDEN> To: WAROQUIERS Philippe <philippe.waroquiers@HIDDEN> In-Reply-To: <5b7d2e64517641c581a9ed67857694c6@HIDDEN> (message from WAROQUIERS Philippe on Thu, 26 May 2022 17:25:29 +0000) Subject: Re: bug#55636: 27.2; etags performance fix when working with very big TAGS files References: <80qa6b58uq3.fsf@HIDDEN> <83r14hpm6s.fsf@HIDDEN> <c64340bed8d64a96946bb8d3351f096e@HIDDEN> <83k0a8q3ua.fsf@HIDDEN> <9719dc6296ae4fafb5ccba1c0dab51ea@HIDDEN> <d5a6b9b21efe4656b9a9a8000d92510f@HIDDEN> <83tu9cnxe2.fsf@HIDDEN> <5b7d2e64517641c581a9ed67857694c6@HIDDEN> X-Spam-Score: -2.3 (--) X-Debbugs-Envelope-To: 55636 Cc: 55636 <at> debbugs.gnu.org, jurgen.de-backer.ext@HIDDEN, stef.van-vlierberghe@HIDDEN X-BeenThere: debbugs-submit <at> debbugs.gnu.org X-Mailman-Version: 2.1.18 Precedence: list List-Id: <debbugs-submit.debbugs.gnu.org> List-Unsubscribe: <https://debbugs.gnu.org/cgi-bin/mailman/options/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=unsubscribe> List-Archive: <https://debbugs.gnu.org/cgi-bin/mailman/private/debbugs-submit/> List-Post: <mailto:debbugs-submit <at> debbugs.gnu.org> List-Help: <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=help> List-Subscribe: <https://debbugs.gnu.org/cgi-bin/mailman/listinfo/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=subscribe> Errors-To: debbugs-submit-bounces <at> debbugs.gnu.org Sender: "Debbugs-submit" <debbugs-submit-bounces <at> debbugs.gnu.org> X-Spam-Score: -3.3 (---) > From: WAROQUIERS Philippe <philippe.waroquiers@HIDDEN> > CC: "DE BACKER Jurgen (EXT)" <jurgen.de-backer.ext@HIDDEN>, > "55636 <at> debbugs.gnu.org" <55636 <at> debbugs.gnu.org>, VAN VLIERBERGHE Stef > <stef.van-vlierberghe@HIDDEN> > Date: Thu, 26 May 2022 17:25:29 +0000 > > So, what we can observe there is that the C function Fexpand_file_name makes 236_905 calls > > to Ffind_File_name_handler > > This Ffind_file_name_handler function makes 1.2 million calls to fast_string_match. > > > > On this screenshot, we cannot see the CPU directly consumed by the functions, > > but looking at the direct cpu shows that expand-file-name cost is mostly due to the fast_string_match closure The Lisp profile tells quite a different story: according to that, expand-file-name is not a hotspot. So I still don't see that expand-file-name is the place to optimize your use case. Did you succeed in reproducing the 10-sec delay with the original code, and then ten-fold speedup if expand-file-name is called only on non-absolute file names?
bug-gnu-emacs@HIDDEN
:bug#55636
; Package emacs
.
Full text available.Received: (at 55636) by debbugs.gnu.org; 26 May 2022 17:25:43 +0000 From debbugs-submit-bounces <at> debbugs.gnu.org Thu May 26 13:25:43 2022 Received: from localhost ([127.0.0.1]:59899 helo=debbugs.gnu.org) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <debbugs-submit-bounces <at> debbugs.gnu.org>) id 1nuHF1-0006nJ-DV for submit <at> debbugs.gnu.org; Thu, 26 May 2022 13:25:43 -0400 Received: from esa2.eurocontrol.c3s2.iphmx.com ([68.232.139.104]:26372) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <prvs=1382c6a57=philippe.waroquiers@HIDDEN>) id 1nuHEz-0006n3-7U for 55636 <at> debbugs.gnu.org; Thu, 26 May 2022 13:25:42 -0400 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=eurocontrol.int; s=ectl2; t=1653585941; x=1654190741; h=from:to:cc:subject:date:message-id:references: in-reply-to:mime-version; bh=zv+R1Ucguu6RmVLfIAS2syW1M5zDU7RKAiuh0qOaZx0=; b=boLISHz9HuqwhSPtckTALrmx2eVzcgNhS85FkJXvFXQI3ebT4LMIPhM3 UaK0uYpp3eHiscDhrkXGKhVjJRa2Fw002dFgcWpMwBc+TEi4jBzDZv0oD pviDTmpoI8sSRlyB7IXo1ft0FiDEOlJN/v4ZL5xCUHwDl+JUYt4PW1T/d YEDfTIwYpIEH7Ftpz71XFwZphL9ff8VSuXW0FRFWlspDQB8cNC+/NenJC N/JQko02MriymrtlPD+sXpcTzJETRqHem3uGTAFcRkYMhdw1LVSAnc2V3 OanX074ixZOP3gakQyGoNujl5Ag9zPftR0wzrtES+eheZHmbHx6W9hAp9 g==; X-SignedOrEncrypted: False Received: from unknown (HELO drsmtpl02.eurocontrol.int) ([153.98.68.247]) by esa2.eurocontrol.c3s2.iphmx.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 26 May 2022 19:25:34 +0200 Received: from SSPEX118.sky.corp.eurocontrol.int (sspex118.sky.corp.eurocontrol.int [172.19.3.9]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (Client CN "mailservices.eurocontrol.int", Issuer "EUROCONTROL Certificate Authority 2016" (not verified)) by drsmtpl02.eurocontrol.int (Postfix) with ESMTPS id AF9E460048; Thu, 26 May 2022 19:25:30 +0200 (CEST) Received: from SSPEX112.sky.corp.eurocontrol.int (172.19.3.3) by SSPEX118.sky.corp.eurocontrol.int (172.19.3.9) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.1.2375.28; Thu, 26 May 2022 19:25:30 +0200 Received: from SSPEX112.sky.corp.eurocontrol.int ([fe80::841c:58fd:5e16:13b3]) by SSPEX112.sky.corp.eurocontrol.int ([fe80::841c:58fd:5e16:13b3%9]) with mapi id 15.01.2375.028; Thu, 26 May 2022 19:25:30 +0200 From: WAROQUIERS Philippe <philippe.waroquiers@HIDDEN> To: Eli Zaretskii <eliz@HIDDEN> Subject: RE: bug#55636: 27.2; etags performance fix when working with very big TAGS files Thread-Topic: bug#55636: 27.2; etags performance fix when working with very big TAGS files Thread-Index: AQHYcFEPzgigVMgGzkm5D085LKSq8a0v1dh0gAAX1QCAAK7NlIAAcH4AgAArHjCAAAynl4AAGvRA Date: Thu, 26 May 2022 17:25:29 +0000 Message-ID: <5b7d2e64517641c581a9ed67857694c6@HIDDEN> References: <80qa6b58uq3.fsf@HIDDEN> <83r14hpm6s.fsf@HIDDEN> <c64340bed8d64a96946bb8d3351f096e@HIDDEN> <83k0a8q3ua.fsf@HIDDEN> <9719dc6296ae4fafb5ccba1c0dab51ea@HIDDEN> <d5a6b9b21efe4656b9a9a8000d92510f@HIDDEN> <83tu9cnxe2.fsf@HIDDEN> In-Reply-To: <83tu9cnxe2.fsf@HIDDEN> Accept-Language: en-US, en-BE Content-Language: en-US X-MS-Has-Attach: yes X-MS-TNEF-Correlator: x-originating-ip: [172.19.15.150] Content-Type: multipart/mixed; boundary="_004_5b7d2e64517641c581a9ed67857694c6eurocontrolint_" MIME-Version: 1.0 X-Debbugs-Envelope-To: 55636 Cc: "55636 <at> debbugs.gnu.org" <55636 <at> debbugs.gnu.org>, "DE BACKER Jurgen \(EXT\)" <jurgen.de-backer.ext@HIDDEN>, VAN VLIERBERGHE Stef <stef.van-vlierberghe@HIDDEN> X-BeenThere: debbugs-submit <at> debbugs.gnu.org X-Mailman-Version: 2.1.18 Precedence: list List-Id: <debbugs-submit.debbugs.gnu.org> List-Unsubscribe: <https://debbugs.gnu.org/cgi-bin/mailman/options/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=unsubscribe> List-Archive: <https://debbugs.gnu.org/cgi-bin/mailman/private/debbugs-submit/> List-Post: <mailto:debbugs-submit <at> debbugs.gnu.org> List-Help: <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=help> List-Subscribe: <https://debbugs.gnu.org/cgi-bin/mailman/listinfo/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=subscribe> Errors-To: debbugs-submit-bounces <at> debbugs.gnu.org Sender: "Debbugs-submit" <debbugs-submit-bounces <at> debbugs.gnu.org> --_004_5b7d2e64517641c581a9ed67857694c6eurocontrolint_ Content-Type: multipart/alternative; boundary="_000_5b7d2e64517641c581a9ed67857694c6eurocontrolint_" --_000_5b7d2e64517641c581a9ed67857694c6eurocontrolint_ Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: quoted-printable > > valgrind points at expand-file-name eating significant cpu (see attachm= ent). > > I'm not sure I understand how to interpret that screenshot. Each rectangle represents a function. The nr inside the rectangle is the instructions used directly and indirectl= y by the function. (direct cpu is spent in the function itself, indirect cpu is spend in the called functions). An arrow represents a call. The nr on the arrow represents the nr of calls. So, what we can observe there is that the C function Fexpand_file_name make= s 236_905 calls to Ffind_File_name_handler This Ffind_file_name_handler function makes 1.2 million calls to fast_strin= g_match. On this screenshot, we cannot see the CPU directly consumed by the function= s, but looking at the direct cpu shows that expand-file-name cost is mostly d= ue to the fast_string_match closure (I have attached another screenshot as maybe the fast search can be made f= aster. E.g. it looks like builtin_lisp_symbol is called 213_000_000 times, is not = inlined while marked INLINE in the code or there are million of calls to maybe_quit= inside re_match_2_internal). > This says that most of the time is spent in tags-table-including. If > you manually load etags.el (NOT .elc!), and then profile the same > operation, the profile could show in more detail which parts of > tags-table-including takes most of the time, and we can take it from > there. Here is a more detailed lisp profile where I have expanded the costly branc= hes. - command-execute 10505 84% - call-interactively 10504 84% - funcall-interactively 10327 83% - find-tag 10316 82% - let* 10316 82% - find-tag-noselect 10316 82% - let 10316 82% - if 10316 82% - if 9832 79% - visit-tags-table-buffer 9832 79% - cond 9832 79% - setq 9831 79% - or 9831 79% - and 9831 79% - save-current-buffer 9831 79% - or 9831 79% - tags-table-including 9831 79% - let 9831 79% - while 9831 79% - if 9831 79% - let 5399 43% - if 5399 43% - member 5396 43% - mapcar 5384 43% - tags-table-files 1306 10% - or 1306 10% - setq 1306 10% - funcall 1306 10% - etags-tags-table-files 1306 10= % + let 1306 10% - if 4432 35% - tags-table-extend-computed-list 4432 = 35% - let 4432 35% - save-excursion 4432 35% - if 4432 35% - tags-verify-table 3292 26% - apply 3292 26% - ad-Advice-tags-verify-table 3292= 26% + #<lambda 0x1b893daac4d25cc1> 32= 92 26% - let 1140 9% - tags-included-tables 1140 9% - or 1140 9% - setq 1140 9% - funcall 1140 9% - etags-tags-included-tables 11= 40 9% - let 1140 9% - while 1126 9% if 47 0% setq 11 0% + tags-table-check-computed-list 1 0% + let 484 3% + execute-extended-command 11 0% + byte-code 155 1% + find-tag-interactive 22 0% + ... 1178 9% + redisplay_internal (C function) 730 5% + timer-event-handler 18 0% jit-lock--antiblink-post-command 1 0% Thanks Philippe ____ This message and any files transmitted with it are legally privileged and i= ntended for the sole use of the individual(s) or entity to whom they are ad= dressed. If you are not the intended recipient, please notify the sender by= reply and delete the message and any attachments from your system. Any una= uthorised use or disclosure of the content of this message is strictly proh= ibited and may be unlawful. Nothing in this e-mail message amounts to a contractual or legal commitment= on the part of EUROCONTROL, unless it is confirmed by appropriately signed= hard copy. Any views expressed in this message are those of the sender. --_000_5b7d2e64517641c581a9ed67857694c6eurocontrolint_ Content-Type: text/html; charset="us-ascii" Content-Transfer-Encoding: quoted-printable <html xmlns:v=3D"urn:schemas-microsoft-com:vml" xmlns:o=3D"urn:schemas-micr= osoft-com:office:office" xmlns:w=3D"urn:schemas-microsoft-com:office:word" = xmlns:m=3D"http://schemas.microsoft.com/office/2004/12/omml" xmlns=3D"http:= //www.w3.org/TR/REC-html40"> <head> <meta http-equiv=3D"Content-Type" content=3D"text/html; charset=3Dus-ascii"= > <meta name=3D"Generator" content=3D"Microsoft Word 15 (filtered medium)"> <style><!-- /* Font Definitions */ @font-face {font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4;} @font-face {font-family:Calibri; panose-1:2 15 5 2 2 2 4 3 2 4;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm; margin-bottom:.0001pt; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-fareast-language:EN-US;} a:link, span.MsoHyperlink {mso-style-priority:99; color:#0563C1; text-decoration:underline;} a:visited, span.MsoHyperlinkFollowed {mso-style-priority:99; color:#954F72; text-decoration:underline;} p.MsoPlainText, li.MsoPlainText, div.MsoPlainText {mso-style-priority:99; mso-style-link:"Plain Text Char"; margin:0cm; margin-bottom:.0001pt; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-fareast-language:EN-US;} span.PlainTextChar {mso-style-name:"Plain Text Char"; mso-style-priority:99; mso-style-link:"Plain Text"; font-family:"Calibri",sans-serif;} .MsoChpDefault {mso-style-type:export-only; font-family:"Calibri",sans-serif; mso-fareast-language:EN-US;} @page WordSection1 {size:612.0pt 792.0pt; margin:72.0pt 0cm 72.0pt 0cm;} div.WordSection1 {page:WordSection1;} --></style><!--[if gte mso 9]><xml> <o:shapedefaults v:ext=3D"edit" spidmax=3D"1026" /> </xml><![endif]--><!--[if gte mso 9]><xml> <o:shapelayout v:ext=3D"edit"> <o:idmap v:ext=3D"edit" data=3D"1" /> </o:shapelayout></xml><![endif]--> </head> <body lang=3D"EN-GB" link=3D"#0563C1" vlink=3D"#954F72"> <div class=3D"WordSection1"> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">> > valgrind points at expand-file-name eating significant cpu (se= e attachment).<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">> <o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">> I'm not sure I understand how to interpret that screenshot.<o:p></o= :p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">Each rectangle represents a function.<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">The nr inside the rectangle is the instructions used directl= y and indirectly by the function.<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">(direct cpu is spent in the function itself, indirect cpu is= spend in the<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">called functions).<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"><o:p> </o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">An arrow represents a call. The nr on the arrow represents t= he nr of calls.<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">So, what we can observe there is that the C function Fexpand= _file_name makes 236_905 calls <o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">to Ffind_File_name_handler<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">This Ffind_file_name_handler function makes 1.2 million call= s to fast_string_match.<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"><o:p> </o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">On this screenshot, we cannot see the CPU directly consumed = by the functions,<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">but looking at the direct cpu shows that expand-file-name&nb= sp; cost is mostly due to the fast_string_match closure<o:p></o:p></span></= p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"><o:p> </o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">(I have attached another screenshot as maybe the fast = search can be made faster.<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">E.g. it looks like builtin_lisp_symbol is called 213_000_000= times, is not inlined <o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">while marked INLINE in the code or there are million of call= s to maybe_quit inside re_match_2_internal).<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"><o:p> </o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"><o:p> </o:p></span></p> <p class=3D"MsoPlainText">> This says that most of the time is spent in = tags-table-including. If</p> <p class=3D"MsoPlainText">> you manually load etags.el (NOT .elc!), and = then profile the same</p> <p class=3D"MsoPlainText">> operation, the profile could show in more de= tail which parts of</p> <p class=3D"MsoPlainText">> tags-table-including takes most of the time,= and we can take it from</p> <p class=3D"MsoPlainText">> there.</p> <p class=3D"MsoPlainText">Here is a more detailed lisp profile where I have= expanded the costly branches.<o:p></o:p></p> <p class=3D"MsoPlainText"><o:p> </o:p></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">- command-execute &= nbsp; &nbs= p; &= nbsp; &nbs= p; 10505 84%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">- call-interactively &nbs= p; &= nbsp; &nbs= p; 10504 = 84%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> - funcall-interactively = &nb= sp; = 10327 83%<o:p></o:p>= </span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> - find-tag &= nbsp; &nbs= p; &= nbsp; &nbs= p; 10316 82%<o:p></o:p></span></p= > <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> - let*  = ; &n= bsp;  = ; &n= bsp; 10316 82%<= o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> - find-tag-noselect &nbs= p; &= nbsp; &nbs= p; 10316&= nbsp; 82%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> - let = &nb= sp; = &nb= sp; 10316 = 82%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> - if &= nbsp; &nbs= p; &= nbsp; &nbs= p; 10316&= nbsp; 82%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> - if &= nbsp; &nbs= p; &= nbsp; &nb= sp; = 9832 79%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> - visit-tag= s-table-buffer &= nbsp; &nbs= p; 9832 79%<o:p></o:p></spa= n></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> - con= d &n= bsp;  = ; &n= bsp; 9832 = 79%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = - setq &n= bsp;  = ; &n= bsp; 9831 = 79%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">  = ; - or &nbs= p; &= nbsp; &nbs= p; = 9831 79%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = - and &nb= sp; = &nb= sp; 9831&= nbsp; 79%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = - save-current-buffer  = ; &n= bsp; 9831 = 79%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = - or &nbs= p; = &nb= sp; = 9831 79%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = - tags-table-including &nbs= p; &= nbsp; 9831 79%<= o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = - let &nb= sp; = &nb= sp; 9831&= nbsp; 79%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = - while &= nbsp; &nbs= p; &= nbsp; 9831 79%<= o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = - if &nbs= p; &= nbsp; &nbs= p; = 9831 79%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = - let &nb= sp; = &nb= sp; 5399&= nbsp; 43%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = - if &nbs= p; &= nbsp; &nbs= p; = 5399 43%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = - member= &nb= sp; = 5396 43%<o:p><= /o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = - = mapcar &nb= sp; = 5384 43%<o:p><= /o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; - tags-table-files  = ; &n= bsp; 1306 10%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; - or = &nb= sp; = 1306 10%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; - setq  = ; &n= bsp; 1306 = 10%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; - funcall &n= bsp;  = ; 1306 10%<o:p></o:p>= </span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; - etags-tags-table-files  = ; 1306 10= %<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; + let &n= bsp;  = ; 1= 306 10%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = - if &nbs= p; &= nbsp; &nbs= p; = 4432 35%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = - tags-table-e= xtend-computed-list &n= bsp; 4432 35%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = - let&nb= sp; = &nb= sp; 4432&= nbsp; 35%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = - = save-excursion &= nbsp; &nbs= p; 4432 35%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; - if &= nbsp; &nbs= p; = 4432 35%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; - tags-verify-table &nbs= p; = 3292 26%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; - apply &nbs= p; &= nbsp; 3292 26%<= o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; - ad-Advice-tags-verify-table = 3292 26%= <o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; + #<lambda 0x1b893daac4d25cc1> &= nbsp; &nb= sp;3292 26%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; - let = &nb= sp; 1140&= nbsp; 9%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; - tags-included-tables &= nbsp; 1140  = ; 9%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; - or &= nbsp; &nbs= p; = 1140 9%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &n= bsp; - setq  = ; &n= bsp; 1140 = 9%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; - funcall &n= bsp;  = ; 1140 9%<o:p><= /o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; - etags-tags-included-tables &= nbsp; &nbs= p; 1140 9%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; - let  = ; &n= bsp; 1140&= nbsp; 9%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; - while &nbs= p; &= nbsp; 1126  = ; 9%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; if&nb= sp; = &nb= sp; 47 0%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = &nb= sp; setq&= nbsp; &nbs= p; &= nbsp; 11 0%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> = + tags-table-check-computed-list &n= bsp;  = ; 1 0%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> + let &n= bsp;  = ; &n= bsp;  = ; &n= bsp; 484 3%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> + execute-extended-command  = ; &n= bsp;  = ; 11 0%<o= :p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> + byte-code &n= bsp;  = ; &n= bsp;  = ; 155 1%<o:p></= o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> + find-tag-interactive &nb= sp; = &nb= sp; = 22 0%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">+ ... &nb= sp; = &nb= sp; = &nb= sp; 1178 9%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">+ redisplay_internal (C function)  = ; &n= bsp;  = ; 730 5%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black">+ timer-event-handler  = ; &n= bsp;  = ; &n= bsp; 18 0%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;;color:black"> jit-lock--antiblink-post-command &nb= sp; = &nb= sp; 1 0%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><o:p> </o:p></p> <p class=3D"MsoPlainText">Thanks<o:p></o:p></p> <p class=3D"MsoPlainText">Philippe<o:p></o:p></p> </div> ____<br> <br> This message and any files transmitted with it are legally privileged and i= ntended for the sole use of the individual(s) or entity to whom they are ad= dressed. If you are not the intended recipient, please notify the sender by= reply and delete the message and any attachments from your system. Any unauthorised use or disclosure of th= e content of this message is strictly prohibited and may be unlawful.<br> <br> Nothing in this e-mail message amounts to a contractual or legal commitment= on the part of EUROCONTROL, unless it is confirmed by appropriately signed= hard copy.<br> <br> Any views expressed in this message are those of the sender. </body> </html> --_000_5b7d2e64517641c581a9ed67857694c6eurocontrolint_-- --_004_5b7d2e64517641c581a9ed67857694c6eurocontrolint_ Content-Type: image/png; name="fast_string_match.png" Content-Description: fast_string_match.png Content-Disposition: attachment; filename="fast_string_match.png"; size=221362; creation-date="Thu, 26 May 2022 17:06:37 GMT"; modification-date="Thu, 26 May 2022 16:52:34 GMT" Content-Transfer-Encoding: base64 iVBORw0KGgoAAAANSUhEUgAACQwAAAT1CAYAAADr6g6gAAAABHNCSVQICAgIfAhkiAAAIABJREFU eJzsnXd4XMX1sN8t0kpa9VXvxZItW+4d2xiMDTa26ZBAQiotkIATIARI/ZF8JAFCh9BLaKGFYmyw Dca923KRJatbltW7tL3c74+1ZG2/kuXKvM+zj7R37z1zZuacmTNz585VcIzUSYskvBClDfF2WCAQ CAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgkE2ILv10q/Cdo6m23OX70d0rFQAKgHEX/1h66P/9 neyUOMKCFQQpT4OGAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBIJzlhCVg+Ye60mRnRARJGS7 ERcehMWhxOoAg0Wiur6VPzzwO/atekOhSJ20SPq/fzxJaGQsKsXxiwpSQimpN/qXbDFiMFsJCtWg UoNksaBWqJCCwvxelpcYQnmTaRiyJhAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCA4G5C1FkXI Hjbc1+fYJTB2t/PH++5CDZCSkkp9u97lIpPFQa/Z4VOoZDHRa7URnZWINjIYq00Chx2prZXezh4I 1vq81hhAtkAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoHg3CLQWhQhe3jxtj4nJSUVwLlgCKUa k9X1BJNN8jjm8ntnJ9GjRpCXoUGrUtBmdGB1KNHokjHvKKXbEoJCofB+rdW/bIFgIO//bzkmk4nZ M6aSk53p8X04ZQ8Fk9nC+x9/BsCiBfOIj4s9IZ0Ennz02Qr0ekP/9+9ffRnBwcGnUSOB4NxguNrT wbbTot0UnAnItUM5fjKcsYngzOVsabvsdjubt++ivr4Rs8VCnC4WlUpJU3Mro0flM2XiOEDYrUBw piPiNMF3maHGaSdz/khw7iLsSCA4fQh/EwRCxKaeyPWTpqYWvvpmHRnpaVwwe8Yp1PDkc7bYhcVi YfO2XTQ2NWOxWomPj2PR/AtOiy6ifRWciQRaiyJku2I26unpaCU8Oo6QMK3X3yJi4tCEet/Ux+v6 HKVzqZAawGJ3ripyucji8DjWh0MCSaEkPEJNmEpBGGAPVaJUg0oB+oQwGqtNKIM0PhTyLVsgGMjn X6zg479eT2xkGH9+dQ3vfvgpnz78w/7vpRU1ZGZkDIvsocgyWyysX7uGrS/eAcBNf/8Qs60AXezJ C1A2btpMQ2MjI3JzmThhvN9z9x04wKFDZS7Hrr36qv7/9QYDK1Z+6fP6a666AoVCSXtHB+XlFTQ1 N2Oz2gjThpGdlUl+fh4KFLLl9Ker7+Xrb77FbLEAsHTJpYRoQrxe+8XKL3nnD9eQpIvoP7Zg2cvM u+higoODAFj99dfoYmKZNGmin9IYHgabVqD66pNXW1eH1er7vZQxMdHMnzcPgPb2dkrLymhtbcNi sRIcHEScTsfIkfketif33NVrvqazq4uMjHSmT50qO/+9vXoOlZfR1NSC0WhAgYLg4CDCw8MZW1iI ThfrIl+hgHkXXkhsTAwAO3buoubwYVJSkpk1c6ZPXcwWC599vhyAaVOn9PtqV1c3q9asAWDJpYsI DQ115nuYbXYgkiRRUlpKTc1hjCYTISEhZGakM7qgAKXS+zUncl0gPwZnPZSUltLU1ITFaiU0NIS0 lFTGjB6NUuUqu68OjzY0nHAbCINvp4fabsq1tdNhE95stu9YHyqlijBtGJkZ6YzMz/da5/78cLD6 ncp28VQymD7QH4HscDB+cqLxxLlaV32cTN8LJHs4OR0x31CwO+xs2rSR25dOYmbhAiK1IRRXN2Gx 2pmYn8I7q4v4cudeao8cGZY+QA4iThNxGog4TcRpIk4TcZp8hhqnudv3cM4fnUrOVfvo40yJDYUd nX0MzNOZZkdyytlgMHKguJimlmYsZgua4GDi4+MYW1hIWFhY/3kdHZ0cLCmhta0VSYK4eB3jC8cS ERHhR/px5F4/mLnZk8XJnPc/WzkXffdEOFvG4acSuXNQLS0tdDdVsfXFO1i7u5JnP9/CzBnTh0WH 4Yr5hsrZYhcWi5Xt2zaz7JppTB6ZRnhoMPsqGrj/1bXMmzvX4/yTWa5y7eabdetQouCCuecPa/py ON12JTg9+FuLMpDyvZswdHcAEJ+aQ0rO6GGTPRT8yd67YbksGePnLBmUbLPJQN3BrUwpyGDXvs3E ZRUSGZsIQGdrI601+5k6Jpude7eQNnoGmpAwDxne1udY7M6/agCzTcJolTwvcjtml8CCkuKEcKaY WgFo7HYQE65Ap1GiUoAKCEWF0WRGifcdQIxeZAsE3pDczcTtu9WL7Q5V9lBkWbycb7Zx0ux7x7bN /Pa6qcwam8mHa/fz4dYiCsd67zxLSopZOFbHG3ff4XJ8xi3PsuSyKzEaDRzcvbk/sPLGrNueZ8as OfQ2VXLTwjFMG7WA0JAgGtt6+HxTCas2bqFw3DhKdm8JKGfh4qUoFEq6OjupLt3Dp3+/kehw50B0 8T2vMWnmXDReBqYDS3LZk5+ztbiWSxYtwa5QY7RKrFu7hmeXXcqhI228tXY3Y8efvAHVYNMKVF99 8g5WNzF/6nzCQ33vmlR6uIW7nl1FSnIqClMrv1o6ifF5yURqNfTozeytbOCtL4uoa4gmP38UAJXl ZbLOXf/tNzy7bCF5aXF8ta2MF7/awcRJUwLmP1YXR+vRCn6wYAJTC2aREBOOQ5LoMVioa+7k9ZV7 Mdsk9u8r6pcvSfCz//cB5szRHK6u4ifz81g8cwnri6r518dbMBgMHrqMKRzH9o1f99vYn19dQ0XV YSKiojlavqf/+GX3vcG4KbMxmU30NFYMm80ORJIktmxez5Uzc/nrjdcQH62ltUvPl1vLeH/dOmac Nxel0vMm9VCvC+THAAa9nrrKA/z4ojFMGXUhEWEaWjv1rN1TyQfrNjJl+qz+m1ED6/Dv/6l1kTnU 9nSw7fRQ2s2jdUdk2ZpKrT7lNuHNf3q6u/uP9efRaqOxrYeVW8tYsfFYvQy4GeXPD+W21336ncp2 8VQymD4wEP7scLB+ciLxxLlaV310dnacNN8LJHvq9BnDumjoVMd8Q6W6qooLxqZxyfR8Djd2sPS3 b2CX4OllS/vPsTmkYYmD5SDiNBGniThNxGkiThNx2mAZapzmbt/DOX90qjhX7aOPMyU2FHZ09jEw T698tZXECOUZZUeBytloNHJo/3ZuunQSU0bNIyo8lC69id2HjvLS59vJHzeV0NAwjtQextxRx91X T2X8iGRQKNhb3sDLK3aTmDWa8HD/i4bkXj/YudmTxcmc9z8bORd990Q5W8bhpxK5Y/ldRfv41+3z AXhndRGZ2SOHpdyGM+YbKmeLXZSVV3DptBzmTsih9HALN//jI8Ijo5k1+3wPXU92ucqxm00b1/PP Wy7Abpd44NX1nDdrzrClH4gzwa4Epwdva1Hc6Wqtx2Ex8OZfbwbglr++SWNoFFFxKScse6j4k221 S7z78C1+r7/+/hd9Xu9LdmdrKxNHpvOzK+awYGYhf31pef9uQZ21xfz+5qWkJ8Zgd6znUGsr0Ynp HjK8rc8x25zfjy0Y8txhyOC2gkmSoCQ+Etpt7EnUEF5jYoRdwi5BkFqBQgHhgEaSqK9txEQSCh+r q4wncVWX4MzCarVyuLqc1qYGTCYT2vBwRowqJCZGB8C2Td/S2+N8sk+hUBAapiU1PYuMrFwAJLeR gvt3i12ivbOX0uK9dHW1ExoaRkpaJmUl+wGYMuN8oqJj2LD2SyxmMxlZufR0d9Hd1cnI0eNYfO/r SJJEWnoWI8eMYtVXK7CYzWRm59HT3Ul3Zwfq4CCyc0aSku7cps9o0FN6YC9d3R2EhIQS5JZns48d tKxWC9UVh2htacJsMhESEkp8YhJZI0aiVjm3/Pr6q89Akhg/eQZx8YmYTUY2frsKgJlz5tHW1uYi s6a6iqN1dZx/0SKP9LJyC1hedJBnP36WuRNy+Mftx88xWhygCiGncCYzbnnW5bpX7r+GMdmJtHbq UWuCKS0p4e+3XsRbK3by2HsbSNWF8+Syy/jl1eehVm1jQ8URWXJMFrBYDBzYs50X77uCkGC1y/km q4RD4Vlu7sHMxCkzsUkqbBYHJqORsCCJ/PQ4XvhkK9FxyXTrzX5tbv3XK7FaLWTl5NPV0UZ3dyeh oWGMGFVIW0sTjfVHkICExBQKxoyHY69W9J6WyW+d+qsvd3mPvLsBu93uUnZrdpTz+5ec9R8RFUVG 9ggSlJ389a6rsNocPPTa12w7eITJo1L588/mM2dcNn9+dTWV1TUoVUqSQk2yznW4lbHdIXnuOuem ryo4DKW+gf/84XtogtS8+eUuPtlwkF69hayUaC6bXUhSfCyVHQYX+QoF3HXdLO5+fg2RkTGu6UqS LF3A6ftmL52myeqg5ODBYbNZ3GyydP8efnpxIddeOJYVWw7xxPsbuf3KGfzk0snERYXx4qodjB3v eRNvqNcF9GOgorKSmxZN59sdJTzx/iaSYrU8/evLuPGSSaiVSv634wB5owo96lDh9uR0eXkZ+/ft RRMawoj8McQlJAGB26XZF17i0pYq3J6Ud7bTPUNqNwHaW5tl21qY1nPy7GTbhDebHXjsq21l/OmV 1WQmRfPcPVdy2xXTiQ4P4ePtznrxJ6e/TGS21yYLmEx6j7ZKTj9ps1qprjxES3MjFrOJkNBQUtKy yMjM6W8H+/pSf33kYOS498m1NZV+YwJ/baqcdOX03x1d+kH7ibsPyI0nvPUrPXpzwHwMtR8LFHNB 4LittqaSo0dqMBmNaDQadPGJZGbnEXJshwh3TqbvBZRdeoisnHyveslFjs0s//wTv21kmDZiyHV2 3OdGOH2ls8OjjXansrycJROcW43XNnVittoA+MWj/wMgIjKaaefNpa7uiMt1Frsky/4O7ttDQ73b jbUBZOXkk5tfAPiKnUScJuI0EaeJOO04Ik4Tcdpwxmn5o8f6tXdffhRIv9bmRvbu3oZKrWb6eRcS GhbG3t3baG1uJD4hmXGTpsnKY6A4S8SGpyY2DNTeCjs68+zIPU96vYFf/mzRGWVHyqAQln/2P5/1 a7Wa+cfNFzB+RDIrthzi0XfXc+c153HF+WNIS4hi2bOryRs1Fnobeem+q2jrNnDvcysoO9LG+JHp XD1/Km99XUJuXoFX3wLo7GiXdb3FbBr03CzIG5sEqmt33Of53f1P7tg6UDxk0OsD+p83jAaD7HsO J6JfmDbinPTdodqRnJjgq5VfnLIx9mAI1I6XFBdRf+QwScmpjDk2vujt6WbbprUoFEpmXXAxRTu3 DOp+mcXuOSbr6e4iOSqIsTlJNLT1UFbXwey8aIwWR8B6C5QHfzHfwLrz5TPekGOPcuzi27XfBJTj jpz+2Vd8HJ+Q5Lesaqqr+N6M2QDUNXditdkJ00Z4HVv5K1c59xUDnSPHbhyS82EaSZJwSM7fh6sd DFTHg7nvKTi3cF+L4k53az29DaX8323HH4T8w81L+eO/P8dkcRDpZ9FQINkngj/ZFlvgRUoWm/f5 NH+yFaHRbN6/nYWzOkhPjOH3Ny/hj//+HID/u825WOhIUweb9x8mYdQsrzK8rc8xO6eOnQuGTDYJ fd+eQ8fQWxwux6zKIJqiQ9ibokDVbaO80kRrcj2Ro9PpO0slSbQ3tlFR0YwxLg5JofKaWb3Z4ZGe 4NzDarVQtW8zN1w0lvMnTiMhWktNQwfPfbKdBquDmrIDvPCbRf1P9tnsDupbu/lkfTGr9+4mt2C8 x2IR9+89eiNdTTv5y4/mMCY7iYa2bj7dcJA3f318O8KiXR189vAPiI0M453VRYzKGEdBVgKPvruO Rx/5Sf82fKtXf8Hn/7iR2Mgw3vxyNyMzCijMSaTXYOHVFTsoqignJi6Btpq9/OUn5zMmK5H6Y+kN xGR1oHazb4vZRE3xNn6ycALnFZ5HfIyW5g496/ZU8faadeROmMXO9avY/PwvUCoV3P30cmpqTfQ0 VPQ/EfO9P77Dm7+/lpwU59aK11w4lmsuHEuX3sTie//DlPMv9qiD5KyRaMKjgHaX4/3+pwpmxjzn tme9XZ3QUc6YbOcWZm+v2kNSai7JGdnc+/waktKzyZuYS/mBXWwrrmX+1DzmTszmww2riU/LDSin 12Rl344NPPHLhcRFafnXext44EcX9utksNix4tkuONwq3WQ73n40NtRz/vhsjGYru8oaGD0lj/07 1/u0ubJ9O/nikRuJ0obw+oqdjM8bQ0FmAvWt3Tz1wSaunZnFpTPmIQFrd1fy3BebGTVuOigUHmkV TMrlwK6NPuvUaMNvfaXl5LvImzLnEhRKJQd2bnTJry4xhbwxk3A47BRv+5bH/nYDKqWSd9fuZXdt D6OmXsiBQ/t4Z3URP18ylXtvmMuVD7yNJCH7XIfSdYLA5vDsE9zzr1AqefIv3yckWM2XWw/xxqqD jBw/FXVQEEZ9Ly+vLiMyNh5dQhKOikMu9TkhL4WpefHsru7ySNe9vm0OCYPV0y7MNgcqL8cNVjt5 46YNi83q3eTbLBb0Pa1cNXcxAB+u3UdcRj7vf7OPK84fw+LzCnh5+Q7au3vRhISe8HV9BPLjlJwC nl9eRFRsPPmT5nBwzxb2VTYye1wWI9J0dH1dht5i96zDAU/SjUjVseS8Agqy4mnp0PPsx1uorOql pvxgwHapvk3PFwPb0nrXcuvVG+lu3jXodhPA4XBQWryH92XamqG355TaBHi2Ud7sOC4plV4HrNtT xVVzC1kwLY9nP9lBSk6BXzkufiijvdZbPes5f3wWtYf895N6YxaNNQf58SXjmT1uJnHRWhrbevh0 40FWbt/EqAkz2LVpDZ/+vxv89pHxyWlU7tsiW45rn7ye+3+90GdMoO/u9NOmvkmENsRvuiajXlb/ 3do+eD85WlPh6gMy4onkjByPuhozJY99Ozf4zcfODauH1I/t27EhYMwVKG7raG1ibn44f/vB5STG htPWZWB7SR3vfbufmPQxaEI8n0Q9mb4nV/ZQMRl6A9rMzm0bAraRR1t7+eKRHw26zgb6yltf7WFU ZqGH7SWlZbvoU7JnK4/ccQlTR6UBMGd8tseT1e+sLuKDrfs9YmqD2RLQ/ipL9nLbopEsnrkUX7y+ YiefFx0kPWekiNNEnOZxXMRpIk47lTYBIk77LsVpAKXF+3zauy8/iktM9VsuiWk5xCtb2PriHRhM Vm586D3a9A7++tO5zB6fxbqiKv7+3y1gM/rNo9Vm9RtnRUbHitjwFMWG/tpbYUdnph2552n8zPln lB3tLGtg6qgU3vVTv797/ivy053ltPnAYSLjktlyoJYrzh/DyIw4enu6KS3exzN3XUyQWsXz/9vK 3opGlEoleytbqGzZQ/bIcX7vp8i5vtc4tLnZXRtXBxyb6BJTA9qnO+5jEg//kzG2PlxZEjAeSk+M 8ut//3h/G/njXBeHGw162qqLZN9zOBH9YrLG09nees757lDsKDo2PmBMsGfHFlY8emrG2IPBZrX4 7QuCQ7X8/KJcLp+zhFXby3nys+2kZuVjqD/A1hfvwO5wcPl9b/L8r5cM6n6Z2eZ5r/Vo/VGWTnbO h2wtriVal4jeYudwRYnfelOplH7zYLFY/MZ8yXHh/XXnzWdM1jzCo6JddN23fX1Ae5QzP3Ng7y5e utd/2bnT0dpEvMJ//3z/v5ez/J8/8oiP//XfDWzYvo6fLJrotazsksSTv7qUifnOxQzzp+Yxf2oe /1tfzOvf7CF71LjjZbBtnd9yjQwP8Xtf0WGzB7z3KMduBo557A6J1s7uYWkHWxrr/Nax/7GE9/ue gnMH97UoAzF0tqA/WsLDdzgXw/SRnhjDX25dwv3Pfo7RBuHHXss1GNknU+++HXuW/PrfXn9f/vht mL2sywkoWxmCOmEkv3v2cx6+fQkZSbE89IvLAEhLiKa2sZ37n1tOWPIozJIKsxcZ3tbnmAbuMOSQ PFc8mawOl2MmB2SU9VI2PYasHR3ERySye1slalsvMbMKsCqVHCipZs/6/WRGa1B3vsGekKWYguJw x2RzyFphJTh7kSSJQ7s38eLdSxmRpuPrXRX84pH/ER0ZznULZ/L6V8WMmjSHWx5biVHfjUIBKXGR PPbLJdx57Szq21ZS29jgsROwO811Vbz5+2vISIzmjZW7eHv1Xu75vutWeQNlXDAxh98+9yVV9e0o lEruuGqmV7lzJ+Rw15OfMz43ib/ctID7briAJfe9TnNdNW88eBUZidG8snwH//1mP3d/b7bLtVa7 5GLfksNB+e4tvHjfZeSkxPLqFzt5Z1URt14xnR9eMpEJeSnc+cxXHjrbvLQHP3zofR65fVH/1nyP vrsetTqYcect8OlTNrsEbq/l9nZubU0Z913t3Oq0s9fEp5tKyZ98IRabRE6h80kLhyRh6O0i79gg t1tvRqlWu8jzKmfShRQXbebBH8xmXG4y97+wktZOvatOdglJRrswsHzbmhuYfeksdpTUEaKNpbRo i1+bG8h5hZnc9dRyfrZ4CtdeOJYn7lrKUx9s4nt/eoe3/3Q9l80eza5DRylrOEpMQqpbWjGUF20L WKc3PvQB/7x9odf6Kt+31UV3q0MBXl4R0tc+93R2MCojtn+r4B0lR9AlZeFARVxSJtsO1vDzJVOJ CNNQmB2P1WaXfe6eylaXNO0OTxsZmH91cDh5SSHER2sBWLOrguSskdgkBXvWHX9HvNFoJCI2ySVP a3ZUcOGkHH559Xlc/5f3XNKQHJ6TBXYHHNscwQWbHWwOBTa7Y8AxBza7AobDZo/Z/kC6OjoozEpA dewJxMb2XlJG6aiqLgGcD6uMyU6kuqOD6PiQE77ONb/+/Tg5ezQNh8so27+DkenxjM11PhWzekcF 0XHJWGySh7/09nb0Xz93YjZ3Pr6cJJ2WZ35zOf/4xSJu/Ot/XdLz1S4F8tqmI1W8+YdrBtVu9tHT 1cGotFjZtnaqbQK826y3Y0gOFIoBrzNxi728XeOrXfenn3s9VxzYwev3X+m3n6wp28/Lv72M3FQd b6zcxVtf7mbZ9+dw17WzSI3bz+vf7nepZ599ZH0NL98rX87APjk9r9B/TBCT77NNDdYE88yyxT7T fe3bfRg723j9gSsD2uFQ/ETy2Ec9cFlFxaV4pFVStIWX7lnqt/wGMph+LGDM1dBAY22pzz70peW7 iQs2sey6hZQdaWXJva8THhbCnIkjuG7+JN5YU0p4ZCyVxTv69YvWJZIzZspJ8z1gULL76Gpr9tBT l5ThcixKl4jV0BPQZgbiq40cyGDqzMXnfNje0VoFRyoOuOTl7me+4p7vz+Sy2aNZX1TNb59bAcDz 91zZP1Fllzzb7obD5bxy35X+/Vfm8K2v/RJxmojTRJzmRMRpIk4TcdrJj9MC4cuPindV8fK9l/sp lxqaLBbeXV3E9Qsm8OefLeDLbYeYPT6L+tZu/vbmOqwO/Jbta9/uw9jd7rcPDAmPEbHhKYoNhR2d XXaUmj3KI09Wh+KMsqNQbSwH6kx+6zdSl8j6omoumZ7PzMIMNu1bz8wLZgGwvqiaiOh4FJYuCjIT APj+/PHce/35oFBwoKqRpz7YTGdnJ2HhUV51tlmtBGH2f31HJ3VVBwLOzXY2NXn4rpyxycFdVbx0 z+U+7dNstvqVGwhf/dtAfMVD+w73+q2f2LSRbP1mef/5UbpErMaegH20nP5Xjn5WL23TueC77six o0O1lbzx4NWyx+HDPcbu6tIR6rYrpuw5BFOv3zp7eU0Zn6wv5vI5o5k7MZt/vL2OhiO1XD/bWVYb 9tZgUWkHfb/MZveMS7s7OxiT7Vz8XlbbgkYbRWdnJ5F0+623nvbGAHZX4zvmCwrisTsu7a+7977Z zz0yxhWy7LGmJGCsmDlyQsCyUyiUHnXZhMJv+6BQHd8Uoy8+rqxvRxMcxCv3XeG3rH711Bfc/4M5 LJ45qn+H4rjkDKJiE13anGhdoo9yDSIkKJhnli3xPbfx9FcoHY6A8x9y7Ma5q6oCFM7xT/m+bcPS Do4oPG/IYwl/9z0F5wbua1EG0nj4EA/ffDEZSbEcbmgnM9m5qKzv/wd+ejH3v7CG4MiEQcs+mXpb j817WO0Ocqdd6vJb5fYV/b/5ut6f7KCIBNQ2iXuf/oxH77y8fyHVkaYO7n36M0KSCgiKSPAt28v6 nL4dlZVwbKLPLrl8jBbX7xWjYvhgZiztNgWZKjtJ4SpUCTlsK7Hyr5fWcd+/N3LdhiCeMp+PomMr l03sYXHPH1AZGz1km6ySxzHxObc+7a3NTMqNZ0Sac4vKR95ZT/yIKagTCnjlywPEZ+RjtUlExaeg CY1AoVRxtKWbbQedrzg4f3wOHa2NAWc4x+YkkJHoXJX8ny93E5sxhrdX7XE9aYCMj9cdoMMRwZiZ l3g8RTSQTzcUYwuJY/OBw05HUSpI1UUyNieuP723V+0hNn0Mb68ucrnW5nAti462Fibkx5OTEosk OfVMypvKW1/tBqAwJ5G8pHBXB3V4bvkPEKqNdPmuS86kYPp8v3Vh9yLI/RyDwUiow8gFk3IAeG9N EeFxmdglpct5JUWbuf2KaWQmxWCzO3j58+3Ep+cHlNPW3MDsgkTmT83j9RU7+XZ3lYdOTXU1XvX3 nJx1HjdbbDjMvUzKT2HD3mpUmpCANjdQ1Iqth3CoIympaQKcQdAH3+7H4FBT2+icMMpIjEav13uk pdaEyqpTTZhrvfbVl7u88NiE4/l1KxeH5Kwvs8lETGRY//HOXhOo1M5rVMF09Rr7f4uNDB3UuQ43 G5Ek1zpw11ejDSc26rj8tk4DdqC+eDNbX7yj//N/P5pB+f7tLnVY39rFh98eIC0hiqvnjnHNK56T 8X26uGN3SCjUGpo7nJMbVpudzl4jkjJ4WGzW3fatdgmLxUJ4mKZfB6vN7jzPdvzGR2SYBrPFMizX DcaPj9aUsXhcDJv/fTuvPXgtUdoQvtlVyde7qwiPTfJqcwONbfmmUmynRLXaAAAgAElEQVQhcZQe 1bOnrB6lUsFlswpczvHVLgVqp8eNSBh0u9lveybToGztVNuEtzbKuXWr67GO5qNEKI2cP8H5pNLq 7eVExacElOMtPX/6uddzUEgoYzJ1AfvJyXkJ5KbqsNkdvLp8Jz1GCx9+45x8unLuGIwdTS7O6auP nDxicHIG9smRutSAMUGY2+txdMmZpOaNY1JuvN90TR3NFGbrAtqhxWYfkp847L5Xifgqq57eHq99 WKDyG2o/Fijmaq6v8duHRsWlEB4aDECyLoKF0/NJitWyYuN+nv5gIyHhMSSrWlz88oHvTaaieOdJ 873B+HXfp62lyaue7sce/N5kWTYzEF9t5FDrTI7tZYb1euSFgTe8gUhdItoo16d5HQ7PFUNT8pMD 2l9S9mie+eIQM2551ufno51txKfniThNxGkiThNxmojTEHHaqYzTAuHLjyaPSAxYLikjxvLC8t0c qGpibG4S91w/F6vNzoMvfEWILi1g2Zo6As+P+eo3RWw4vLFhoPZW2NGZZUcJGSP9xmVnkh2ljZzo s351WWNJyS7gX//dSHF1E4tnjmLt07dwxfljKKtt4ZF3N6BLySAm4nifKjkkrv79W7z46TZmjMng yWVLOVq2G7PF5lVXk9kY8Pq6sp0B52Zry4u9+q7dZpXlB77qWhMeHVBuIHz1bwPxFQ8lZhf49b+0 4A6P8aCcPnqg85yIfhar/ZzzXW92Kie+HZsTHzAmOJlj7JaGI0OeQwhUZ9aeDiqb9RyqbUETpOaC idl0tBzh4mnOV6l/sr4YXVLmoO+X2b3E6haLifho53i3vduIQh2ExWIN2HfLsbvQSNcdgnTJmaSP nOARz+nkjisC2WNDjaxY0WYPIOdojde6dEgOv+23guNzLH3xccbIiUzJTwpYVuFRrptpRMWnoI1O 8KqH+ytQdcmZpOWNDzy3kRwua/5Dcmt8vNlNTuEMlj3/Dfe8+C3xaSOGrR3U6/VDGksEuu8pPufG x30tisvHZqfHYOZAVQN3P/lpv33c/eSnHKhqoMdgxupjviKg7JOod99zUt7W3vj7bTB62x2u3YEU QGbfx9v6nD6d+ncYstldGwyzzeFyLLTUyKjyLjon6DgSGUxEjxGFJEFoFCHR8TgK4mjeE0KyoYM9 hkzOtx9h0qR8Orb+i6+0v8WmOT5RbXGTLTj3MBsNJCU5V2MbzVa69RaSg51PHsal5WOzSTRW7Wfp 5AQW/XQJSbERhGqOv3k0IUaLxWwKmE5SrDPwMVlsGMx2gkIiaKs3+Dy/tcuAJjQ8oP219xgJ0oSh H/AEpFKpIDHmeHomi4Og0AjaG1zTszskF/mmAWVhMFswWx2oQ7S0dx+/GZAUG8HeygYPOe54u0kR KC8DstCP+zXNR6u5fl4hKqWSXqOFj74tJnnMHJfzDhdv40fzRnL9/PGYrTYe+PeXNNtiiA2L6j/P l5yu1qNEHAtIf7p4Cj9d7LrN6xeP/pSnP9zM6kOV6JJzAubHZpfobmtm+ug0VColG/fVEBSdTpLO Odnv1ebskksJdvaaUAYF998M0JssOBwK4PiqcZVSgd0h0ektrVhnWv7qtLSh10X3vvpy1z0+/7z+ MvQ2GW2zS6AKprPn+BPm0eEhNJgtBIVIWMxmosKPvyKhvdvo8vRuoHMVStebi+525a5veEoB7V2N /b/rosKoMTuIzZvBjFue5YEfXchls0d7zQ/Aa1/sZPHMkfxs8RT2Vhy3e0mS+lewu+ji5UaZQwIH Six26NKb6OwxEaQJczn3RGzWm19JSjW9BnP/92C1CovNRrD6uM10G8wolK5tzFCvG0ggP45NGcEn e8p57YvnyUqO4aGbL2be5Fy0ocE88NpmohPSPWwOjr+CpK3bgFoTRnBoWL8dJ8ZG4N7qeGuXAjGU drMPhTqY9q7j5waytVNtE95wL6JLpudzyfR8LFY7DW09fLh2Px9uqiY1f4pfmb7ad3/6uftqsC6L pGPhl79+Mknn7KPUKiXrnr3V5TeVUkmSTktN0/H2zFcfOVg5/X2yzJjAfaGvQ3KNN/ylK8cOe7s6 hsVPBuKrrNzTGtiH+ctHdePx17nI7sfsEnXl+wKWb5LOufuMtz4USaKsrJJV28tZMDWPu68/HwC7 w8E7q4p4Y20l6enHJ6j76OvDTqbvyZHdx2DaMDk24453+UOLPQbi2/b8pXbsu5eb497UlOO/BoPR Y5LJHV+xjojTRJwm4jQRp4k4TcRpJzNOC4QvP5JTLkajidjUfF5fuZNH71iMQuF8vUdli5HYhDhZ MVxfOr76QH/9pogNhy827GxrFHbkRe6ZakfvbDlIWHiMz7jsTLIjuwOf9ZuTGM3h4k28dt+VZCbF 8MKn23h3dRFXzS3kzmtn8cK9V/Djhz9BPeBVYGv3VBEUlcLnm0r4zffnEB+tZVS6jqaudrRRnm9z QBlMW7fB7/UFGfGy5mYPN/rfdSuQH3ir656OZr8y5eCrf3PHWzzk8FM/CenpQJvHNYO953Ai+nV3 tp1zvpuUefzVrt7wZUfyxuEnb4xtNhlc2ofBxNdy+oJOYvl0w0F++4O5XDpzFG1dBuKiwmho62F3 RTNhkQ4uG+T9Mm+xuiS5Pktkd0BYZIzfenttTRlTJ6cEzEN9t+vgxyGByWQkMWkI4wqJgHGm1Wwm MSYhoOzmIxVcOSPNtxyr9wWKEr7bh9xk14ev+uJjuTFus971AUNJ8v6wSb8iA3BI8u8rRmgDz3/s r2lxke9rjJc5egYAnS11JCUNTzvYXFfJldN9142vsYRYQ/DdwH0tykCi00bzx1fWAmA1H7e9tm4D v3nauauxLmusz+v9yQao2bnSr25ZUxYNSe8+P/fmZ/5+kyPb0NmMtbmUx+5cSkZiDLVNfYtjY3jk V0u5+6nPnW1+tPddl7ytz+lrlo4tGJJwT9ticz3WVdGNrcfOlJwoVsfEEN1qIr63G1WQBrrNOIwg WSC+q43GuOm8ss3KbTMUXDDFQvPaJ9ia8X8DMuuZnuDcQqkJpbHNGWyHaoKI1AZjMvSCUkln0xHC ImIYk6Lm9qtmYjRb+fnDH1Ld0M69N8zlqrnOgZxD8nyK1/17Y7tzQiskWI0mSIlR34MuMszvNQ68 v4rB8waLZ76aOo6nFxKsxKjvJdYtPYcER8r20NveSFRCOuHRCTS2O8siTBOMJkiJXt9DbGSoi1wF CuwOB0qliiC1Cku3ibgB5zhRuLz6RBrgu/Xlx9NMzC500cedgf7ncNgxdTZw+ex5AHzwzT7UUcmg VPefV1eynRsuyOWni6dgttq45+kvqNZriU3J6j/Hn5yohEzWVR/mg1ue7U+3MCeRl393DQCL73kN IlLQpeV5tA0e9Sc59e/paGbOnAKKq5swOYIIDYvwa3PxGSM9yiGQDYDTDtzTCguNkFWnSoXKa325 y0Md3J9vb3Zol0ATHk3x/r106U1EaUOYWpDO699UEKyNpq3hMAtmpwM4V9xWt2B3OGSfq1CqPcph YD246xsXGc/BAwdp7dQTF63lgok5PPrhLlLyJxMZn+qhv3uebCotr32xk7uum82scVku56qDQ2hs 6yE/PY5IrQaLyYjFZCQq/PgrIDp7jKCOwi5BWsEMLvn1KwDkTLxw2GzWm1/FpedTXFaC3eFApVSS qIugrbONJF14v/7F1U2EZqS5tAFDvU6uH1stRlprDxGTnE10cjZNNcWs2VHOLZdPZ/LIVAzdbaiC NB42N1CkLjIMU1UHJqO+346b2ntAEbhdCuRHcttNb3FBcFg0B6v2yra1U20TidmFXvM/8NhX28r4 0yurUSiVBGlCidSlkpQ3hbqKvQHluJdJIP3cfVUbEk5je2N/+fvqJxvbnZNMZquNi+58yeVGNkDm 2DnQvN2jvN0ZihwH0N3RLCsmUCk8+0BVcGh/e+wr3cTsQpo6uvrLwZcdGro7mLNg3KD9RMJ1ElBO PGHo6WDOgvFe+xV/5ado2uo/Lc+ksJj0jE/X+C1flAoa25z156sPjUnJ56H/bOCRd9eRm6Jj1thM blw4iRsXTuKNlbuoNKQwY0A/Hx6TQEr+ZA4fPDm+B/L8eiBh0QlUdeKhZ2RCusux0IhoxqY7J2X8 2Yy82M1/HfmKPeTY3p4jBo+8hLndQPDWD3s7Jsd/O+uruHPpKBbPvMJn/l5fsZP3t5djsxhFnCbi NBGnIeK0/nRFnCbitJMcp4F/e/flR3LKJSg4hJ7Knfz6gasB504Qc8Znc97IUorq9TS2K/zKiM8a EzDO8teXidhw+GJDb328sKMz2Y5eottiYc6c0R5x2cnqN2BodmS12ehpKPNav/vrq4iPCCIzybl7 wuod5eiyxvP1rkPcee0s0hOiSY0Jpbqpm8b2HpKOPRggSa7jTKPZAqFqr30yqmCMFgJev6a0N+Dc rCZc5+G7StXxm7s+/SBAXXsbhw2UC0Obq1fIiIdsdrvP+jnYaaYKncd4sDDt+HhQ7j2Hoeqn725n zkVjzynftabm0Vi132c85cuO5MSm7gznGFsVHOriY3LnEELCo5mS69yJxV+dxWhCWLVjA7+65jwm 5af2zyZ9uuEgmohYCodwv6zvXtdA1EEamjv1ZCbFEBsZSkmXBTuKgH23nP5MpT/kGfMFhbjEtXLH FXoZcSYKhSy7GJ8Z5leOUq2myuzZviXljqepZKP39qHpiNfylhPjZo6dg9LsupObJPm2qRBttN9Y 2t/cht5sCXgObnOX3uxmIO51eiLt4PgM/3Xjaywh1hB8N3BfizKQoPBYkgrnAlA7YHGPJNF/HHzb sj/ZfXK+ff4Or79d8Itn/V7rT3afKUsSVO/wvihJkgavt8NqwdRYwhPLLiM7RUd1fRvLHnfuvPTE ry8nO0XHY3cuZdkTn6EK0aLWaD1keFuf4zimsNL5xbmaaeDHbHO4fE9PtpObE0ydSgVmBzsSEziQ kEpTeARHQ6PZWKoi3mqhIS2Npl41Ndq5vLApmjpDHHYpxq9s8Tn3PiERceysaKGiztmh3XvD+XRV 78LeVMyti8fR0VzX/9Sm3SFhtTnISdExb1LuAIcJ3CPsq2qmtqkTgB9cPIGuumJ+cPFEv9dIDnmr w72dsreyhbrmrmPpTXSmt2CCyzkttWU8eN0Etr54B3csHEFPexO7ypqpaehAoYAbF06io2onP7xk EgAHq5soOdpDcKiW2ian7Omj0zG3H/bIi1IVREePc3VwclwkPS111JVu52jZHpc0G6v2Y3dItNVX Ul+22yMfZdtWYjL0YHdIdDXXsXDaCCK1IRjNVt5fu4+opJz+umytq+S62VnctHQaVpud3z67gh2l dbQeOUTlzjX95wWSExGfQe7UheROXUhqwUwPnSIS0r3akme9SNjtDgxdzZw3NpONRTWExSYFtLnm w6UeEYw3E/MIAiXJIy1NhE5WnapDwr3Wl7u8gfl1t3sJp706UBKROpJ/vrUOh0PimgvHMj0nkoYD 65iYEcINCybgkCT+9d4GwhJyB3UubpMIPa31lG1bSdm2lVTuXOOhrwMFMeljeOiNr7FY7Vw6cxTX X5BHb/V2bD0txESEDtDf805UcFgUH288xNGWLpQDHneQgHBdCiu3Op/wm5ifSk58MM3l27lu3ngA Gtt62F/TjiY8GkNvD+r24v7tO3trdmA2GYfNZt39qqX2EHZNLB+vKwbgugvHYmyu4HsXOXX7YnMJ PWhprikdluvk+HFvVyuKriM8eMMMIo2Hqdu/Hp3ayLzJIwDYU15PaHisV5sbyJJZo9CYWxmdEs7E /BQcksTyTYcIDgkN2C4FoqiiKWC7aXd4xiFOux+crZ1qm2is2u+9XXE7Fq5LIWfyxaQXziEqOYf6 ir0B5bj7YUD9vLSLweGx7K9pC9hP7jzUROXRdjRBau64aibaUA3JcTFcOmsMj//mWtrqyjzq1Vsf ORQ5kgNsdoesmECpDvZoUzuaathV1uI33d7OFvZVtwa0Q5O+Y0h+olD6fsWpr7Iyu6WliYwLmI+2 urIh92OBylepCvLbhzZU7iUhqJsHfzKftAQdpYdb2FLs3D7YYLJisUuERif29/O5UxeSOGLSSfU9 ubLdP6GR8R56uh9LHjldls2oNSGB28gh1tlAfNleTOoIj7x4iyM8jnlRYmdpQ0D7kxGa9+sv4jQR p4k4TcRpIk4TcdqpjNMC4cuPdpUFLpcjJdu4/4dzSY2P4tvdVTzwgvNp1gd/PI8wewe7ApStoas1 YB/o0ZeJ2HD4Y0Mvfijs6My3I2N3i0ednYl25K9+NaYmGjv0/W3kRZNH0Fqzt7+suvUmjrTpiUnN 46XPnAs3L5yYg7X7KEtmOXdpKattobLJgDo00uc4JyYt8PUxqfkB52a9jZfk+MGO8ia/9hlIrhy8 uaw6WBMwHmqo3OezftQ9taiDtR7jQTl99HDpZ+ptO+d8t6Fyv2c8NQBfdrS3KvC9l5M5xg6PSxnS HELKqOmy6kxSqFCExrJmZwUKBUwamYrd4WD5poNownVDul8meYnVNeFRFFc5X9OWnxGPqbcLQ29n wHqTkwdvMV97Q5Wbz8gbV8iJMxUqtaxYUU7ZeatLf+23uqfWw5okB7J91GOH4mP6edPDayzdWBN4 bqOuW9b8h/sOPt7sZuBH7ljFHW/t4FDHEnWl22Xdixafs/sjd72IUhPOpn3VbNpXjVITPjyy/Ux0 2qUTkH1M7rfP3+H1E0i+L9k9HU3MHp/dv1joric+Q5VQgCqhgLue+Izq+jayU3TMHp+NvqtdtmzH sWJQOx3Vc3svk9V1OySlAiw2FeHtJsbX6gmP0rAnNJIaWwShFhs9ejWj2uro6bATFGPGJoVSHnYR LxTtxRSR5CLLYvO91ZLg3CFuxDRuf3w5Ny4Yy9yJOXz88I3UNHTwzMfbiUjIYGvFYd5bs5dLZ47k 5fuvpqi8gW0Hj3DJdOd7W+XclAjTZXL3Myv47Q/O5wcXT+SiKXks31TCxdPyALC7vd4AnI4ox/7s Ds9zIpPz+M0zX3DfD+Zyw4IJzJs8gk/WF/fr7NTb9ToHEDtiGrc//jk/XTSRS6bl88OLJ9LS2cs7 q4t446t9xOdNwWYy8M931nHv9eezdHYB4/NS+GxDMQum5vXLCtWl8t43B8hPj2NaQRqb/v0LthbX cvdzq1zTlKC9voqlY8O5/Q+uKyS3vuj8/r0/voMpZgydzYf53s8vB5zvyrVq4pEU6v4yaq+v4OcP 3gJAkFrFk8su65fVpTex6J43SR83L6CcQGVrs0tICi9Br9shu12it7uDsVnxRGlDWL+3Gk1MAXaH f5sLiUygu6XOrZwCp2c1Gz3TkhSy6tRutXitrzdW7HKRJ3e7+9CoZHY1VHHLPz/ixoWTuPeG84nQ augxWNhZWsfbX+2hujeU6JQsANnndjYd7k+vb1v+Prr0Jn733EoPfTXhcVS0mfnR3/7LjRdP4vI5 o/n5kqnY7A56DGZ2HTrKxn21hEYl0NNyxDVPKIhIzueZj7bw8G0LXcpeE5nIriPtPPT611x9wVie u/sKgtUq2nuMfLWtjBc+20F09iTsDqVXO7LbpWGzWQ9flkCXPprnPt9OV6+RJecVsPKxn9LWZeCN lbt4Y00JcSOm01q9d9iuk+PH7apYVm09yK+unk5eWhwOSaK5o5fXV+zkvbWlaBNyGals9Gtz64uq +dPPL2Jkejx1zV08/7+ttBJLbEZOwHYpENq4zIDtpt3hu10ejK2dDptwf7ZHkiSvx1xefxJAjjc/ XHTPm6iCg33qZ+r13i7GZk8K2E9Gpo/mjsc/58aLxzFnfDZXXVBIW5eBPeUNPPfRJiKSR2As3+la rl7KOiK1YPByJImwqHi2VhwNGBNoEzK9tqm/e3Wz33Qjk0eggIB2OC47fkh+olB0e5RFoLIam5Xg UVe6vGkBy8/Q7fbkv4x+TKUJY2tFT8DyjffTh2pjUqlq7WTb/kqWXTuDvLQ47A4HReX1vPjZdqIz xuN8mMo18ZPpe7Jkj5/nq1oCEps9KaDNRCZkB2wjA01UOvPnfo7rd1+2Fxkc4XMb2YGyA8kH0Cbk BLS/4JBwHv/0AA+99rWngGNEJuUSGqkjO9wo4jQRp3mUl4jTRJzmjojTRJw2XHFaIHz5kS6v0K9+ Ko2WRRMSmDc5l5ZOPQ+//S1mwvhw7X6uuXAsf73lEn719KqAeVSpg332gcqgUK/2IWLDYY4N736D 8bkJwo7OIjvSxueQFdbjUWdnmh11NB7msmmZ/uv3qa/41eOfc9PSKVx30ThuWjqNHoOJDXurefnz nURnjEOjjWbdoQMEv/Ut358/ni/++RM6eox8tvEgLy3fQ2zOJK9+1UdoTMqgrh/M3OxAfPlBfF6h 31h/OO4Fee3fZIzJLp+R7bd+7nx6DbG5U1weBpLTR3vccxiifufi/EBvq9sYQ+YYV5eTH/jei1se T/YYWy5y6sxml9DGZfDJ+mKWHlvQt3FfDXpJS3xsMlsrigZ9v8zbva6QyES+2V3BTy6dzPTR6Tz6 3y3EpBVQ1dLqt96CwyIC5gHwHvO9srHfZ+SOKzQy40ydjPmZLYc6AspxL6eeltqA7fdtj3zsUd5y fbSnscblWocXHfrwGUu/ssn/3Eb+VCSHFHD+o+Hg5oB2485wtYNbDrUPeSxx/2tbSBgx2a+egrMb 97UovohMK+CBl74BICbT92vIBiPb4YBZtzzj83d/1/qTHUhuIPm+ZKvDYlizaycOh8TaXRUEJ40m KCLeKcsh8YtH/seFk3L5Zk814ZneX7PubX1O3wZpitRJi6Rlj33E1pKjLickRKhp7rG5HGvt0WC3 Omio7yU3I5zKEUkEGe2k1jfTnZJMb4ueiPpqUjNCUaqDfRaCTquize39jYJzE4fdSk9TNcbOZuxW E0EhWqJSR6EJj0FCouvoIQzt9SCBJjwWhUqJob0BTXgM8XnTAKg/8C0Oq5nYzLGExaZ4fO+uL8PY 1YLNYkSpCmJsViz/vvdKHJLEpb95jbDcmTSWbHK5po9AsiWHnaN71wAQnz8NjTYGm1lPR+1BLIYu 1MGhaOPS6KwrBSAhfwbB2ijaqoswdjah1aURkzEGALvNSk9jBabuFuxWM8qgEEKjEohMyunfgtWi 76TjyEFsJgPqkDC0ujQ660oASCqYjTpEi9XUS3vNfqymXpAchETGEZc72WuaPU3VdNV7Pik4UB4S NJZuxGbSE56QRXSq5ysh6opWO5cdu6FUBZEy7tjNOBlyBmLRd9Fc5tw6NXnsBajUGq/nNRSv56O/ XEuSLoJlT37O1uJatHEZ/PzCDOZOyOLav3xIypi5/ef7szmA+n3f4LBb++vY0NFAe80+lCo1KeMu AqC5fDuW3g4iEnORJDs/m5vmNS05depeX+rgUG6/fLJXeX00H9qKxdBFaEwyuqxxXsuup6kas74D h82KSq0mSBtDRGIWGm3MkM5tKt2M1djjnhQKhZJfXXOeT31tJj3dTVVYejuwW02gUKJUqVFrtITF JKGNS3eRH5GYS1SKc3Bh7GyirboIgNCoBHQ5x1eoG9rr6W2pxWrqRZIcqNRBaCJ0RCXnowo+/toL q7GXptJNACQXzkUV5PxtuGzWm18hSXQ3VqFvP4rdYkIVpCEsNsU52X3sSfzhvC6gH2u0GLua6G0+ jMXUjQIFqqAQQqISiUjMpLuxyqcN97V5EQnZWPSdWEzdqIJCiErOIzQ6EZDXLgVqS+W0m4GQa2un wyb67DssNpnYzHE+j8mV41NHP/p1Hj3ks57l9JMAPY3VGLuaj9lnMJqIWMITsggKcb6WRU4f6bBb By3HWfTyYgJffaCcdP3ZYWhMMjfPzx2ynwwmnvCXlqzyG2Q/FpUyQnb5+u1DJQlDZyP6liPH2hol QaHhRCaNQBPh+l73gZxM35Ml+wSQ03bJaiOHUGf1B75l+cM3EBsZxp9fXcPXe+qw2UwetueNjtpi 9G11Ln1rS/l2zL0dLuXrbqdy7E8O/tojEaeJOA1EnCbiNBGniTht+OM0X/Ytx48C6dfbUktnXQmq IA2Jo2ahVAfRWVdCb0stwWFRxOdNQ5LsAfPoqw80djX77zdFbDgssWGYLjVgeyvs6MyyI2N3i888 nWl2JKd+bRY93Q2VWHo7cTisKFRBBIdFEZWUS1BYZH86va119LbUYLcYUaqCCYmMIzJlhM95U3cG c73cuVm5Y5NAsb4v2XL8z1//FigeMvW0BawfbzsHD+Wew2D1C9OlctO87HPKd/v6AHf/kmtHcmLT Uz3GlovcMbXF0EXzIafvhUYlostx7pYz1Ptl3mgq2cRzd13C2Nwkbv7HRzSpMgkOiwpYb3Ly4Cvm s5sNdNQexGzoRBUUQniQnS//9XMAbvr7hzSrsz3GFnLzHMgugrSRsuS4I6f9bji43mt5yymrjsMH 0Lcf9Tl/MBCf5SpjbkPOOXLsxp3haAeDtdEnNJYQnNt4W4siZPuWbTPpMfe2oQnXOe/vu/zWi7m3 3etvfXhbnzOjIJUn7r7auWDozkc/Ykux6xOdMVoVHW4X2ezQ3QNhwUYi1dF0RoQgmWzY63oYXRDJ 1oM9JCaYCApxfQ+rO1FhKroMYsGQ4MTRtxzmmllZNDY2srGogsiwIP7wk3mMH5HMpxsO8sTyUqLT x55uNQUnQHPphv4FQ30sWPYyrz5wHRv3VfPyN0eITPG/OOlEaDm0kXf/cPWwpTXc8k42Z5u+Ak/O hjps2LfK6/GIxFzCE3O9/iZwxVc9i35SHqfST84GnxScfpoOrmP5349PZm49GkRojLwJndPN2exP Z5t/nm36Cjw5G+pQxGknjojTToyzwU9OhHM9f2cK53o5n4v5OxPzdLp1Ol198tk8Nhkqp6qPPt02 dSo53XZ0utM/1Vh628kMauC5u6/g291V/PndXcRkTgh84TDhsCcIKQIAACAASURBVFkx125xWTDU oMwiOCzwwwiCMwMxVhGcCrytRRGyT55sb+tzZo5J46l7ji0YuuORj9h8wHWbwPAQFb0m3wq1NUFV rZ2YcBOJScH0tFmJjrcTFhXh85p+2RolvWbPlfoCwWBx2Myo2w9x06JCzhubgSZIzdGWLj7dcJAV u+qIyJoCKE63moITpK1sAw6Lqf+7ruACOqu2owmPQ5t88gdS7eWbhjWt4ZZ3sjnb9BV4cibXYcuB 1f2v7nDn5c938O62VsISxM0oOXirZ9FPyudU+smZ7JOCM4O20vUuk5mb64LQRCefbrVkczb709nm n2ebvgJPzuQ6FHHa8CHitBPjTPaT4eBcz9+Zwrlezudi/s7EPJ0unU5nn3y2j02Gwqnso89EOz8Z nG47Ot3pnw6s+g46q3cSHJVAVPr4U5q2w27FfmSry4KhOjIJEguGzhrEWEVwKgi0FkXIHmbZXtbn nFeYzrP3HlswdPs/P+LrTTt9XC4QnNlIdhvW7kZsxm7AgUKlQa2NJSg8FtFhCQQCwZmPvm6f1+PB kYkERZ74lsDfdUQ/KRCcnRgaDiLZbWhi0lFrfW/jLxAIBCcTEaedXEScJhAIBAK5nM4++bs4NhF9 9PBzuu3odKf/XUNy2DHUFwMQmjACZXDYadZIMFhEOygQnPtcNGsKz/32atR9B965Ne906iMQnCAF p1sBgUAgEAwZEYOcfEQ/KRCcfYi2USAQnAmItujkI+I0gUAgEMjhdPbJ39V4QPTRw8vptqPTnf53 kVGnWwHBCSPaQYHgXOaVA86/ytOrhkAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIDiViAVD AoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBALBdwixYEggEAgEAoFAIBAIBAKBQCAQCAQCgUAg EAgEAoFAIPgOIRYMCQQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgE3yHEgiGBQCAQCAQCgUAg EAgEAoFAIBAIBAKBQCAQCAQCgeA7xClfMHTn3fey8qvVpzpZgeCsRfiMQCAQCAQCgUAgEAgEAoFA IBAIBAKBQCAQCASC4eSkLxg6mxY7nE26ftcQdSMQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAw PKiHS9ADf/wzO3fvcTk2ZdJEnnrskeFKYsj86aG/odVq+e1vlnn8du/9D5KZmcEvb7v1jNBVDofK y3nv/Q85cLAEg8FAYkI84woLue6aq0hJTj6lutQdrefl196guKQEu81GwaiRXH/dtRSOGS3r+juW /YbLlyzm4vkX+T12ttTNQB74459JT0vjF7fc5HL8zrvvZerkSdx4w/WnSTOBQCAQCAQCgUAgEAgE AoFAIBAIBAKBQCAQCATfZYZtwRDAlZct9VgccSaweNFCHvp/f+f2W28mXKvtP360vp59B4r5xa03 n0btBseOnbv4898eZuniRfzsxzeSkJBAW1sb+w8U885/P+CeZXeeUn1+/+e/UDBqFM8/+ThabRgl pYd474MP+euYP55SPQQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgE8hjWBUPeuPPue1l08cUs umSB19+NJhOvvfkfNm/Zht6gp3D0aH75i1tJTEgYNh2mTp5EVFQUa75ZyxVLl/QfX/HlKgpGjiQn K8urrv5027BpM6+9+R9efeF5AF5/623eee993nj5BZKTkig9VMbv/vAnPnr3LVQq1bDkQ5Iknnr+ 3yxcMJ/bbvp5//GU5GRSkpO5ZMH8/mOdnV08/9LL7C7ai0IBUydN4rabbyIiInxYdAHo6OykvqGR P9z/O+LidABMmjiBSRMn9J/jrwz/9o9HKK+o5NEnnuLRJ55i1Mh8EhMSPI499dgjHnVz26+WMWP6 VIoPllBWXoEuNoY7bruFyRMnAtDa1sbjTz/LgeKDxMfpWHLpIp574SU+eOc/REVG8slny/no00/p 7OwiLzeX22+9iRG5ucNWNoNhsD5w26+WMW3KZA4UH6SyuprUlGTuuPUWxowuOMWaCwQCgUAgEAgE AoFAIBAIBAKBQCAQCAQCgUAgOBtRnm4F/vnY4xytb+DRv/+Nt197hfS0NP7yt4eRJGnY0lAoFCy6 ZAErv1rVf8xms7Hq62+4dOHFQ9Jt4vhxHK1voLmlBYA9RXtJTUlhT9FeAHYX7WX82MJhWywEUHuk jqamZubPuzDguX/9+z/R6/X8++knePaJf9Hc2so/HvvXsOkCEB0VRWpKCv955z1KSg9hsVg8zvFX hg/edy95I3K5Z9mdrFr+KU899ojXY75Y8/VabvrJj3n/rf/P3n3HN1XucRz/nCRN07RQulv2XiIb ESeyERAVFPVeBRUH172u66o4cOPAhRPBhXuhDEFRBEQRAdl7t4VCBx1p1rl/pA0tdFMs4/t+GUtz Ts7ze54z0vb88nsm06dXL54a/3zwuBn31DOEO51Meet1Hn3oAeb8NDf4uh07d/HGO+9wzx238/lH 73PNVaP46ed51To2lVGVc2Da9BmMvPxffDT5Hc4+8wzuH/sImZmZ/2DUIiIiIiIiIiIiIiIiIiIi cqyq1oShL7/5ln6DhwYfC377rcz109L2Mn/hb9x+840kJiTgdDq55qpR7EpOYcvWbdUZGgP69WXb 9h2sWbsOgPkLf8Pn9XL2mWdUKbaIiAhaNG/GX0uXkZuby7bt27nkomH8+ddSAP5aupROHTtUax8y swIJIYXVfADm/DS32JgDJKeksHzFCm4acz0x0dHExcZyw3XX8PviP9m3L73a4jEMg2eeeIzY2Gie Gv885198CbfeeTe/LlgIHPn9e8HQIbRq2YLQ0FDOGzSQjIxM9u7bx67kZFauWs0N119LZGQkSYmJ XD3yiuDrbDYrNlsITqcTu91Om9atuOaqUYcdT0kOPif6DR4aPAah6mM0eOAAOpzcDqfTyYjhw4iN iWb+wrLPNxERERERERERERERERERERGo5inJLjhvCGOuHV3suamffl7q+impqQBcesWVhyxL3b2b Jo0bVVtsMdHRdO/Wle9mzKR1q5Z8N2MmfXqdQ2hoaJVj69yxA0uWLqNWrVq0bd2abl278MY7k8hz uVi1Zi03/WdMtcUPEFk7EggkmcTFxgLQ+5ye9D6nJ0uWLuOe/z0IwJ60NKxWKwkJB6a0qpuUFFwW HR1VbTHFxsRw4/XXAZCbm8vsH+fy6BNP8fTjj2G1BPLRjtT+rRMZGfy33W4HwO12k7Z3L2EOB5G1 aweXJyUmBv+dmJDAff+9kzffmURmVhZNGzfmgqFDaNqkyWHFU5KSzomb77gr+O+qngNF+1P4/Z60 vYcbroiIiIiIiIiIiIiIiIiIiJwAqjVhqLLi4+MwDINPP3yP2rVqHfH2Bg3oz6NPPs3QwYNYtvxv /nNQIkdlY+vUsQNPPvMctWpF0LlTR6KjooiJjuHLr76hdq1aNGxQv1rjb9igPgkJ8cyZO5c2rVuV ul5cbCw+n4/de/YQHxcHwK7k5OCyI8XpdHLe4HP5/KuvWblqNX169Sx3DC3GoUWuSnquMmJjYshz ucjMygomDSWnpBRb59RTunHqKd0wTZMf5/7M7Xffx8fvvVtqAtmRUtVzoDDRqFBySgo9up9S3eGJ iIiIiIiIiIiIiIiIiIjIcahapySrrPi4OHp0784zz7/Ijp27yM/PZ+369Yx97Ak8Hk+1t9e1S2ci a9fmkcefpE3rVjRuVHqFm4rE1q5t22BVncLpxzp37MAnX3xJ52qejgwCU4DdPOZ6ZsyazZvvvMuO nbvweDykZ2SwfMWK4HpJiYmc3O4kXnrtdfbtS2dPWhqvvP4m3bp2qdbqQml79/LAI4/x17JlZGdn k5OTy3fTZ5KSmkrrVi0rNIbR0VFs2rIFn88X3G5Jz1VG3aQk2rZuzSsT3yAzM5PklBTenjwluHzJ X0t5Z/J77EpOxuv14vf7cbvz8Zvm4Q1IFVT1HJg2fTrLV6wgLy+PT7/4kj1pezm9x6n/YOQiIiIi IiIiIiIiIiIiIiJyrKrRCkMAd99xK+9/9DH3P/Qw6RkZNG7UkEsuGk5ISEi1t2UYBgP79+Pd997n 8ssuOezYQkJCOOmktmzavJkmBclHnTt15IuvvwkmEFW3bl27MP6px/no48+47a67ycnNJS42lpYt mjNh/DPB9e6/+y4mvvk21914MxgGXTt34vprrq7WWGJjYhg8cAAff/YF69ZvwO/3U69uEnfedksw Yaq8Mbx42IU8N+Flvv72O1o0b8aE8c+U+Fxl3X/PXbzw0itcMfo6YmNiGNCvD2vXrSfEZqP9ye3Y sGkT9z34MHv37qVevXr8757/EuZwVOv4VFRVzoFBA/ozacr7bNq0mbp1kxg39kEii0zRJiIiIiIi IiIiIiIiIiIiIlIao17ngeZ/nv6cq9tl1nQsIkfM74v/5Mlnn+OLqR/UdCiH7fqbbuWiC8+n9zk9 azoUEREREREREREREREREREROYa8vSKSV/87rOYrDIkcCT/P+xWLxULXzp1ITknhrUmTOeesM2s6 LBEREREREREREREREREREZEaVy0JQ/0GDy3x+VnTvq6OzR+20uIr6miJtSwV6Qf8c30pL56aHNNO HTvw0qsTef6lV3A4QjnjtB5cPWrkP9b+0bavRERERERERERERERERERERAppSjIRERERERERERER ERERERERkRNA4ZRklpoORERERERERERERERERERERERE/jlKGBIREREREREREREREREREREROYEo YUhERERERERERERERERERERE5ARiK+nJ1NTUfzoOERERERERERERERERERERERGpZgkJCYc8V2LC UEkrioiIiIiIiIiIiIiIiIiIiIjIsU9TkomIiIiIiIiIiIiIiIiIiIiInECUMCQiIiIiIiIiIiIi IiIiIiIicgIpcUoyERERERGRojIzM0hO3klenqumQ5HjVFiYg6SkekRG1qnpUERERERERERERESO e0oYEhERERGRMmVmZrB161bi4+NJTHTUdDhynHK5XGzbtoWGDRsraUhERERERERERETkCFPCkIiI iIiIlCk5eRfx8fGEhYXVdChyHAsLCyM2Np7k5GQlDImIiIiIiIiIiIgcYZaaDkBERERERI5ueXl5 OByqLCRHXlhYGHl5uTUdhoiIiIiIiIiIiMhxTxWGRERERESkTKZp1nQIcgIp73jLzMwgJWUXubl5 /1BEIiJlczrDSEysq+poIiIiIiIiInJMqXLCUG5uLuvXr8fn85W6TkhICA0bNiIysnZVmznmpKam kpCQUNNhiEgpMnPc+P0QVcte06EclXQNO3qZph/DKF4Y0OfOICd1Hq70FbjS/yYvfSUAjuj2OKPb 44hqjzP+NKwhtWoiZDkGJCYmAZCSklzDkcixwDCMmg5BTgDlHWeZmRls376dtm3bEh0d+w9FJSJS tn370li1KvCzuJKGRERERERERORYUeWEoV9++YWRI0eVutydn09mVhYzZ84kPj6ODh06VLUpEZFq 4fb4ePq9P/EaNsaO6kRYqIqsybEhbc1r7F31Ao46J1PvtFexOeLJ2vYVKUvuo058PrWjbDRo1RBH eDcwLLhdyWTvm0r65ldJ+aMWCV2epHaDc2u6G3KUKUwWKvy3koZE5FiQkpLMSSedREiInfT0fTUd jogIAHZ7KG3bnsT69euVMCQiIiIiIiIix4wq3y0v/ORnbk5OsU+B+nw+3G432Tk5bN++nVatWrFx /XqWLl1Kx44dDz/iE9jOdDdrkvPp2qQWkWE1Hc3xzTAM/JYwvl60k67NwqkfpWo0x4OXP16EMyqc UEcYz32yivsvb1/TIYlUSNryZ+g88Gp2rp/M5jnDcES2grw5tD+tHvaIM7FGJGBxmGBmAmAz2hAa 5yGq/j7cGXNZt+w6srYPJqnLOKyh0TXcGzkaFE0WKvqckoZE5GiXm5uLYVhwu901HYqISJDb7cZi sZGbm1PToYiIiIiIiIiIVJil/FUO9eYPO3jorV+AIiXjDQPDMLBYrVgsFqwWC6F2OytXruSiiy8m fV86y5Ytq7bATySmCfPWZTJtyV4SI8P4YcnOmg7puGeaJu/MXEOzpAhmLNvLz2szMM2ajkoOx6Ll W/lt9XZO69aMLifXZePubGYt1o1xOTb4/XkY+Ytp0LQf9ZvtISZmPm279SE0dhCWsFBMXwa+nEx8 uQQeOZngz8US5iA04Tzadj2NKPt0Ns7siy9f1RhOdCUlC1VkmYjI0cA0TXw+H6Zp6qGHHnocVQ+f z4tp6g8HIiIiIiIiInLsqFLC0OI1u2jetGnwe8NiwVKQOGQQSCKyWCzYbDby8vKw2mycfdZZ7E7L 4JK7J3H728u5462l3PHWMp7/emO1dOR4lZ3vY9KvKWTu93JZz+Y0rRfNgjVHX8LQtOkz2LRlS02H Ua2279lH00bRDDu7Oa58P5N+3sV+l6+mw6oReS4X7304lfz8/JoOpUoys/MY9/oMBvfrTFbmfrIy 99P3tHpM/HotO/bk1nR4x53ExKTgo7Rl/7Sb77iL6TN/+MfbrVbefAx7HDGxA4lLvBAcDfHnu/Hl EXx486z4XJZiz/nz3RjhbYlrOIiEuDR2/fHfGu3GcbEvjnEpKcnBR1nP/VN0TMjhuuveB/jl1wU1 HcYx7b6HHmHOTz/XdBgVVtNJAXqU/bjhltuZ89PPNR6HHnqU90hNTa32bYqIiIiIiIiIHEuqlDCU l52J31+QOGEYgRI4hf82DAyLBcNiwWq1BisQhUdE0Ous07i6b2Pys3bToHFLGjRuwYoNu3B5/NXS mePNhj1u3pq7m84N6nBm+wb4/SZuj5e8nMyaDu2EkJOVQX6+F7fXR6c2denaIobJP6ewYfexmTRz Ihs74StOOrkJmH4yM7PIzMzCk++ia7vajH13GV6f/rBbXQqTgQoTD0pKDjpWpzyq6aQGn+nDm+/D tNXGb7Hhzffh9Zi4c12kr1zC7rnfsevzN0n+chJpP88ke/0mfHkmvjwfvjwvWGNIbNAWd9oMMrd8 UWP9OJHU9DFzItFYi8jx4Lb/3sPMH2bXdBgiIiIiIiIiIiJygrBV5UU52engdge/NywFeUcFiUOG YWC1Wgmx27Hb7QDYQ0MJNyPodebpeNxzefunWXQ57SxysstOflm5ajXvf/Qxq9aswefz0bBBAy4c OoQ+vc6pSujHBJ/fZM6abHak5TG0SyLhYXbyPR4KJn/DtT8Dv79wrA+8zij6zUHm/DSXXckpwfWc zjCaNmlCh5Pblfm6E8XBnwQ0TcjKTMfl9uArGOs6dZwMPKUu81aksSktlN5tamOt4NAVHf9CdZMS 6X1Oz+oIX8rw1Q9/sDllH31OakFW5n4MDCjIc6ztMMHMZeI3q7nxgrYV3ublV13D8AvPZ+jgQcWe H/HvkYy6/N8M7N+3urtxTCiaLFTW8qq478GxLF7yFwChdjt16yYxYvgwevU8u8rbLMsNt97O0MGD 6Nend/C5CeOfOSJtVZjfh8/tBYtRkKAL7v0pZG1ZhN+dR0Ssl/AGYMGLO3MbWSu3kLe9EbXanoYl JAQAk3Y0brmV9UvuJSKpJ9bQ6BKbWrtuPR9+/AkrV60mPz+funWT6NXzbM4/bwihBe/rNaXosWC3 24mOiqJtm9ZcOPQ8WrZoXuHtlLSPD8dRecz8Q06E87M6jpei4xTmcNCkcWOuGnU57du1q64wK6W6 z4GivF4vM2fOYvLkyXzyyccAXHzxCEaOHMmAAf2xWq2V2l5ycgrvT/2ENevW4fP6aNGiGRcOHUKb Vq2qPfZCd//vIQb260PPs86s9m17PB4uGzW61OUWi4WP35tU7e1WpyM5PhVRUhWPBx55jAb16nHt 1Vce9vZvufO/DDl34BH9nbOkNp576gmg5P5VhwceeYwlfy0t9lznTh159MH/lfm6yo6HWfB/VVuR o52qAomIiIiIiIjIia5KCUO5GXuw+AIJQ4ZhYJomhmEEE08KpyOzh4YSHx8PBG7qORwOakfW4Yp/ X0p4re+Y9PMCsjN2Y7WUnHXx++I/eXjcE1xy0TBuu/kGHA4Hi/5YzCuvv0FK6m7+femIqoR/VEvP 9fLJ4gzqRdjo1TYWq9XA7fEWS+px5WRy+cMfYAt1Ygt1Ync4SYh0MrxHU9o1K/nmL0DrVi3p1qUz pmmyJ20vP879mXCnkxbNm/0TXTtqrdi0l88WbiY1Kx+vOw+vKwdvfi5+r4t8ty/wR0QA08Rvwult Y9iUnM3bv+5heOcoosMrdhoVjr/8c3Yk7+X5Sd/Tq88Z5OS4sFgsBeeSgWn6MU2Tpkk2pv20hM7N anNa+/o1HfJx73CqC11w3hDGXDua/Px8ps/6gafGP0/TJo1p3KhR9QV4FPObPnxeL1gNsILPlU5m 6nxs4T7C6/rZss6PO9eKCdhDvdRvZ8XcvJ2sv+dSq83ZYARuhtiNNtjti8hJnUfthkMPaeePP5cw 9rHHGTp4ENdcdSVxsTEkp6Tw49xf+G3R75x95hn/cM8PVXgseL1eUlJSmT7rB26587/8757/cnqP U2s6vKNOYmJSlc+9ir72RD8/K6pwnHJzc5k05X0efGQc774xkTp1Ims6tGqRnp7Oxx9/wocffkRq amqxZcuWLef22+/gqaee5rLLLmXEiIuJioqq0HbHPTOeVi2a8/S4R3A6naxfv4GvvvmONncduYSh IykkJIRPP5gc/H78iy/hdIYz5pqrajCqY0uJN/hNMKsxScU0j1zizj/ZRvEG4bzB53LtVcWTqioS Q2VjVSKGHAt0nIqIiIiIiIjIia5KCUNeTz5+tyvwjWkGpiAj8ElCwzACCUNWKxHh4TRv1oxZM2eS kZmJ2+3G5/VimiaNGjfm5vMiuWHcHyUmDJmmyUuvTWRg/75cftmlwef79joHi2Hw7AsT6Nv7HBLi 47n+pls5pWsXVqxcxcbNm6lXN4kbrruWk9q2ASDP5WLSlPdYsHARObk5tGvblhvHXEdCQTLT9Tfd yqndu7Fy1WrWrd9ATHQUN1x/LV06darK8FTZ3zvzmLMqi671w4iLDMXj8+Pzm0WSHAKeuGM0pmni 95v4TT9+nw+v18uHs5cyrtnp5bZjGAbxcbHExkSTkXmgwtOPc39h565dAAX7rikntzspuNzj8bB0 +d/s2LETt8dDo4YN6Nq5EzZb8cPI6/Uxb8ECTL/JWWecdsjyo81Hc9cweugpuH1mQbWsgoQSwO31 Q9GEoYIxT4qyExFq8NHCfZzZOoL29Z1Vbt/lcvHHn3+RkpIChkHdpES6dukcrOIxbfoM6tWty549 aezdt48WzZuxc+cuhg4JVLdZuvxv/l6xkgvOG0xERARpe/cy+8e5jBh+IYZhlLtfD95+j+6nkBAf x8JFf7B7z26cYU5atWxR5f7VFJ/Pz3+feJc2bVtimgZujx+L1ThQlcs08fn9+Lx+TmpWh4dfncb7 T/ybuKiIaouhvGvTieRwqgsdLDQ0lKGDBzHxzbfZvGUrjRs1Kvc6f7AHHn6URX8sDlwP4+MY2Lcv l464CMMwGPfUM6zfsJFnX5jAsy9MoHWrlkwY/ww333EXA/v1Y2D/vnw97TtmzPqB1ya8ENxmSmoq I0dfx5S33iAhIb7SMZXL68WLC4NAgm6+eyeWCLAZfnJyDDyeWjQfPBObI4Gsbd+yefF9NGmejWdN GjlbVxIa3xTDMAEnDie49i07JGHINE0mvPoaA/r2KVahoXGjRlw18nIgcM34Ztr3vPHKhODynbt2 cfX1NzD5rddJiI8nNzeXd9//gIWLficnO4ezzjyD60dfhcPhOKRbhzNONpuN+vXrcc1Vo8jav59X Jr7Baad2xzCMMrdb2j4uL5bS+jX+xZfKPWYAMjIyee3Nt1iydBmGAd06d+b6a0ZTq1bgunMkfh6p jnOvMglHx+P5WVqb5e3PsjidTkZfOZJvvvueVWvWMH3mrFL7DIFjo3u3rqxctZr1GzZw28030v2U blX++ba0PlXV2rVrmTLlPb79dhr5+WVP3Zqamsrzz7/Aq6++xpAhgxk58gpatmxZ6vqZmZmkpu7m zltuIiY6kBjf/uR2tD+5eGWmXcnJPDzuSTZu2kydqDpcPfJyOhSsk5mVxbvvfcDyFSsxMOjY4WRG /ftfRESEA3DXvQ/QuVMH1qxbz6bNW2jYoD6bNm/hldff4pXX36JF82Y8/vCDuFwuPvrkM35fvITc vFxat2rJ6FFXEBcbG9xOl84dWbtufYlxVFRF2ml3Uhs2bNrM5i1biY2N4YZrR7Nm3TqmfT+TPJeL 00/tzrVXjwoeQ3fd+wCdOrZn9dp1bN26jcTEBK4aeTmtS/kZ74lnn2PJX8swDIPY2Bh69zybC4cO wTAMnn/p1SqNz/czf2Da9BlkZWbRpEljrrziXzRt3LhSY1Oo5Bv8ZuC/gmU333EXp3Ttyuo1a1i/ cRPRUXW4bvRVdOrQAYBvv5vOV9OmkZmZRbOmTbj2qitp1rQJTz/3Ahs2buKFl1/hhZdfoVWLFjz7 5DhuvuMuunXpzKo1a9mwcRM3jbmOdya/x6033UDH9icDkLZ3L1deO4apUyYRHh5Obm4e70+dyqI/ FpOTk8uZp/Xg6itHMuGV10ps48577qdfn17Byl+ZmZm88c67LFv+NxgGXTp1ZPSVI6kVEVGhPpY3 RoVcLhdTPvyI3xb9QW5uLm3btOb6a64mPi6u1PEorW+O0FDAZMfOXdz34NgKxiVSM5QwJCIiIiIi IiInuiplcnjcbty5eUAg+cQI/AOLaeIzTfymCRaDkBA7daJjcDjD8Xjc+L2+ghv0HnJd+ZzZqT2p 140tNq1WoW3bd5Caups+5xxa9vycs89i/IsvseSvZcGbWKOk+QAAIABJREFUcNOmz+Ch+++lRbOm fPv9dO4f+wiT35xIZGQkT49/HrfHw7NPjqN2rVq8/9HHPDzuCV554bngH9Fnz/mJB+69m8aNGvL5 V9/w1Pjn+fi9yf/IdF1un8n3yzNJTsvllHoOHHbId/uwWE2sVisWC8UqOAH4TRPT78fn8+Hz+sj3 eNmRnl2h9kzTZO/efaTt3UeL5gemb+nV86zg8vSMDH75dT4RERE0aRyoDvDrwt9w57vp1fNswsIc bN22nZTU3dSvVze4jTyXi5/m/kJMTDSndO1SreO3ctVqlixdVuY67U9uV+mbMrv357I3Kw/TsGCz 2grG3MAwLBgEkoUK/5Do9/vx+X34fH6sFpMujezMXbGXjbvzGdS+DnZb5fv7y68LsNlsDD53AH7T ZMHC35i/4Lfg/gDYuHETZ591BrExMXg8HtasXUdOTi7h4U6SU1KoVasWySmptGgeQXJKKgkJ8cGx L2+/Hrx9wzCYOXsOjlAH5w8ZjMfrZd6vCyrdr/Icqf1Z6I0Pvyc910u9yDq4vWAzDKymEUhwNMDv t+D3mXi9YLWFEFPHwX3Pfcnrj/wbSzUet2Vdm6rDx599ztvvTilzncsvu5TLL7ukWtqrjIOTDA6n ulBRhRVMDMMITkFVket8UY8+9AAAfr+fTZu38NiTT5OYmEivnmdx/913sSs5ucypenr3PJs33p7E xk2bada0CQCzZs+hQ/uTSUiIr1JM5fG6UsnN/JuQyFhstaKw166HPSoar7kZZ+YuYmKz2fnb7TTu 9QmRjS/EsFjZ8ed/qJsYgjcbQrx28OVjEkpEuI30fcsPaSP43lvGlCO9z+nJW5Mms3LV6mDy23fT Z9KlU8dgosJT459n//5sHnvoQWJiovll3q8sW/433U/pdsj2qmucevc8m5k/zGbHzp00qF+/zO2W to/Li6W0flXkmAF47MmncThCmfjSC/j9fp5+7gWeGv8cj419MLhOdf48Up2JehVNGjoez8/S2qzI /qyosvpcaOYPs3nwvnto3aolFouFh8c9UeWfbyt6zJZnzpw5TJ78HosWLQo+Z7Va6dSpI7169aJX kWvJjBnfM2fOj8yZ8yNLly4lPz+fzz77nM8++5zu3bszcuTl9O59aCy1a9cmKTGBT7/4iqFDBtGk UUNCCqZZLOrnefO545YbadCgPt99P4OXXn2dN1+dgGEYPDfhFRyhoTz7+GP4/X5envgGL732Ovfe dXvw9T/+/At33nITLZo3w2KxlDjl1kuvvYHH4+HhB+6lVkQEn37xNc88P4GnHns4OOZlxVFRFWln 0eI/ufOWm6iblMg7U97n0See5vQepzL+yXHsz87mwUfH0f73k+jR/ZTgdmfN+Ym7bruZpo0bMXP2 jzz+9Hhefu4ZateudUgM994ZGBu/38/Wbdt5bsIrJMTHccZpPbjtpv+QkppaqfFJSUllygcfMfZ/ 99KsSWM2b93G/AW/VXPCEMGf2wv9OPdn7r7zNho1aMDX075j/IsvM+Wt19mVnMLbk6fw+MMP0axZ UzZv3sLP836laZPG3HXbLSQnpzBoYP/g9MGF2/xhzk/ce9cdtGzRHIvFwjuT3wt8uKBgedGvpmky fsJLZO/P5qH77iE6KopfFyxk+d8rSm3DLPK7B8CTzz6PwxHKi88+jd/v5/mXX+G5F1/iwfvuKbeP pR1zB48RwHMTXsbtdvP4Iw9Rq1Ytpn76GeOeeobnn36y1FhL61thRdXKxiVSE4omDH325ddM+eDD Mte/9OKLuPTi4f9EaCIiIiIiIiIi/whLZV9gAj6vl7z8vANPGgaYsD83n19+X8HUr39i6tdz+WTa L3w1cwHf/7yEmb8uZ9bCv5m98G/m/L6GX5du4JPpC3G53ZT0J8PMrEDlm9iYmEODtliIjooiIzMj +NzggQPocHI7nE4nI4YPIzYmmvkLfyMtbS/zF/7G7TffSGJCAk6nk2uuGsWu5BS2bN0WfP0FQ4fQ qmULQkNDOW/QQDIyMtm7b19lh6fSsvJ8vDInmX1p6TSPNvF4vbjcXlweL26vn3yvH7fPxOMDjx+8 /sBXnw9cHpP0HDebU7NYtCYZr9dTZltr1q7jvQ+n8v5HHzN91g/Ur1eXhg0OnYLJMAyio6Jo3bIl O3buBCAnJ5cdO3Zy2qndiYysjd1up0XzZsWShTIzs5gx6wcaNWxA925dq/2PwSe1bUPnjqV/KrWq ySU2fOS5PHg8frw+M/Dwg69gvAu/egqW5bl87Mt0sWVXBgv/3kFaajJ/rNrGK3N2kZXnK7WdwvEv fGzfsYPs7GxSd+/mlG5dCAsLI9zppFuXLuzctYu8vAPnWKtWLYmLjcUwDOx2O9FRUSSnpODxeMjM zKJd2zYkp6QAkJySQlJiwiHtl7RfS9r+/uxsdu/eQ/duXXA4HNSKiChz3KvqSO1PgBVrtzDpkzk0 atocrw98fgO/acE0bGCEYBKCiQ0/Vnx+C16fQUStWvy9dgtvf/ZrVbtUotKuTdVlxPBhXD3qilKX /5PJQoXJBImJScWSC6oraeHLb76l3+ChDBl2MW+8PYmx/7uPenXrVvg6XxKLxULzZk05f8hgFha5 4V2eiIgITju1OzNnzwYCNxt+mPMTA/r2ATismEoSUqsJ6bkewiM2YzcXY2TNxshciCVzKaHZ6dht EF8XXBmrgq+pVf9cPB4rPosLHIl4TSc+ez18Rh1CsOPK+PuQdoLvvbGHvvcWCnM46NOrJ9OmzwAC 1edmzZ7DwP79ANi9Zw8LF/3OnbfdTKOGDYgID+fcAf1LTBaqznGKiwtUsMjK2l+l7Zb3msr0qyTJ KSksX7GCm8ZcT0x0NHGxsdxw3TX8vvhP9u1LD65XXT+PHHzeFZ6XBz8qurykbRZ1op2fFd2fpcnN zeXtyVNwOBy0aX1gWq2y+nze4EG0bdMai8Vy1Px8+5//3MiiRYsIDw+nf//+PP30UyxcOJ8PPnif q6++iiZNmgTXbdKkCaNHX81HH33AggW/8sQTj9O3bx/CwsJYtGgR//nPjSW2YRgGY/93L9FRUbz0 6utcfvV13D82UIWqqEED+tG8WVNC7Xb69+1NZlYW6RkZpO7ew6rVaxg96gqiouoQExPNlSP/zZKl y0jPOPC7xMC+fWjVsgUWS8m/Hu3dt4/fF//JmIKqK2FhYVx+2QhSUnezfceBn6tKi6OiKtrOuf37 0bRJYxwOB2efeQau/HxGXX4ZERHhJCUmcPJJbdm0ZWuxbffrfQ4ntWlNWFgY5w8ZRHR0FL8v/rPM eCwWC00aN2Jg/7788edfVY7barNis9lwhoUREhJCy+bNDuvnk8Kb/MUegQXFEgCGDBpIi2bNsNvt DOzfj8zMwDlgtVoIsdkIC3MQYrPRskVzRl3+r2LbMg9qB2DQwP60atkiOC33wbFgHohv9549/P7H Ym6+4Xrq16uH0+mkX5/edO3cqcw2CvuQnJLKilWruG70VcFj95orR7F4yV/s25debh9LG6Nvv/ue 84aPCD5mzZ7DwkW/c+OY6wL7zuFg1L//RUpKKlu3bSsx1vL6Vum49NDjKHgMO/88rvjXgerWB7v0 4uFcctGwcrcjIiIiIiIiInIsqXSFIb/PT2bWPvam7WPilK8OWe6LaUp0sy4AwcpDhQwDDvz9xAQD PvnuO6Yt3c7gjsUTHCJrB6pvpO3de8iNS7/fz770dOpE1gk+l5SYWGydpMRE9qTtJSU1FYBLr7iS g6Xu3h2sslKnSLUPe8FUUG63u5RRqF6mz0uOx0XyXjfhYQ4cjlAcoRBiN7BZDaxWMAwTE/CbgamW XB4fLrcXt9tDjsuPYVjwl5Mw1LpVS7p16YxpmuTk5LDgt0Us+G0Rp/c4FYCt27azYuUqsvbvx+v1 AhBfcAM2OycHwzDKnGZjw8ZNOEJDj+j0VYXVLA6uTHM4ySVWw2TDjgzq1I4g3GkSardjtZoYhj8w 5n4Tr8+PxxtILMp3e3Dlu8lzefBj4HSEkJXvx18wZqUpHP+iUnfvxjAMIsLDg88VjnFObi5hYWEA hDuLT3mWlJhAckoqoaGhxMXGUq9eXZb8tRSv10vanjS6d+saXLes/Vqo6PZzc3Ox2WzFpg6KqMD0 KlVxJPZnniufW8e+QlRiY3JdPiwhYAmxYsMORggYVkzA6/fiyveRne0lIyObjPQMrHYnEz+cTbeT m9Kxdb1S27Barfi8hyaHebxebCHFL6ulXZuq04jhwwAOqTRUE5WFSqtAUvT5okkHlak6dMF5Qxhz 7WgyMzOZ8OpE3v9wKt26dK7wdb6oX36dz9RPP2PHzl24XIEpNis7VVy/Pr156tnnuPaqK/l75Uqy c7I5/bQegX5VIaay1D31DXb+9TjbM1ZiePdjkAfkFXtftdpqkdDxzmKvM03w+gwcEYlgi8T0ufC5 Xbj9+fj9YYe0E3zvTdsbnEKmJEPOPZcbbr2dMdeO5o/Ff2K1Wjn1lEAVi9TU3VgslkOO/ZJU5zjt 2ZNW0IfaVdpuea8Jdzor3K8S40tLw2q1BivcANRNSgoui46OAmr255HDcaKdnxXdnwf78ptv+fKb b3E4HDRu1JCH/3cfUXXqVKjPRd+7j7afb91uN7m5ueTl5VVo+z6fH6/Xi8fjwe/3l7t+dFQUV48K TIuYl5fHz7/OZ/yLL/PQ/fdwUpvWQKASUaGifd23Lx2r1RpMKgRISgj83rF37z6i6gR+nygrURIC yZAA1954S4nLCpPwS4ujoircTq0DVYFCQkKw2+2EhoYWec5+SLsHT7mXEB9XagLZwkW/8+U309iV nBKcZq606csqEnfXzp249cYxvPfhVLL276dRwwacO6AfjRs2LHWbZSnxprx5cJWfwP4o/L6wMlV+ fj5JiYnccevNTJryPln799O4USOGnDuAxo0Kz3+zWOWgwu3FxsQc0raJWaTNA22n7g68HybEx5eS RHBoG4WvNU2TtILrTFxsbHCdxIIPBexJS6NOncgy+1jaGA05d2CxZPNVq9cAcOW1Yw5ZPXX3Hho2 aHBIrOX1rdJxidSQg5N8Lhx6HqYJ7334UbH1LrloOCOGD9PxKyIiIiIiIiLHnUonDL37y3ZefX0C fp8P0wxMjQWBZCCr1ca+fTls3b4fg+AHLIMVhPwcKGlkAD7AZrWy8rf5DO54YbF2GjaoT0J8PLN/ +onWrVoWW/bTz7/g9/vp3OlAdZLCGyeFklNS6NH9FOLj4zAMg08/fK/YH9aPFrXDrNzUrwHfLE5m 0apdxNZyUzs8DGeYgzBHKKF2OyEhNkKsFqxWS8FUSQYWi5XQkMAY270+bDYbXk/ZCUOFDMMgIiKC xo0a8edfSzm9B7hcLubNX8DZZ55OYkIiISE2Vq9ZG/yUekR4OKZpsn9/dqlJQ507dmBXcjI//PgT vXueHbxJUt0OTjI5nOQSAAw/uW4foW4/lhAwDZMQ08RiGMGb8aZpAJbAp6P9fmxeKyE2K+FhIWzP yadLqwTO65pEiLVyRbvCnc6CBK7A9GIA+/dnB5cdiLH465ISE5m3YCGhoXaSkhIJczgIc4axes1a 7KGhRBbcrCpvv5a0fafTidfrxeVyBZOGsrMrNt1dVVT3/nz3s1lk2yII81nJyHLjxYvH9OPxgz3U gs1qAQN8Phtevx/TsBNiDyPM6cbr9WCvZePd73/nhdYXlNpGUmIiO3ftKvZcZlYW2dnZh1R3Ku3a VN0OThqqqWnIDlZahZKi1YcqO1VZZGQkt918IyNHX8uMWT/QtUvnSl3n0zMyePzpZ3nwvrvp1KED DoeDL7/5lrm/zAuuYzHKP5e7du6E3W7nt9//YP7C3+h51pmEFlz3qvu9JzymHS37FJ0iwSy4MeoD w8YhFwkgc/Mn2KxeTLMe1jptML0uIBevewc5Xj9h0e0PeU3DBvVJSIhnzty5xaqeHKxRwwa0btmS WbPnMH/hb/Tr0xubzQpAQkI8fr+f5JSUYAJFaapznObM/ZnY2Bjq1auLPdRe7nYP3sflxbJ7z54y +1XeMRMXG4vP52P3nj3Ex8UBsCs5ObisuqWkJFcoOe/gc7K05WWtU9Txen4e3GZV92dhYlVl+wwU q9xYHedORcaxPBMnvsbkyZNZuPA35s2bx7x58xg79mE6dGhPnz596NOnd7DK0ObNm5kz50dmz57N smXLg4lChmFwxhlnMKqManlFhYWFMaBvH6Z9P4O1a9cFE4ZKExMTg8/nC3wIoaByaXLBe3NMTHSR NYtfRw+enrSwEuPbE1+mVsSRSaQ+0u0UJvUUSt29h26dOx+yXmZmJi+8/Bp33HIjJ7c7CUdoKN/P nMX8hQeqXlVlfLp27hSsQDNv/kIefORx3nx1QvDcrIzSbtoXTd4pWPHA90WSeUzTLBbPL7/O574H H+ad118lNDQUw7AE1yurbbs9hPx8d/C5wgq4pmkSFxtb8L6RWkr1zxLaMA/0ISY6OnidKbyuJBdc Z2Kio4v1q7Q+VmSMYmMDUxJPfvP1En/PM03zkFjL61tV4hKpCSVVBbpw6BDA5L0PpwJwyUXDGDH8 Qh27IiIiIiIiInJcqvSdgj9XbGPT5kw2bM5g45YMNm/NZOvWTDZsyWT9+n3s3puP6Q/cyPSbJkbB V2/Bv32miekv+GqaGKaB3zz0RqdhGNxw/bV8P2MW7334EXvS0ti/P5vZP/7EyxNf57IRFxX7lOy0 6dNZvmIFeXl5fPrFl+xJ28vpPU4lPi6OHt2788zzL7Jj5y7y8/NZu349Yx97Ak8FE2yOtBCrwbDu dbmyT3P2u9xk5+VjsViwWq3YrBZCCkrmh9hs2EMCj9CCr3abjRCbFYvFIDY8pMJtZufksGXrNqKj Ap+q9vp8mKZJSIgdi9XCnrQ0Vq9dG1w/PNxJ/Xp1WbBoEZlZWXg8HtZv2MiOnQeSJgyLwRmn9aBO ZB1mzfkx+An5I+Gktm3oUJBYcljJQkDbxnFERDhwRjhwhofiDLfjdIbidNqxh9gCCVs2KyE2Czar FavViiPMhtfvZXtaJv/q2ZRh3etVOlkIAtOmJMTH8fvixeTl5ZGTm8sff/5JvbpJwepCJYmLj8Pj 8bBp85bgH+mTEhNZuXpNsT/al7dfS1IrIoL4uFh+X/wnrvx8srOz+Wvp8kr3rTKqc3+67A7sdti6 +jdWLprOolkf8OPnr+B0hhER4aRWrXBqR4RTK8JJeLiTH6Y8yIKvX2Llgq/YtXEZntwcWrZvXGYb A/r1YfaPP7Fw0e+4XC72pKUx4ZXXaNSwIa1bFk+yKO3adCSMGD6Myy+7JPg4Whw8NVllE4RKEhEe zkUXXsCHH39KdFRUpa7z7oIbe+HOcGw2G6vXruWLr74ptk50dBSbtmzB5yt9mkHDMOjT6xy++mYa vy5YyIC+fYPLjvx7T8H7pmmCWXx7fm8u+zZ9xq6/xuKMsGCNvRAjLAZLWDRGWBw+mwtXnklYzKFT AhqGwc3/GcOMWbN5+90p7NwViH3rtm1MmvI+P887MGXfkEED+eTzL1i1eg0D+xfve/dTuvHsCxPY tn0HOTm5fD9zFot+/+OQ9g53nLxeHzt27OTNSe8y+8efuOG6azEMo0LbPXgfl/ea8vpV3jGTlJjI ye1O4qXXXmffvnT2pKXxyutv0q1rl1Kr0Ryu6jjXqrKt4/H8PLjN6tyfFenzwarjGlORcSzPOef0 5N13JzFt2rdcdNFwHA4HpmmydOkynn12PAMGnBtcd8CAc3nmmWf566+l+P1+wsIcXHLJCL777lve fvtNzjzzzBLb2JeezpPPPs/fK1eRk5NDbm4eP8z5id170mjevFm5MSbEx9G2dSvemjSF9IwM9u7d x6TJ79OpQ/tgdaGS1KlTh63btgfHJzYmhm5dOvPKxDdJTk4h3+1mw6bNPPP8BDyesqtMVsaRbGfW nB9ZtXoNeS4X33w3nX1793FK1y6HrOd2ezBNE6fTic1qY/2GjUz7fmaxdSo7Psv/XsGHH39KSmoq Xq8Pv+nH7XZjVqDCVElKnAoICvJpCxMASp4qyDRNli5fzvsfTWVXcmCKX5/PT77bjd/vxzRNoupE smXrVrxeb5nba9yoEXN+mkt2dg679+xh8gcfBduIjYmha+dOvPzaRLbv2EFOTg6zZv/IH38uKaMN gok28fFxtG3TmjfensS+9MB15s1Jk+ncsUNBdaGy+1iRMSqM85SuXZjw6mvs3LULlyuf9Rs28uSz zwX2UQmxlte3Sselhx419ij5uLzgvCGMGH4hI4ZfyMXDLqzUNkVEREREREREjiWVrjBkmuD1m/j8 BhYCVYIKq7AEat+AxwRrwfdeA3wmhAAeAhlKbiDUDHx1W/z4/CX/UeXUU7rx1GOP8MHUj/nsi6/w +nw0atiAMdeMpl+f3sXWHTSgP5OmvM+mTZupWzeJcWMfJLJgGoa777iV9z/6mPsfepj0jAwaN2rI JRcND5ZGP1q0aVCHu4e15905q9m8YxdtmzUpSBwKVEWx2axYLQb3/O8+rPYwrKFOrI4wrLYwmiZF 0bV13TK3v2btOtasXQeAw+EgIT6OLp06AYGbe106dWTe/AW43W6io6No2KBBcIoXgDNO68FfS5cz 58e5eL1eGjVsSJfOxaftMAyDHt27sXjJX8ycPYe+vc7BedB0WtWl/WEmlhSqXyec92bPA9PE53bh d7vwuXOpnxTJ6JFj8Pn9WAwD0wSb1cR0WFmxZitOu8m9wzsSEXZ4x9GZZ5zO4j+X8O33MzAITGnS tUunMl9jtViIj4sjPSMjeLMrKTGB1WvWFpsupyL7tcSYTj+d337/na+++RZnmJNWLVuQtrd6p9E6 WHXtz9su7sstw3tTtFJAqzMvIyzMQbjTid0egmEYeDxerFYrFkcdVv76SbA6CgTGtyxnn3kGbreb ye9/yBPPjMfpDKN9u3aMe/jBYtuBsq9NR8Lll116xLZdWQdXF6puQ4cM5vMvv2bmD3MqdZ1PSIhn 9JUjefzpZ9mfnU2L5s0447QerFqzJrjOxcMu5LkJL/P1t9/RonkzJox/psQY+vftzdRPP6NRw4aH TMd4ZN97AjfjKLg2GUaght+eLT+xZ9M0TG8mtjonY4tqR3jdvuDLA28Yhjcft3sbXrevxApDAN26 dGb8k4/zwdSPufmOu3Dnu6lbN4ne5/Tk1CLVsU7v0YPX3niLDu1PPqTizj133M47U97j3gcewpXv 4qwzTqfX1VeV2F5VxqlwWqeQkBCio6M4qU0bXnz2aVq2aF7h7Za0j8t7TVn9qsgxc//ddzHxzbe5 7sabwTDo2rkT119zdan9rA4HVxqq6jYq63g7P0tqs7r2Z0X6XJLDvcZUdBwrokWL5jz22KPceecd TJ36MR9++BGpB1XYK5SYmMi//nUZI0ZcXKH3w+ioKPr17sVX337Hxk2b8fv9JCUmcMN119C+3UkV iu+2m27g3fc/5I57/odhQMf2JzPq35eV+ZqhQwYx8c23mT5rNk2bNObxhx/kxjHX8tkXXzHu6WfJ yMyiYYP6XHDeYEJCKv0rVZmOVDt9ep3DR598xpZt20lMiOfe/95O7dqHVqiKi4vl35eO4IWXXyMn J4emjRvRvVtX1m3YEFynsuPTtk1rNm/dyrinxrMvPZ26iYncfvMNxabArYwSE93MwAdVgsvMwNTC hd8XfvX7fbRu2ZKNmzbz6BNPFYnnRkJCQvD5fJw3eBAT33yL72fOKujfQ4dsD+Bfl1zMKxPfZPSY G0iIj6d/394s/3sFPr8Pn8/HTWOu48NPPuXhx58kPz+fHt1PYeS/Liu1DRMTv98fbOO2G2/g3fc/ 4Na77ily7P6rQn2s0BgVuOH6wL579ImnycjMLNh3Q7BYLKXGWlbfKh2XSA0p65gcfsH5QCnXGxER ERERERGR44RRr/NA8z9Pf87V7TIr9ILrX/yFUzp1xufzYRrB6uJYCv7tA6wEbtWbBhgmeIEQA/wF ywsnT/ECoVYbSxfN5MW7Liy5wYrEdNOtXHTh+fQ+p2eVt1FdUlNTSUgopSx7Jfy8fDvfzV9L1/Yn kRAfW1BRyIrVauGOBx5i9psPVEO0UpYxz0xmzOWj8fn8uL0+PKaffZnp/PrbEs49tRU9OzSs6RCl glqeeQVX3zqOWrUiCHOEYhgG+W432Tm5vDn+fv6e8yYhByX6VIej6dpUUdV1DYNDpxsrqcJQVaYk Ezgw6SdQOAmo6Wfnhln4PZnYrFbC6zQhvFZ8IFnI58H05rM/ZSHpyZ+Q74qgZf+pWO21qxyBx+Ph kitGcdOY6+l5VsmVQeToV52Vv+T4tmTJYpo1a17+ioDX62XGjJlMmTKFTz75GICLLx7ByJEjGTCg P1Zr9b/nStnuuvcBhgwayFlnnFbToVTIxo0b6Ny5a4nLlixZTNOm5VeXEhEpz549e4grmFq0umza tLHU65eIiIiIiIiIyNHi7RWRvPrfYVWoMERhhaGCykIEEoR8/oJ6BwXP+QDDH/jeCngKllsM8JpF EowME0NVmw9xdvsGtKpfh5c+nU+DpCQ6tT8Zi8VCiNWG1Wav6fBODKGhgWoxBhg2WLN8NZs3bea2 4WeSFHPop7Hl6GVYHNhsVkLtdsKdYVgsFjAM8vPdWMOOzFRAJ7qKVDRRslB1MA58NSzENzoTT/5+ nBGxmD43pt8FhhWMfHx+kxxPJl7HOdTrOOywkoVM0+Sb774n1B7KGacdGzefReSfY7PZGDx4EIMH Dwo+V5g4JFId/FWcykxEpCi/36/riYiIiIiIiIic0CqdMGQhMF2PxTDx+AO3Kq0ABvgJTD1WWFnI bxyoNmQpSCSyA34reP0Fz1ks2IzSWjuxJUbX4uHR/fh09p98+/33nNuvD46o6MDNXznirKFhEGIl y53LzG9n0KZRLA+PHoDNWvZ0VXIUMk1ME8yCKZzYvB5dAAAgAElEQVSMgoxF0wSrIxLD0EXoSDg4 GahwaiRVNKkOJR2zBiEhTmwhYZiAYQ3BxMQwLPix4PFnEhbTg/C6CdSOq9g0PqUZMuxiIsLDueOW mw6Zhk9ERORI0w1+EakOMTExup6IiIiIiIiIyAmt0glDqenZzFu2Dr/fhIIqQSEG5JsQZoC7hFlS KJiOrHBassJlPhNsFhu7t6UcVicmvvTCYb3+aGazWri0fzdWb07mtU++5Mxep9G+XdOaDuuE0LFj G+bM/4X1q9Zz/bCzaduk/IopcnQKdYbi9nhwufIxDAOLYeDKz8ftduOMPHIVho7na1N5SksGUpLQ EWZYMAqmKzNNsFjtmH4LVruNcHsLwmMjqqWZaV98Wi3bkZpRUgWwos/pPBU5/jzzxKM1HUK1MQwD n8+vhG8ROeqYpqlrk4iIiIiIiIgcUyqdMNS0XjSt27TE6vdhmoGqQlYKvhYkDBVON2YDPASqDvkB W5HlPjNQbchntbGR7dXZp+NSmyZJPHnLMGYtWkXLBgk1Hc4JISIvF6svnydvvBCnQ9PAHcuGjejP 5Fcew8SKYbVjsYVgsdoJqx3J+Zf0UdUoOc4EblIYhgVMsFgtmMF6fyIHqn2VtkxE5GgWFuYgP99F aGhoTYciIlKMy+XC4Qir6TBERERERERERCqs0glD2bn5ZGXm4DdNME0shgUrgUQgE7Ab4AIcBrj9 EGqBXD+4C14fAriNQDWiNB/UtltIz9pfjV06fjkdds4/u2NNh3HCuKSnxvp48dCVQ7j/inNLWGIo WUiOYwYYVszyV5QTUElJQ0oWEpFjQXR0LCtX/k39+g2IiKhV0+GIiACQnb2fHTu2065d+5oORURE RERERESkwiqdMHTL4KZ8NusXwMQwTfymic/nD5QUMiHT9GOYsB9/wXRkBoZhYAAWiwUsBlbDwG0Y YFjIMODmS06v9o6JiBRls1prOgQRkaNK0aQhJQuJyLEiPj4Br9fLihXLyMzMrOlwREQAqF07kvbt OxAXF1/ToYiIiIiIiIiIVFilE4baNGvAA2MaHIlYjgsJCZouTESOXbqGiZxYlCgklWGaJoah6Q3l yDLN8mvj1a1bj7p16/0D0YiIiIiIiIiIiIgcvzQXj4iIiIiIlEmJQvJP0vEmIiIiIiIiIiIicuQp YUhERERERMoUFubA5XLVdBhyAsjLy8PhCKvpMERERERERERERESOe5WekkxERERERE4sSUn12LZt K7GxcYSFKZlDjoy8vDzS0vbQqFHjmg5FRERERERERERE5LinhCERERERESlTZGQdGjaEXbt2kZKS XNPhyHEqNNRBo0aNqV07sqZDERERERERERERETnuKWFIRERERETKFRlZh8jIOjUdhoiIiIiIiIiI iIiIVANLTQcgIiIiIiIiIiIiIiIiIiIiIiL/HCUMiYiIiIiIiIiIiIiIiIiIiIicQJQwJCIiIiIi IiIiIiIiIiIiIiJyAlHCkMhxJiEhsaZDEBERERERERERERERERERkaOYEoZEjjOpqSnBpCElD4mI iIiIiIiIiIiIiIiIiMjBlDAkchxKTU0p9lVERERERERERERERERERESkkBKGRI4zqiokIiIiIiIi IiIiIiIiIiIiZVHCkMhxRlOSiYiIiIiIiIiIiIiIiIiISFkOK2Ho5jvuYvrMH6orliPG7/cz/sWX OG/4CK75z02HLD9W+iFSUZqSTEREREREREREREREREREREpjq+kA/gmL/ljM6jVr+GjyJMLDnaxb v4Hb/nsP3335WU2HJsepxx4ZW+46/3uw7HWquo2EhEQlComIiIiIiIiIiIiIiIiIiEipyk0Yuu/B sSxe8lex57p27sTjFUhmONgNt97O0MGD6Nend4XaC3M4aNK4MVeNupz27dpVur1C69ZvoHWrVoSH OwFo2aK5koXkiHnskbFcdPEltGrdutR11q5Zw2OPjC01aehwtlE4JVnRryIiIiIiIiIiIiIiIiIi IiKFKlRh6ILzhjDm2tFHOpZD2svNzWXSlPd58JFxvPvGROrUiazS9rKzswkJOSGKKclRomiiz9SP PmTD+nXB75u3aMkll15WoW2sXbOGTz+ZWiwpqCLJRJqSrGQj/j2S9IwM7r7jNnqf0/OEa7+6HW/9 ERERERERERERERERERE5UVRrFs0DDz/Koj8WYxgG8fFx/J+9+46Oqtz6OP6bSe+9AELovVeRakFE aSJFKSogFmx4QRFUigW5FlR8BUSlIyA2FAURQfQqqBTpvQgECCUkkEbKnPePkDEhZSYhyaR8P2vN TWaf8uznnMnxrjWbZ3fr0kX3Degnk8mk1/77pg4eOqy33p2ut96drrp1amv622/meT5PT089NPQB ffPd99qzb59uurGNHn1ylNq0aqnde/bq4KFDeuapJ9S0cWPN/Ohjbf17u0wmqVXz5np0xEPy8fG2 5iRJ3636wXpuFxeXXFcZSkxK0twFC/X7xj8UnxCvhvXr64nHHlFYaGjhXSyUG4cOHshW8GOv5Z8t tR7z4oRJ1mOvLSLKrDysKpTxd92z+5164tFHim3cAwcP6csVK7Rl23YlJSYqNDRUd3S5TX379JbJ ZCqSMR01VwAAAAAAAAAAAABA2VWoBUOvTHxJkmSxWHTk6DG9OvUNhYeH65bOHfXC2Gd16vRpmy3J 7PHDj2s1Yfzzqluntsxms8Y8/4Lc3d006/13ZbFY9Ma0d/Xft6fp1UkT9MrEl/R/sz5UWlqann58 pKT0L/2fee75XM//xtvvKDklRW9NfU2+Pj5atGSZJr/2uj54d1qRFQWg7Mm8stCrL0+ye2WhzDIX CWUuNMqtWEiiJVlRmrdwkXr37KEnH3tMJ09FatyLE/XR3HlKSU3VwAH9bB6/bNH8YsgSAAAAAAAA AAAAAIC82VUw9NU33+qrb761vp/04jjddOONue5vNptVs0Z19e7RXRv/+EO3dO5YoOQSEhI0b9Fi ubu7q17dOtZ4z+53qX699HZMp8+c0Y5du7Twk48UFBgoSXr8kRF6+PGnFB19UYGBAfka8/z5C/pt 4yYtWTDXer4Rwx7U3QMG6tg/x1WtakSB5oLy53pWFsosc9FQxntb8tOSLKOtVN+7e+vgoUM6cPCQ Hn/0Yd10YxstWrJMm/78SxeioxUWGqJuXW/X3T17yGw22zxv3/sG69Llyxo4oJ927t6jAwcPKTws TI88NEx/bt6stT+tl0wmtb+prUY9MdJ6zkefHKUjR49KkpydnRQeFqY77+iqvnf3liSNGPmk/jl+ XJL0zcrv9c3K7+Xr46PPlyxSXHy8li3/Qr9t2qTz5y8oonJlPTx8qBo1bJAlt3+OH9e4lyZp7/79 8vL01KD7BujOrrfbnNOUTPehTq1aatG8mTb8+j/9vmmTXQVD17bwynh/b797dPDQkWz55DnXuDib 9ye3e/vJvAV5jmvPfQAAAAAAAAAAAAAAlF52FQzd3bOHHnv4IZv7/fK/37R0+ec6GXlKSUlJkqQG 9evlO6mMAiV3d3dVjaiiyS+OV4C/v3V7aEiw9fdz58/LyclJYWH/tgurWKGCdVt+C4bOREVJku67 f2i2bVFnz1IwhOtSkKKha4/JaE+Wm4KuKvS/3zfq5QkvqGpEhFJT0/T4qGd09Ng/urdfXw3oe49m zP5IH348R6fPnMlXa6w/N2/R6y9P0qIly7Ri5XcaP2GSHh4+VJ98OEMPj3xSq9f8qKaNG+mWzp0k SbPef1eSZBiGzkRF6aXJr2j2J3MVHham9je11Ucz3s+xTVdqaprGjB2vI8eOqWP7dpo29XXFxcdr zdqfshUM/W/jJv331Ze1c9ceTX3rbU3/YKbatmmd5TljS8ZKapLk4+1j93E5yS2fvOY6+vnxdt+f zPdWkj6Zt8DmdbB1HwAAAAAAAAAAAAAApZftZULsdDEmRlPeeEuD7xugZQvn6Ydvv9ajI4YrLS3t 38FM9g13d88eWrNyhb75fJmmv/2mmjZpnGV75rZgIcHBSktL09lz56yxU6dPW7flV2hoiEwmkz5f skhrVq7I8rqxdat8nw/I7MUJeRf7XCu3lYXyKjzKaEUmyfrTHj3u7GYtKNmydauOHvtHzs5OGnTf AHl5eapX97skSd+t+kEJCQl2n/e2W26Wn5+fateuJSn977dX97sU4O+vG26oJEk6GRmZ7TiTyaQK 4eFq0ayZJGnjpj/yHGfL1q06cuyYJOnJxx6Rv7+fbqhUUcMeGJJt3zu73q6Q4GC1btlcUnrxz+kz +Suymj1nrk6cPClnZycNGXhvvo693nzye38y39v8jpvf+wAAAAAAAAAAAAAAKPnsWmHIHslXkmUY hrw8veTs7Ky9+/fry6+/ybLCT2BggI4cO6a0tDQ5OTkVyrgVwsPVqGEDvT/zQz3zxONKs6Tpgw8/ UquWLfK9upAkhYaEqG2bNnrznff0yPBhCgkO0rHjx7Vk2ed6YewYubi4FEreKPtq1qpd4DZkGfr1 v1fLP1tqLRbKaE/Wr3/eBSr5aUmWIfPfS9TZ9AK81NQ09eiTtdVWRoFeTgUoOfHz9ZUkuTinP248 PT2y/R1ZLBZJ6avZLPv8S/20fr3Onj2nxKsrlUnSuQsX8hwnI2d3d3f5+fnluW/GSkJOzv8+AjNy sMe8RYv15dffyM3VVS+OG2ttkVhQ+c0nv/cnt2dhbuNez30AAAAAAAAAAAAAAJR8hVYwFBYWqoeG PqApb7yly3FxqlWzhtrf1FZ79u2z7tP/nj6aNv3/tOLb71SrZg1Nf/vNQhn7hbHPatZHn+iRJ56S TCa1bN5Mj44YXuDzjR09SouWLNMLEyfrYkyMqkZU0b39+lIsBLvt37dP9943MM/t9pyjTt262VYk ynif2zkK2pIss9DQEEmSm6urvvpsqZydC6fAz5Y//tqsOfMXyMPdXdOnvakqlSvr/2Z+qG+/XyVL WqYCmkyrjGUIu5pzUlKSYmNjbRYNFdTCT5fq06Wfyc3VVS9PfFHNmjQpknGscphrUd8fu+8DAAAA AAAAAAAAAKBUslkwNCWPFVKuLfjp1+du9etzd677N6hfT5/M+qDA40nSrPffzRYLDAjQ+OfG5HrM E48+kuV97Vo19d1Xn1vfXzsPDw8PjRj2oEYMezDPXICcZKwCZM9+RXGOjJZkmX/mV8vmzVU1IkLH /vlHn8ybryED71VCQqJ27NqlX3/7XRNfGJfvc9ojJSVFkmR2MsvZ2Vn/HD+uX377Pdt+/leLgaKi zlpXLGvRvLmqV62qI8eO6f2ZH+qJRx9RQmKivlu1utD+lpd8tlwLP10iFxcXTXppfNEXCynnuRb1 /bH3PgAAAAAAAAAAAAAASqdCW2EIwL/yKgYqjnMUpCVZZs7OTpr23yla8tnn2vjHH1r5/SoFBASo SaOGenDIoALnZUv7m9qqT6+e+nHdOj09+jk1bNBALZo11bqfN2TZr+/dvXT4yFFt/Xu7uvXqo5bN m2nKy5P01n+naNnyL/Tbxo0aMnyEqlS+QY88NKzQ8lu0ZJmk9IKacS9NssZ9fXz0+ZJFhTZOZrnN tSjvj733AQAAAAAAAAAAAABQOpkqNe9mjHzjCw1vGOvoXAAUgsJoSQYAAAAAAAAAAAAAAMqeT3b5 acZz98js6EQAFK6MVmSSrD8BAAAAAAAAAAAAAAAy0JIMKIOutyWZPW7v3ivH+JCB92rIwPuKbNyi dL1zKovXBAAAAAAAAAAAAABQ9lAwBJQxxdWSbM3KFUU+RnG73jmVxWsCAAAAAAAAAAAAACh7aEkG lDG0JAMAAAAAAAAAAAAAAHmhYAgog4qjJRkAAAAAAAAAAAAAACidKBgCyhhWFQIAAAAAAAAAAAAA AHmhYAgoY2hJBgAAAAAAAAAAAAAA8kLBEFAG0ZIMAAAAAAAAAAAAAADkhoIhoIxhVSEAAAAAAAAA AAAAAJAXZ0cn4GiXLl3SmTOnlJCQ4OhU7OLp6anw8Iry9fV1dCoooTJakmX+CQAAAAAAAAAAAAAA kKFcFwxdunRJkZEn1ahRYwUEBDo6HbtcvBitnTu3S6psV9FQbGzM1YKoxKJPDsXC09ND4eEV5efn n+s++WlJlltREXHixIkTJ06cOHHixIkTJ06cOHHixIkTJ06cOHHixIkTJ0689MbzUq5bkp05c0qN GjVWUFCwzGZzqXgFBQWrYcPGOnPmtM35xcbG6MSJE6pVq45uvvk2XmXkVatWHZ04cVyxsTE53vew sPy1JIuKOmM9JvOxxIkTJ06cOHHixIkTJ06cOHHixIkTJ06cOHHixIkTJ06cOPHSEc8vU6Xm3YyR b3yh4Q1j831waff331t1++3dZDKZHJ1KvhiGoTVrVqlp0+Z57rd//17Vrl1HLi6uSklJKabsUNRc XFyUnHxFBw8eVJ06dXPcJyws3PqgyO+DIbdjiBMnTpw4ceLEiRMnTpw4ceLEiRMnTpw4ceLEiRMn Tpw4ceIlP56XT3b5acZz95TvFYYsFkupKxaSJJPJJIvFYnO/hIQEmc1OSk5OlmEYvMrIKzk5WU5O zkpIiM/13mc8EOx5MISFhWd5n3EMceLEiRMnTpw4ceLEiRMnTpw4ceLEiRMnTpw4ceLEiRMnTrz0 xe1RrlcY2rp1s7p16+7oNApk1aqVat68ZZ77bN26WU2aNCumjFC8TNq+fWuOn4GwsPxXEAIAAAAA AAAAAAAAgLIvY4UhZ0cnApQHZ8+eVWhoaCGe0ch1S1TUv63IbBUPbd26uRBzAgAAAAAAAAAAAAAA jmJr4ZnMSmXB0KNPjlK/Pr11682dHZ1KiWcYOReW7Ni5S3MXLtI7b0wt5ozKrgkvv6bbb7tF7W9q m21bRjux4pJRJGTPSkOldZUtAAAAAAAAAAAAAACQbtWqlfnav1QWDMF+uRWpzF24SP3v6VOsRSwl zX/GjlPX225T1y63Fsr5+t9zt977YKZuurGNTCZTlm3FWTBUkJZkixcvKKJsAAAAAAAAAAAAAABA URo06P58H2NXwdDJyFP6eO587d67V2mpqapXt47u699PDRvUz/eAKF45FakcPnpUp06fUYvmzazb J7z8mrb+/bdenvCCmjdtat131LNj1bF9O/Xp1bPAORw8dEifffGV9uzdp4TERIWGBKthgwbq27uX KlQIL/B5r9fbU6dIyr2oKr/q16ur1NQUbdu+Q82aNM6yrTgLhvLTkiyzgjxAAAAAgMymTZsmwzA0 evRoR6cCAAAAlHv8/3MAKDl4Jpcfp06d0pIlS7Rw4UJt37491/2qVKmiQYMGafDgwapfn7oL/GvV qpXy8Q3I1zHt27Ur0Fh2FQy9OGmy6tWtq5nvvSMvL0/t3bdfS5d/rlcbTCjQoHCsjZv+UNPGjeTs 5JQl7uPjoznzF6pp48Yym82FMtbmrdv02n/f1F13dNUDgwcqNCREFy5Ea9eePVr2xRca9cTjhTJO SdGsaRP9vumPbAVDxS0/LckAAAAAAAAAAAAAAAVz+fJlffXVV1q0aJF++uknWSyWHPfz9fVVv379 NGTIEHXo0KHQvpMHCspmwdDFmBidOn1GL417XsHBQZKk5s2aqnmzf1ehSUxK0twFC/X7xj8UnxCv hvXr64nHHlFYaKgk6aXJr+iPvzbLZDIpNDRE3bp00X0D+lnbNj365Ci1adVSu/fs1cFDh/TMU0+o dcsWmrdosTb+8afi4+LVsUN7PfrQMLm7u0uSTkRG6tnxL+rAwUMKCgzQ448+rBbNmkmSli7/QqvX rNG8jz4s3KtVCuW0qs2+/QfUuFHDa7YZuu3mzvpt4yb9+NM63X7brZk3WfeNjY3V7DnztH3HTslk UotmTfXQ0Afk4+2d49gzZn+kLrfcrOEP/rt6TXh4mMLDw3TbLTdbz/vU6GfVqkVz7dm3X4cOH9GT jz2iJo0a5jnWgyMe1agnH1fTxo0kSecvXNDQhx/T0gVz5eXlpadGP6uWzZtr9969OnrsH1UID9ej Dw1Tvbp1JEljnn9Bt992i3WuT41+Vq1bttTefft08PARBQb465GHhqlZkyaSpAvR0Xp/5ofas3ef goMC1a3r7Zr9yVwtnvuJfH19JEk1qlXTqjU/ZrvuJb0lGQAAAAAAAAAAAADAPqmpqfrxxx+1aNEi ffXVV0pMTMxxPxcXF3Xr1k2DBw9W9+7d5eHhUcyZArmzWTDk7+enShUrauGnSzWgbx/VqF5Nrq6u WfZ54+13lJySoremviZfHx8tWrJMk197XR+8O00mk0mvTHxJkmSxWHTk6DG9OvUNhYeH65bOHa3n +OHHtZow/nnVrVNbZrNZE195TZcvx+nViRMUFBSoX379n7bv2Kk2rVtJktb+tF4vjRurqhFV9MXX 3+i/b7+jZQvnW4uQkC6nIpUL0dHy9fXNts3FxUVDBt6rOfMXqkO7m9KLswzJ0L/FLlPfekfu7m56 7603ZLFY9M7/faBp772vCeOfzzbOiZMndfbsOd3cqaNdxTI//rRe454drdq1aspsNmv8hMm2x8pU iJP5Z8bvq35Yo3HPjVGN6tW06oc1mvTqFH34wXT5+fqmz+uaa7Tu5w0aO+YZRVSurBUrv9Pb7/2f Fnz8oUwmk/779jsKDgrS7A+mKzExUW+9Mz19vEzXx9fXVxeiL+ZZMPT5Vyu0YPGneV6L+/r30339 +9q8ZjkpaEsyAAAAAAAAAAAAAEDODMPQ5s2btWjRIi1dulRnz57Ndd8bb7xRQ4YM0YABAxQUFFSM WQL2s7nGlclk0puvv6rg4ED99+131Lv/vRo1Zqz+9/tGSdL58xf028ZN+s9TTyg8LEyenp4aMexB nTp9Rsf+OZ51MLNZNWtUV+8e3bXxjz+ybOvZ/S7Vr1dXZrNZZ8+d08Y//tSYZ55SRJXK8vby0p13 dLUWC0nS3b16qE7tWnJzc1PPu7opJiZWF6KjJUn39ruH1YWuyihUyfqStdDG+rq6b4d2Nyk4OFhf fL0iUzx92+kzUdq1Z48eeWiYAgL8FRQUqBFDH9TmrdsUfbVIJvMrJjZWkhQYGGCNrd/wi3r2HWB9 ZS6kuatbV9WpXUsmk8musa6dn4ysc5akO27voob168nD3V19evVUYGCgNv7x578FPZmPl9Tjrm6q VaOGXF1d1a3r7YqNTf9cnTp9Wnv37dfDw4fK18dHYaGhGjLovuw5pEdyue7pr3t699T9V4/NyX39 ++refvfkeQ5bBVi0JAMAAAAAAAAAAACA63fkyBG98sorqlu3rlq3bq3p06fnWCxUs2ZNTZ48WYcO HdLGjRs1cuRIioVQotlcYUiSgoOC9MSjj0iSEhIStHbdz3rl9f/qjSmvyulqX7377h+a7bios2dV rWqEfvnfb1q6/HOdjDylpKQkSVKD+vWy7BsaEvzvcVFnZTabVSE8PNec/P38rL9nrHiUnJxsz3TK vaDAAMVeupTjNpPJpGEPDNakV19X1y63Zdl2/sJ5OTk5KTQkxBqrUCHcui0gwD/L/n6+vpKkCxei FXz1Qdi5Ywd17thB23fs1IRXXsuyf3Dwv5+B/I6Vm/Cw0GzvL1y4kOv+GTlLWT9XF6Kj5e7uLl8f n1zPLaW3bAsMCLSZ1z29e0mSFixekiWeXixUsJWFMrCqEAAAAAAAAACUP5MnT87yfuPGjTIMQ3Fx cVniEydOLM60AKBc4plc+kVHR+uzzz7TokWL9Ntvv+W6X3BwsAYMGKAhQ4aodevWdERCqWJXwVBm np6e6tn9Tn3x9Qrt3rNXt93SWSaTScs/XZilmCLDxZgYTXnjLU0YP1bNmjSRu7u7vvrmW/38y69Z 9sv8hxMWFiqLxaLTZ86oYoUK+Z8VrCwWS7ZYrVo1deTosazbjPQGXRaLRXVr11azJo218NOlSl8t xyKLxaKggEClpaUp6uxZhVwt7jl16pQkKTAgMNtYFStUUGhIiNb/8qtq1ayRNa+rK+RkHJOx6lHG e3vGcnV1UdKVK9ZjLsZcvHrO9PMYhnQmKipLXmeizqpVixbpMSM9j8w5GJnfX/1psRgK8A9QUlKS YmJjrZ/z06fPWOeQccyhI0dUu2aNbNci8z4Z7u7ZQ4ZhXL3O6Stj9b+nT473LD9oSQYAAAAAAAAA 5cuGDRs0depU6z/azmzNmjXW393d3dWpUyd17ty5GLMDgPKFZ3LplZiYqJUrV2rx4sX6/vvvlZKS kuN+7u7u6tWrlwYPHqyuXbvKxcWlmDMFCofNlmTnL1zQSy+/qm3btysuLk7x8Qn6btUPOhMVpbp1 ais0JERt27TRm++8p5ORp3TlyhXtP3hQk159XSkpKUq+kizDMOTl6SVnZ2ft3b9fX379TZ5jhoaE qE3rVnrr3ek6fuKk4uMT9P0Pa/THn3/ZNamly7/QgyMese8KlHE5tbJq07Kldu7ardTU1CwtyWT8 u/+Qgffpf79vVNTZc9bzhIaGqH69upr9yVxFX7yoc+fP66O589W8aRP5+/vl2DLr4eFDtXbdes1b uFiRp04pOTlZF2NitHvPniz5XdvGy56xqkZE6Kf1PysuLl5nz53T/Kur9WQ+5+off9Ku3XuUkJCo r79dqQvRF9SmVYtcWpLl3PbLMAyFh4WqTu1a+mjOPMXGxupMVJQWLlma7Rpv37FTbVq3yrENXE73 4u6ePTSgbx8N6NtH/e/pY7MNGS3JAAAAAAAAAADX6tSpk+rWrWtzvzp16vDFNAAUMZ7JpUtaWprW rVun4cOHKzw8XP3799eKFSuyFQuZTCbddtttmjt3rqKiorR06VJ1796dYiGUajZXGAoOClL3bndo 2edf6sDBQ7JYLKpUsYLGPPO0mjdtIkkaO3qUFi1ZphcmTtbFmBhVjaiie/v1lYuLi8LCQvXQ0Ac0 5Y23dDkuTrVq1lD7m9pqz759eY77/Oj/aOpe57UAACAASURBVM6ChRr30kQlXUlSx/btdMvwYYUz 63Ikp9VqqlWNUFhYqDZv3aZWLZqnB68WoWTsHxYaoq633aqVq1bLsPwb/8+TT2juwkUa9ezzMpmk po0ba+iQQbmuitO0cSO9MuFFfbniG42bMFmJiYkKCgxUjerV9PrLk7Icl3l8e8YafN8A/d+s2Xpo 5OMKCw1V1y63acfOXbIY/67m0+WWm7V46Wc6dvy4wsPCNP7ZMfL29k5fgUhGtjEzv/935aH08z3z 5OP68OM5euypZxQYGKhbO3fSwUOH5WQ2y2KxaN/+AzKbndSoQf1s18Mwsq8wlKFfn7tzvVcFwapC AAAAAAAAAFD+vPvuu+rdu7diYmJy3O7v76933323mLMCgPKJZ3LJZhiGduzYoUWLFunTTz+1drrJ SePGjTVkyBANHDhQFStWLMYsgaJnqtS8mzHyjS80vGGso3Mpdlu3bla3bt0dnUaBrFq1Us2bt8xz n61bN6tGjVo5btu1e48+/Wy5pkwuu30xnx33onrcdac6tr+pSM6/9e/tmj5jlubNnilJev3Nt9W5 Ywe1bdM6277nzp1TSEhIoY5/+PDBXD8D9rYky/gbWLx4gQYNur9Q8wMAAED5M23aNBmGodGjRzs6 FQAAAKBcatasmf7+++8ctzVp0iTXbQCAwsczufjFxsbKz88v1+3Hjx/Xp59+qsWLF2vXrl257le5 cmUNGjRIgwYNUsOGDYsiVSBXq1atlI9vQL6Oad+unfVYW3UkkvTJLj/NeO4e2ysMoXSzWNJyjNev V0evTnwx1+1lQfoKQpZCm+Pvm/6Uk5NZjRs11Nmz57RoyVK1u7G19fxjR4+SlPM1t1jSivVa05IM AAAAAAAAAMqf3Fa0YCULACh+PJOL17Zt29S6dWv16tVLn3/+uTUeHR2t5cuXa/Hixfr1119zPd7f 31/9+vXT4MGD1b59e5nN5uJIG3AomwVDt3fvlef2NStXFFoyKHwWi+HoFBwqvcVY4VyDhvXrac6C Rfrwk3lyc3NV6xYtdF//vnad32IpvDxsoSUZAAAAAAAAAJRPnTp1UtWqVbOtWhEREaHOnTs7JikA KKd4Jhef5cuXa8SIEUpNTdXPP/+sxMREffvtt1q8eLFWrVqllJSUHI9zdXVV9+7dNXjwYN15551y c3Mr5swBx7JZMERBUOlmGBZHp+Awr7+c3m6tsK6Bl5ennnzs4Wxxe84fHBxUbPcicysyiocAAAAA AAAAoHy5dkULVrIAAMfhmVz0pkyZorfeekuxsbGSpEuXLikkJETx8fE57m8ymdSpUycNGjRIffv2 lb+/f3GmC5QotCQrw0wmk9LSLDKZTI5OBYXMMIw87ystyQAAAAAAAACgfLp2RQtWsgAAx+GZXLSG Dh2qr7/+Okvbt5SUlBxXFGrSpIkGDRqke++9V5UrVy7ONIESq1wXDJnNZpuFFyWRYRh29Uz08HDX lStJLJ1WBiUlJcnd3SPHbawqBAAAAAAAAADlW8aKFhm/AwAch2dy0ejUqZO2bNmS60pCklSlShUN GjRIgwYNUoMGDYoxO6B0KNcFQ56enoqOvqCgoGBHp5IvFy6cl6enl839AgODtXv3Tt1wQ2V5e/sU Q2YoDnFxl3Xy5Ak1bNg4x+20JAMAAAAAAACA8q1Tp04KDg6WYRisZAEADsYzufBVr15dJ0+ezHEl IUlyd3fXmjVr1K5dO7sW4gDKq3JdMBQeXlE7d25Xw4aNFRgY5Oh07BIdfUG7du1QpUq2l0kLDQ1T amqqdu3abu3ZiNLP19dPjRs3UUhIaK770JIMAAAAAAAAAMq3gwcPOjoFAMBVPJMLj6urq1JTU2UY Rq77ODs7q3LlyhQLATaU64IhX19fSZW1d+8eJSTkvlRZSeLp6aVKlSpfzd22ihUrqWLFSkWcFUoS VhUCAAAAAAAAAAAAUBYNGzZMkZGROnnypKKiohQdHS2LxSJ3d3c5OTkpLS1NKSkp+vnnn/Xggw86 Ol2gRCvXBUNSetGQvcU3QGlASzIAAAAAAAAARc1kMjk6BaBMyWulDJQdPDuBonNte7KhQ4dq6NCh DsomZzzrUdKU+4IhoCyiJRkAAAAAAACAomb89LGjUwBKvaEvT9e8DTscnQaK0fMUDADlztKhQ3Vs 3jxHpwFkQ8EQUMawqhAAAAAAAACA4rJu/XpHpwAApc6mdescnQIAABQMAWUNLckAAAAAAAAAFKeE Kym2dwKQjaebi6NTgAOlJSQ4OgUAxcDJ09PRKQC5omAIKINoSQYAAAAAAACgOCWnpjk6BaBUcXV2 cnQKKAEsycmOTgFAETK7ujo6BSBPFAwBZQyrCgEAAAAAAABwhFSLxdEp2GQxDM3+aZt+P3BSIb5e envwrdd1vpiEJD3y0Sp9/PBd8vHI+0vBNItFs9Zu05+HTinY1/O6xy7t8nPtyhpns9nRKaAEsaSm OjqFQmVYLDoye7bO//673ENC1OTtt6/rfCkxMdr8yCNq9fHHcvbxua6xd77wgsJuvVWht9xyXTmV Rjuee04VevRQSIcOxTLetfetPF57szOlGCj5+JQCZQwtyQAAAAAAAAA4isUwHJ1CnrYcOaMDp6M1 Y/gd8nR10aGoi5q0/BcteLxngc6XMV+LYdic+5+HT+tw1EV9MLyrPF1dSvy1KmrXXruXPtugWxpU 1c0NIhycWdEym0yOTgElUSkouLRXzJYtunzggFrOmCEnT0/FHTqk3ZMmqc2CBQU7Yca1sVhsXie7 xjaMMnW986U4557TfStP157CUJQSNguG1q5dUxx5ACig2267PVuMlmQAAAAAAAAAHKUk18Ecjrqo GmEB8nBxkWFI1UL8NX9kzwLnnHGcYdie97FzsVnGLgwvLPtZXRtXV8d6VQrnhMXo2mv3cr9OWeJl EbVCyItRij78+6ZOVcyOHVli/o0bq+7zz+vy4cPyrlFDZg8PGYYhr2rV1Hr+/ALPL+M4wzBsnsOe se05T1lkSFIxzj2n+1Zerr2Jhz1KEbtWGBo06P6izgMo91atWikf34B8HdO+XbtsRUGsKgQAAAAA AADA8UrmF4LxV5Ll4mRW4edn2DxnggPHLtlKe/724gtklC3hd9yhqvdn/w45LT5eZhcXB2Tk2LEB oDSiJRlQxtCSDAAAAAAAAACye/PbTdp2LEqS9NOuY9a4i5NZ80f2kCSNW/KzmlcL0/7T0TpyNkYB nu56oFMjNa4SKkmKiU/SR+v+1t5TFxTk7aEujaoVaOzerWqr/431dCnxihb8sku7TpyTJDWJCNWQ Dg3l7e5qM5/3V2/W0bMxmrV2m2at3aaa4QF6uV/HPPNISknVZxv3avOR00q4kqo6FQM1tHNjBft4 2jX/xORULd+0V1uOnlH8lRTdWKuShrRvKDcXJ5tzsXXtJiz/RTfXj7C2JLOVS3Rckj5e97f2nU4/ 320Nq2r+Lzv14UPd5OPhatd9AVC49r35pmK2bZMkRf30kzVudnFR6/nzJUk7xo1TQPPmurx/v+KP HJFLQICqPfCA/Bo3liSlxMTo8Ecf6fLevXINClJ4ly6FNva10pKSdOKzz3Rx82alJiTIp04dVRs6 VG7BwTbHszUPaz4mk9yCgxXaubMq9e5tXWpsx7hx8mvQQHGHDyv+2DG5BQerxiOP6PL+/Tq9apXS EhMV1Latqg8fbj3mevKVpMTTp7Xn1VcLnG9h3jdbc9kxbpwCmjbV5QMHFH/0qKqPGKGgtm3tmicA +1EwBJRBtCQDAAAAAAAAUDKUnFVVnu3RVvM27FCaxaLhNzeVJB05G6PJn/+izHn+uu+Enu7WWjcE +WrVtkOasWarZj7UTSZJ01dvlq+Hm969v4sSk1P1/uq/rh5lUl5zzWlsSXpv1Wa5uTjp9ftulsUw NPPHLZrx41Y91+PfL0Vzy+fJO1rpTGx8vlqSzfxxq1JSLXqpTwd5u7vqyz/3adp3f+q1AZ2tLVTy mv+MNVsUdyVFz/VoqwAvd206GKk9kefVrGq4zbnYd+2yXkdb9yLIx0Pv3t9FScmpev+HzXbdi+JX HlZPAtLVffZZHZ03T0pLU7XhwyVJ8UeOaPfkyVn2O//rr6r19NPyvOEGnV61SodmzFCLmTMlk0kH pk+Xi6+vmr77rtISE3Xw/fcLdezMDs+cKUtKiuq/9JKcvb118ssvdWDaNDV67TW7egjmNY+6zz4r STIsFiUcP66D770nt9BQBbdrZz0++q+/VHvUKLlXqKBj8+dr75QpCrrpJjWeOlWpcXHa/fLLutCo kYLatCkR+RbmfbNnLmc3bFDtUaPkXbOmTGazzfkByD/+soAyJiws3NEpAAAAAAAAAECpdUeTGqoR FiA3Zyd1aVxdlxKv6GJckqJi47Xv1AUNu7mJfD3cFObnpXtvalDgcc7Gxmtv5HkN7dREAV7uCvL2 0AMdG+vvY1GKiU+ymU9+Rccl6q/DpzXi1mYK8fWUh6uzBrZroKjYeJ2MvmxzvPOXE7Xl6Bk9eltz VQr0kaebi25pWFXNqobbnEtBr11e9+LA6Qt6sGNj+Xq4KdTPS/feVD/f1wRAwZ1ZvVqbBg60vqI3 b7Z90FXhd9wh7xo1ZHZzU1iXLkq5dEnJFy8qKSpKl/ftU7Vhw+Ti6yv3sDBVuffeIsk/OTpa0X/9 peojRsgtJEROHh6KGDhQSVFRSjh58rrmkZnJbJZX1aoK79pVF7duzXp8167yqlZNTu7uCunQQWlX rqjqkCFy9vaWe3i4/Bo0UPzRoyUn30K6b/bOJfz22+VTuzbFQkARYoUhoIyhJRkAAAAAAACAkqYk rfciZV3PJvNPSfLzdLO+d3NO/5IyJS1NF+MS5ebiJD8PN+u+4X5e1uPtnWPGftFxiXIymxTq62nd VsHfy7otwMs9z3wyj2fP2OcuJUiSHp+zOtu285cSVCXIN8/xLsYlyWwyKczPK9t4tuaSnJpm17W7 9jrmdS/cXZzlm6n1WJhv/u9FUWJdIRQGkx2rxjhKhW7dVPX++7PFTUr//Ftzv/oz471Jkoufn/W9 k1v6c8FISVHKxYsyu7nJ1c/Pej6P8HDr8bauh62xM5/nyrn09olbH38823mSz5+XV5W8V27Lax4m k0kXNm1S5IoVSjx9WpYrVyRJPnXq5HodzK6uMru6ysnd3TqG2dXVer6Slm9B7lt+rr1JkltwcIn+ G5Akw+Bpj9KNgiGgDKIlGQAAAAAAAAAUrkBvD11JSdOlxCvyvVr4cvZSfIHPF+TtoTSLofOXExXs 4yFJOhMTb91mD3M+vkgN9vGUyWTS7Ie6ydvd1fYB1wjx9ZTFMBQVG28t9slgay5XUtMK9doFeHso KSVVlxOT5XO1aOh6zgegZHANDJTlyhWlXLokF9/0Isaks2eLZCy34GDJZFKr2bPl7O1dqOdOiY3V wfffV+1nnpFfgwZycnfX6dWrdf733wt8zpKcb37vm91zKeHFQkBZUCLW7xo8dJi+/HqFo9MAygRa kgEAAAAAAAAoqUwmx76kqyvQXBvL9Pu1eWYcE+7vpToVgjR3ww5dTrqic5fitfT3PXbP69qxw/y9 VK9SkOZu2K7YhCRFxyVq/i871DQiTAHe7jbzMZkkfy83Hb8QK4th2Bw/xNdDLauHa+barToTG6fk tDQdOXtR077/Q6kWi83xQnw91LxauD5cu1WnLl5WYkqK1u0+pm3Hzticiz3XLmMge+5FBX8v1a4Q qHm/FOxeFPVnDCh0jv5g5/pQszOeOZbTnK6+dw8Pl0+dOjo6d65SLl9W0rlzOr50qf3XIB9ju4WE KLBlSx2aOVNJZ87IkpysuCNHtH/aNFlSU+3/Y89hLEtKigzDkJOnp0wuLrp86JBOf/+93dehtOVr 133L71xK8mc/c35AKccKQ0AZQ0syAAAAAAAAACWbo79oM+WQgymX7aYssae7tdLsn7bp6fk/KtDb Q10bV9ehqIu5nNP22E93a60Fv+zUs5+uk0kmNYkI1f0dGtudT88WtfXh2m36Yfs3qhbqr1f7d85z 9JFdWuqLP/fp9RUbFZuQpMpBvurdso5cnJzsGu+Jri219Pc9mrLid11JSdONNSupfYcqV69N3nOx /9rZeS/uaK3Z69LPF+DloVsaROhQ1EU5OznJvntRFGhNA1yv2k8/rcOzZ2vb00/LNTBQ4V27Ku7Q oSIZq+bIkTr5xRfa+/rrSo6NlWflyqrUu7fMLi7XdV63kBBFDBqkg9OnKzU+Xt7VqimwdWtdPnCg zOab3/tWVHMBkD+mSs27GSPf+ELDG8bmuMPatWs0aFD2/pOPPfW0qkVE6LnR/7nuJAYPHaY+vXqp T+9e130uoLRatWqlfHwD8nVM+3btrqsgaOvWzerWrbsWL16Q4985AAAAkB/Tpk2TYRgaPXq0o1MB AABAETOZTDJ++ljr1q9XwpUUJaemKdVikcUwZBjSv4UTpkz/m/GP8k3843wUum3Hzuj91Zs159Hu Dhk/43NvXP3o/1s69O/fgsmU3kbO2WyWq7OTPN1ctPDXnZq3YYcMg2Kj8sBkMul5w9CmdeuUlpAg S3Jy+ooqFkuOnwFT5lVnMv8E4BjWh7xx9Ucuf7dms8zOzjK7usrJ01PHFi7UsXnzeNbDLgWtG8g4 tnnzljb3/2SXn2Y8dw8rDAFlDasKAQAAAAAAACgNTA5faQil2e8HTsrJbFLjKmE6eylei/+3W+3q VHbI58pgZSEUIxNFQ4BDUOyDsqjQCob6DxysTh07aNv27dqzZ6+Cg4M17tkxantjG0lSfHy8/m/W h/p5wy+6HBenrrfdqjHPjJKHh0dhpQBAtCQDAAAAAAAAUHqUle+9z11K0Mg5q3Pc1rl+hB6/vUW5 yKE4NY4I1cfr/tastVvl7uKsNjUralD7hsX+meL7YzhEWXl45sOVc+e0ZeTIHLeFdu6smo8/XirH KgylLd9SiYc9yqhCXWHo2+++11tTp6hmjRpa+OkSjZ84UetWr5LJZNL4CRMVe+mSPnjvHYUEB+uH tT/pr81b1LFD+8JMAYBkLRKiWAgAAAAAAABASWcuA198h/l56Ytn7in3ORQnPw83jb6rjUNzsPAF MhzIZDY7OoVi5R4WpnZffFHmxioMpS3f0sawWBydAlBkCrVgaNC9A9SwQQNJ0oC+ffV/M2fp3Pnz SktL08+//Kpvv/xCVSrfIEnqe3fvwhwawFWsKgQAAAAAAACgtDGbS3/REMoXi4ViIZQA5axoCCh2 FAuhjCvUgqHAwADr727ubpKkpKQrOnf+nMxmsyrfUKkwhwOQA1qSAQAAAAAAACiNKBlCaUGpEEoS UxlYpQ0oiQxWkUM5UCxlpxUrVJDFYtGJk5HFMRxQ7tGSDAAAAAAAAAAAAAAA5KZQVxjKTYXwcHXs 0F4TX3lFL40bp9CQYP2wdq1CgoLVsUP7bPtPevU1nTp1WrNn/F9xpAeUKawqBAAAAAAAAKA0Y7UM lFSsNoESjWcnUDh41qMcKbbGlq+/PFm1atTUY08+pTt73a09e/epVcsWxTU8UOpYLBbt3X9Aa9f/ rLXrf9beAwdksaNPZkYrMknWnwAAAAAAAAAAAAAAABkKvMLQzOnvZXn/2aeLsrx3c3XV9r/+sL73 9vbW+LHPavzYZ7Oda9HcOVneT3rxhYKmBZQZ+w8e0pGjR63vjxw5KpMh1a1T2+axtCQDAAAAAAAA UNqxWAZKChabQKnCwxMoGB72KIeKpSUZgPyLjIzMFjsZGWmzYIiWZAAAAAAAAADKCpP44huOZYgv kFH60NoRyB9aTqK8KraWZADy50pysl2xa9GSDAAAAAAAAAAAAAAA5IUVhoAyiJZkAAAAAAAAAMoS FstAcWOxCZQJPDyBvPGwRznHCkNAGcOqQgAAAAAAAAAAAAAAIC8UDAFlDC3JAAAAAAAAAAAAAABA XmhJBpRBtCQDAAAAAAAAUJbQMQQACoCHJwAgD3YVDJ0+fbqo8wBQSMLCwikUAgAAAAAAAAAAAAAA ubKrYKhChQpFnQdQ7v39d+GcJ6MlWeafAAAAAAAAAFAaGWJ1DADIL4OVhQAAdqAlGVAG0ZIMAAAA AAAAQGnH990AUAA8PAEAdjI7OgEAhSssLNzRKQAAAAAAAAAAAAAAgBKMFYaAMoaWZAAAAAAAAABK M1rpAEAB8OwEAORTvguGRo4sijQA9OhReOeiJRkAAAAAAAAAAAAAAMhNgVYYmjkztrDzAMq9wioY YlUhAAAAAAAAAKURa2MAQP6xKhsAoKBoSQaUMbQkAwAAAAAAAFDaWCx84Q0A+WaxODoDAEApRsEQ UAbRkgwAAAAAAABAaWFhdQwAyDeDYiEAwHWiYAgoY1hVCAAAAAAAAEBpQa0QABQAD08AQCGgYAgo Y2hJBgAAAAAAAKA0MFSyvvAe8N5XRT7GsqfvLvIxAJRtRikvFto4YECRj9F22bIiHwMAygIKhoAy iJZkAAAAAAAAAEqykvl990RNnDhJkyYVzdlNJlOWeZ+JidfyTXu048RZSVLDG0I0pEMjBXp7WPfZ G3leS3/fo6PnYhTu56UHOjVWgxtC7N6ema3xYuKTtODXndp54qxS0yxqWb2ihnVuIg/X9K+SLiVe 0fwNO7Tj6vaqIf4a0qGhqocG5DjesFkrlZCcki0+Y9gdCvT20J7I81qx+YAOnL4gdxdntaxeQQPb NbSOZ+t4oFwqmQ/PfJs4Med5TJ48SYYx6brObTKZslynpDNndGL5csXs2CFJ8mvYUFWHDJFrYKAk 6dKePYpcsUKXDxyQk7u7Alq2VMTAgXLysPGcMQztfvllXdq7V42nTpVX1aqSpJRLl3Rs/nzF7Ngh IzVVXlWrKmLIEHlXr27X9mvZyu/Ixx8rau3aLMdUvf9+VbjzzvQ0LRYd//RTnd2wQZbkZPk3bqzq Dz0kFz+/Ao2XHBOjfxYsUMzOnTJSUxXYsqWqDRtm3Z7f+QFwLAqGgDKGVYUAAAAAAAAAlGxl4wvv gvl37j/uPKIba1XSsJubKDE5VZ+s/1vTV/+lSX07SJIOnI7W1G9+15AOjfRczxsVl5Ss77YdVoMb gu3afi1b4037/g95ubnozUG3yGKRPlizRTN/3KL/3NVakjTn5+26GJek1++9WV5uLlq2cY+mrtio WQ/dIbPJlG28OY/elfX9z9t14sIlBXq7SzL01Z/71LNFLdXs1koXLifq3dV/au6GvzWySwu7jgdQ uk2eXDzjnPnxRwXdeKOqDRumtMREHf3kEx2YPl0Nr1aHnvzqK1Xq2VPeNWvqyoULOvjuuzo6d65q jhyZ53lPr1ols6trtvjROXOUfPGiGr/+upy9vHR82TLtmzpVLWbNkslstrn9WvbkF3777ao2bFiO eUZ+/bXOb9yo+i++KBc/Px2eNUsH3ntPDSZMyHF/W+MdmDZNzl5eavrmmzIsFh364AMdmjlTdf7z H7vmD6Bk4a8SKGMyWpFJsv4EAAAAAAAAgJLAMEruq7jnP7h9Q7WsXkGeri4K8vbQzfWr6nBUjHX7 0t/3qHP9CN3aoKo8XV0U6uuloZ0a27392lde40XHJenA6Wj1v7G+/DzcFeDlrgFt6+mvw6cUHZck w5COn4/VTbUrKcjbQ+4uzurSqJouJV7Rxavb83olJafp130ndGvDatbY+N7t1LByqNxdnFUp0Ee3 NKiqfZEX7D6+pL6AIuHoD3Zp+yPJNF7VwYMV2LKlnD095RYUpNCbb1b84cPW7fXHj5dfw4ZycneX Z6VKCr3lFl3aty/POSRGRur06tWqOmRItjETjh9X8E03yS0oSE7u7grv0kUply4p5eJFu7Zf+7Ir vzw+I1Fr16pSjx7yqlJFrn5+qjp4sC7t2aPEyMh8j5ccHa3LBw6ocv/+cvHzk2tAgCoPGKDov/5S cnR0geZXal9AGVHAFYamFm4WACS1K7Qz0ZIMAAAAAAAAAEqPi/FJ2rD3H7Wsnv6PQNMsFu0/fUH1 bwjWs4t/0rlLCbohyFeD2jVQvUrBNrfnd7yM7z6vXSfIkPTPuVgFeLmrdY2K2ngwUi2rV5CHq4vW 7jym2hUCFWBHe7DfDpyQs5NZrWtUzHWfvZHnFRGSc4sce44HAFuSL17U2Q0bFNCyZa77XNq7V14R EbluNywWHZo5U1WHDJGzl1e27YGtW+vCxo0KbNlSTh4eilq7Vj61a8s1IMCu7bbklN+5X3/V2fXr 5ezrq8AWLVRlwAA5eXoqNS5OydHR8srUDsyjUiWZ3dyUcPy4PCrafqZmGc/6H4tr/mthGIr/5x+5 BgRc9/wAFK98FwzNmCHNmPF6UeQClGurVq0slPPQkgwAAAAAAABAScO/xU937XX4Ze9xzVq7VZJU JdhXz/W4SYak+CupSrMYWrf7H42+q40q+Htr9fbDeuPbTXpr8K1ycXLKc3tgLkU8uY0X4O2uaqH+ WrZpr0bc2lSGIX22aa9MkhKSU2RI6tmytg5994cen/uDJCnYx1Nje7bNcV7XWrvrmDrVi5CzkznH fX/YfkR7Iy/olf6dctxu63igrDJYyaRArr1u5375RYdnzZIkeVaporrPPZfjtT3zww+6tHevGr7y Sq7XPnLFCrmFhCigRQulxMRYx8vYv2LPnjpw6JC2PP64JMktOFh1x45Nf3YZhs3teckpv2rDh6va 8OEy0tKUcPy4jsyerYMzZqjO6NFKTUiQJDl5eGSZj7Onp1ITEmx+vq4dzyUgQF7VqunEsmWqPmKE DMPQic8+k0wmpV093/XMD0DxoyUZUMbQkgwAAAAAAAAASoeO9apo8ZO9NWPYHapTIUiTPv9FV1LT 5ObiJJOkm+tHqFqov9xdndW7VR25OJu1++R5m9vzO54kjerWWiaTNGbhTxq3ZL2aVwuXTCb5eLhJ kqZ8/Zt8Pdw0Y9gdmvNod93RtIYmSH1SnQAAIABJREFUfv6LLsYn5TnHI2djdOxsjG5tWDXH7T9s P6Kv/tqv8b3bKcwv+2odto4HAFtCOnbUjYsXq8WMGfKpU0e7J02S5cqVLPuc+eEHRX71leqNHy/3 sLAcz5MYGamotWtV9YEHch1r75QpcvH1VYsZM9RqzhyF33GHdk+cqOSLF+3anhtb+ZmcnORVrZoi 7r9fF7duVVpSkpw80otH0xITs+ybmpBg3Zbf8WqPGiWZTPp7zBjtHDdOAc2bS5KcfXyua34AHIOC IaAMoiUZAAAAAAAAgJLBKEWv4pB9XJMM+Xu5qVfL2jp/OUFRMXFydTarQoB3lv0MGTIMyWQybG7P a545jScZCvH10JjubfTxI3dq1kN3KNTXU65OZtUI89flxCs6dOaiujapJn8vN7m7OOnOptWVlmbR wTMX8hxv7c4jalA5RGF+ntm2rdh8QCs279eLfdqpaohvvo8vHS8AJYLJJBd/f1Xq1UtXzp9XUlSU dVPkihWKXLFC9V98UV5Vq+Z6ivijR5UcHa0tjz6qTQMHasvIkZKknePG6Z/Fi5V6+bLiDh1SWNeu cvH3l5O7uyrceacsaWmKO3jQ5vbc2JvftZy9veUaGKi4w4etscTISFmuXJFnHm3X8hrPLSREdcaM UauPP1aLWbPkFhoqs6urvGvUKPD8ADhOvluSASjZaEkGAAAAAAAAAAUzefIkTZ4sGcakIh3HYhh6 f/Vm9W5ZWxUDfRSbkKQv/zwgf0+3q4VAUpdG1fTNloNqXi1cFQK8tfrvI7IYhhreEGLX9vyO9/22 w4oI8VONMH8djorRvA071atlbXm4pn+VFOLrqTU7jirU10vuLs5av+cfpVoMRQT75TrPhOQUbTwQ qcdub55t27KNe/Xb/hOacE8HhftnX1nI1vEASrtJRT6CYbHo0Pvvq2Lv3vKoWFEpsbGK/PJLufj7 y71CBUnSiWXLdP6339RgwgS5h+fduSO4fXsFt29vfZ8SE6MtI0eq0euvy+tqAY5bSIii1qyRe2io nNzddXb9ehmpqfKMiJCzj0+e23NiK78D06ap0t13y6NiRSWePq1/Fi2Sf9OmcnJ3lySF3XqrTq1c Kd+6deXi56d/Fi+Wb7168rg6//yOd/r77+UVESGvGjUUf/iwjs2bp0q9ellXLMrv/AA4FgVDQBmT 0ZIs808AAAAAAAAAKF4mRydQAJOtv5lMk/PY73qkXxezyaQOdavok5936Pj5WHm6uahOhSC92Ke9 XJycJEldm9RQQnKq3lz5hxKvpCgixE9je7aVv5eHXdszs2e81jUras767doTeV6B3h66q1lNdW1S 3XqOMd1v1Ke/7daYRT8p1WJRxQAfjerWSmF+3rnO9n/7TsrD1UUtqlVU5s9EUkqqVmw+IEn6z8K1 1riLk1nzR/a0eTyA0m3y5Nz/ngvz+WsymxXcoYOOfvKJEo4fl5Onp3zr1FH9F1+U2cVFaUlJilyx QpL093/+Yz3O7OKi1vPnF2jMOmPG6Pinn2r7mDGypKbKo2JF1R41ytrWy9b2zOzJL/Tmm3V07lwl nDghFx8fBbRsqRvuuce6b8VevZSakKA9r70mS3Ky/Bo1Uq2nnsoxd3vGC2zdWkfnzNGlPXvkGhio CnfdpfCuXe2eP4CShYIhoAyiJRkAAAAAAAAARzGV0rqOJU/1LtbxWlQPV4vqea9m0ad1HfVpXafA 2/MzXoivp8b2apvr9irBvno+j+056dqkepaiowwers52Xe/cjgfKIlNpfXjmU9slS4p1vMAWLRTY okWO25w9PK4rH9eAgGzHe1WponrPP5/rMba25ze/gObNFdA891XYTE5Oqjp4sKoOHlwo47mHhKje 2LG5bs/P/AA4HgVDQBnDqkIAAAAAAAAAHMVcTr7wBoBCZTY7OgMAQDlEwRBQxtCSDAAAAAAAAIAj OPOFNwDkm9mZr2sBAI7Bf4GAMoiWZAAAAAAAAACKk6uzk6NTAIBSx+zq6ugUAADlWL4LhkaOLIo0 APToUTjnYVUhAAAAAAAAAMXJ083F0SkAQKnj5Onp6BQAAOVcgVYYmjkztrDzAMq9wioYoiUZAAAA AAAAgOIw9OXpjk4BAEqdpUOHOjoFAAAk0ZIMKJNoSQYAAAAAAACgqM3bsMPRKQBAqXNs3jxHpwAA gCQKhoAyh1WFAAAAAAAAABQ1wzAcnQJsmDZtmgzD0OjRox2dCoCreHaWTjt27FCTJk2s7wcNGqRF ixY5MCMAKBxmRycAoHBltCKTZP0JAPh/9u47PKoy7eP470x6TyANQi9SlWZHDcUOCgg2pIjIChEU RdgFRMguS3hXYRE0AWFFWcGCioqKQgRjAVcwAiqIgEonASEJIRBC5rx/jBkI6cMkk0y+n+uaa+bU 5z5PZg7ue+73vgEAAAAAAAAAqLi///3v9s8Wi0VTpkxxYTQA4DwkDAFuiJZkAAAAAAAAAAAAwMXZ unWr3nnnHfvyAw88oFatWrkwIgBwHhKGADdDVSEAAAAAAAAAAADg4sXHx9s/WywWPf300y6MBgCc i4QhwM3QkgwAAAAAAAAAAAC4OFu3btW7775rX37ggQd0ySWXuDAiAHAuEoYAN0RLMgAAAAAAAAAA AMBx06ZNs3+2WCyaMmWK64IBgErg6dhhM50bBQBJXZ1ylqioaBKFAAAAAAAAAAAAAAdt3rxZK1as sC8PGjRILVu2dGFEAOB8FU4YSkyUEhMTKiMWoFZbtepDp5ynoCXZ+e8AAAAAAAAAAAAAyic+Pt7+ 2cPDg+pCANwSLckAN0RLMgAAAAAAAAAAAKDivv/+e7333nv25cGDB6tFixYujAgAKgcJQ4CbiYqK dnUIAAAAAAAAAAAAQI00bdo0+2cPDw9NnjzZdcEAQCUiYQhwMwWtyCSShwAAAAAAAAAAAIDySk1N 1QcffGBfHjJkCNWFALgtEoYAN0RLMgAAAAAAAAAAAKBipk6dav9MdSEA7o6EIcDNUFUIAAAAAAAA AAAAqJhvv/1WH374oX156NChat68uQsjAoDKRcIQ4GZoSQYAAAAAAAAAAABUzPnVhTw9PfX000+7 MBoAqHwkDAFuiJZkAAAAAAAAAAAAQPls2LBBn3zyiX35wQcfVNOmTV0YEQBUPhKGADdDVSEAAAAA AAAAAACg/J555hn7Zy8vL6oLAagVPCt6QFxcZYQB4I47nHOegpZk578DAAAAAAAAAAAAKOqrr75S cnKyfXn48OFq3LixCyMCgKpR4YQhSUpKynR2HECt56yEIYmWZAAAAAAAAAAAAEBZTNMsVE3I29tb kyZNcmFEAFB1aEkGuBlakgEAAAAAAAAAAABlW7t2rVJSUuzLI0aMUMOGDV0YEQBUHRKGADdT0IpM InkIAAAAAAAAAAAAKI5pmnrmmWfsy76+vlQXAlCrkDAEuCFakgEAAAAAAAAAAAAl+/TTT7V+/Xr7 8qhRo1S/fn0XRgQAVYuEIcDNUFUIAAAAAAAAAAAAKNmF1YX8/f31t7/9zYURAUDVI2EIcDO0JAMA AAAAAAAAuAPDMCr9BaB2+vDDD7Vx40b78pgxYxQZGenCiKov7sWA+yJhCHBDtCQDAAAAAAAAANR8 UzV1qinTrJzXhVJSUnTrrbcqJCREMTExiouLU1ZWln37yJEjizzknjNnTonR5+fna/z48YqIiFBA QID69euntLQ0+/bQ0NBiH5zv37/fvs8XX3yh6667Tv7+/rrsssu0du1aJ80tUHtZrVY9/fTT9uXA wECNHz/ehRFVf1OnmsW+pKlOvxePHj3afj/09PQsM7ay7t3p6ekaOHCgIiIiFBwcrNjYWG3atKnI eUzTVGxsrAzD0ObNm0sc79ChQ7r//vsVERGhkJAQDRkypNB4QE1CwhDgZqgqBAAAAAAAAABAxU2f Pl3jxo3Tvn37tHr1an3xxRcaM2ZMoX0effTRQg+6x44dW+L5EhIS9Oabbyo5OVm7du1Sbm6u7rvv Pvv2jIyMQueKi4vTDTfcoAYNGkiS1q9fr9tvv12DBw/WgQMHtGLFCr377ruVc/FALbJ8+XJt3brV vvzEE0+obt26LoyoZoiPL/qqDC+88IJM09TKlSvLtX9Z9+7Ro0dr7969+u6777R//3516NBBvXr1 Un5+fqHzzJkzR35+fmWON2DAAGVlZemHH37Qtm3bdODAAQ0bNqxiFwlUE2Wn5BVrpnOjACCpq1PO UtCS7Px3AAAAAAAAAABQujVr1tg/t2vXTiNGjNDzzz/v8Pnmz5+vv/71r+rQoYMkadasWWrbtq12 7NihVq1aFdr35MmTeu2115SUlGRfN3nyZD300EN65JFHJElhYWF64YUXih3r4MGD6tSpk2bNmqVB gwZJkoYPH65ff/1VycnJ8vDwcPg6AHdy9uxZTZ061b4cFhamcePGuTAiXKyy7t1bt27VmDFj1KhR I0lSXFyc5s2bp0OHDtkTNHfs2KF58+bpo48+Utu2bUsc6+DBg1q/fr1SU1MVHW0r4jB9+nR17dpV Bw8eVP369SvjEoFKU+GEocREKTExoTJiAWq1Vas+dNq5aEkGAAAAAAAAAMDFSUlJUceOHQutW7Jk iRYtWqTIyEjdeeed+uc//6mQkJAix/7xxx86cOCArrjiCvu6Nm3ayN/fX1u2bCmSMLRs2TJ5e3ur f//+kqS8vDx99dVX6t69u9q3b6/ffvtN7dq107PPPqvY2Ngi49WvX19Lly7VXXfdpS5dumjjxo36 6KOPtHnzZpKFgPMsWbJEO3bssC9PmDCh2N8waq4L7939+/fXm2++qT59+ig4OFjz58/Xtddeq5iY GEm29pFDhw7V7NmzFRYWVuq5C1qoGYZRZP3mzZtJGEKNQ0sywM3QkgwAAAAAAAAAgIszb948paSk 6Nlnn7Wvmz9/vrKyspSdna0VK1bo66+/1pAhQ4o9PisrS5KKJCKEhobat51vwYIFGjZsmHx8fCRJ mZmZOnv2rBYuXKhXX31Vhw8fVp8+fdS7d2/t37+/2DFvvPFGPfnkk+rTp49Gjx6tZcuW2StgAJBy c3MVf14fraioqCJtB1GzFXfvnjhxory9vdWwYUOFhITovffe08KFC+1JPzNnzlSTJk3Ut2/fMs8f ExOjLl26aMqUKTp8+LAOHjyoZ555RoZhFHtvB6o7EoYAN1PQikwieQgAAAAAAAAAgIqaN2+e/vGP fyg5OVnNmzcvst3T01NdunTRnDlztHLlSp04caLIPsHBwZJsiT/ny8jIsG8rsGnTJqWmpuovf/mL fV1AQIAMw9Dw4cPVpUsXBQUFafLkyfL19dXatWtLjH3kyJHas2ePOnXqpB49elTougF3t3DhQu3d u9e+PHnyZAUEBLgwIjhTSffuG2+8UZGRkTp48KBOnDihxx9/3N5CbNu2bUpKStK8efPKPc7bb78t wzDUunVrderUSb1795ZhGAoPD6+MywIqFQlDgBuiJRkAAAAAAAAAABWXkJCgGTNmaN26derUqZPD 56lbt65iYmK0ceNG+7rt27crJydHHTp0KLRvUlKSevbsqRYtWtjX+fn5FWlbZpqmTNOUxVL84z2r 1aqhQ4eqd+/e2rlzp15++WWH4wfczcmTJzV9+nT7csOGDQsl6aFmK+neffToUf3vf//TmDFjVK9e PQUGBuqJJ57QmTNntGHDBqWmpurAgQOKjIyUYRiqV6+eJKlTp0566qmnih2rSZMm+uCDD5SRkaG0 tDQ1a9ZMvr6+uvLKK6vkWgFnImEIcDNUFQIAAAAAAAAAuIv4+GkyjGlVMtbkyZM1f/58ffHFF2rX rl2R7f369VNqaqpycnL0/fff68knn9Ttt9+uoKCgYs83cuRIPfvss9qyZYsOHz6scePGKTY2tlAi UGZmpt544w2NHDmyyPFxcXFauHChvvvuO2VnZ2vGjBnKz89Xz549ix1v+vTp2rdvn5YsWaJly5Zp 7Nix+vHHHx2cDcC9zJ07V2lpafblqVOn2lsAorymFfNyvdLu3eHh4WrSpIlefPFFpaWl6eTJk5o7 d67y8vLUoUMHDRo0yJ6MaZqmDh06JEn6/vvv9dxzzxU73uzZs7V27VplZ2dr7dq1GjNmjCZNmmSv Hjdt2jS1bt3avv+PP/4owzAK3Y9bt26tadOmOXkmgIrzdHUAAJyroCXZ+e8AAAAAAAAAANQ88fZP hhFfyn4XryAhR5IuueQS+3ofHx+dPn1akvTwww/r0Ucf1datWxUREaE+ffqU+sB34sSJysjIUM+e PZWTk6Obb75ZixcvLrTPf//7XwUHB6tPnz5Fjh8zZowyMzN1xx13KDMzUx07dtTHH39sr4BxvnXr 1um5557Thg0bFBAQoG7dumnChAm6++67tWnTJtouoVY7fvy4/vWvf9mXW7VqpaFDh7owoponPt4o cZuz78+LFi3SiBEjzju/bewjR44UaftVnnv3ypUrNX78eLVp00ZnzpxR69attXz58kJV3Sqif//+ GjVqlD7//HM1aNBA48aN05gxYxw6F+BqRkzn28y4f72j4e0zi90hOXm1HnhgSBWHBdQ+q1Z9qKDg MPvyR598Wux+vW69xf75uq5dLyohKDV1k267rbeWLl3C7xwAAAAXbfbs2TJNU+PGjXN1KAAAAECt x3+fA4DN3/72N/3f//2fffmtt97S3Xff7cKIAKBkF+YNlMd1Xbvaj+3c+fIy9//PjyFKnNCflmSA u6ElGQAAAAAAAAAAACAdPHhQc+fOtS936tRJ/fv3d2FEAFB9kDAEuJmCVmQSyUMAAAAAAAAAAACo vaZPn65Tp07Zl2fOnCmLhUfkACBJnhU9IC6uMsIAnCcpaaJMM8HVYbhUQZuyi2lXBgAAAAAAAAAA ANRUO3fu1MKFC+3L3bp100033eTCiACgeqlwwpAkJSVlOjsOAE4SFRVNohAAAAAAAAAAAABqtcmT J+vs2bP25RkzZsgwDBdGBADVC/XWADdDSzIAAAAAAAAAAADUZps2bdLy5cvty/369dM111zjwogA oPohYQhwQ7QkAwAAAAAAAAAAQG1kmqYmTJhgX7ZYLPrnP//pwogAoHoiYQhwM1QVAgAAAAAAAAAA QG21atUqrVu3zr780EMPqU2bNi6MCACqJxKG4GZmujoAl6MlGQAAAAAAAAAAAGqj/Px8/e1vf7Mv +/n5adq0aa4LCACqMRKG4HZMM8HVIbgcLckAAAAAAAAAAABQ27z22mv64Ycf7MtPPPGEYmJiXBgR AFRfJAwBboaqQgAAAAAAAAAAAKhtcnJyNHnyZPty3bp1NWHCBBdGBADVGwlDgJuhJRkAAAAAAAAA AABqmzlz5ujAgQP25SlTpigkJMSFEQFA9ebp2GEznRsFAKeiJRkAAAAAAAAAAABqi/T0dM2cee4Z dvPmzTVq1CgXRgQA1V+FE4YSE6XExITKiAWAE0RFRZMoBAAAAAAAAAAAALeWkpKi2NhYSdK0adN0 4sQJ+7aEhAR5e3u7KjQAqBEcrDAEoLoqaEl2/jsAAAAAAAAAwL3Fx8cXWt6wYYNM01R2dnah9VOn Tq3KsACgUowdO1YvvfSSWrVqpSeeeEIvvfSSfds111yjAQMGuDA6AKgZSBgC3BAtyQAAAAAAAACg 9khJSdHMmTN1+vTpIttWr15t/+zr66vY2Fh169atCqMDAOfbs2ePTp06pc2bN+vhhx9Wfn6+fdus WbNkGIYLowOAmsHi6gAAOFdUVLSrQwAAAAAAAAAAVKHY2Fi1bt26zP1atWpFshAAt3DgwAH757y8 PPvn0NBQnTlzxhUhAUCNQ8IQ4GYKWpFJJA8BAAAAAAAAQG0xZ84chYaGlrg9NDRUc+bMqcKIAKDy pKenF7s+IyNDffv2Vfv27as4IgCoeUgYAtwQLckAAAAAAAAAoHaJjY1VkyZNStzeuHFjqgsBcBvH jx8vcdvJkye1d+/eKowGAGomEoYAN0NVIQAAAAAAAAConUqqMkR1IQDuJisrq9j1ISEhio2NLXE7 AOAcEoYAN0NLMgAAAAAAAAConUqqMkR1IQDuJC0tTX5+fkXWh4aGasKECVqzZo0LogKAmoeEIcAN 0ZIMAAAAAAAAAGqnC6sMUV0IgLtJS0uTl5eXfdlisT3y/vjjjzVp0iRXhQUANY5nRQ+Ii6uMMADH JCVNlGkmuDqMaiUqKppEIQAAAAAAAACopQqqDG3evFkS1YUAuJ+0tDQZhiFJ8vf3V6NGjbR9+3YX RwUANU+FE4YkKSkp09lxAHCSgpZk578DAAAAAAAAAGqPOXPmqG/fvvbPAOBODh8+rPz8fIWFhemu u+7SokWLXB0SANRIDiUMAajeaEkGAAAAAAAAALVXbGyswsPDZZom1YUAuJ20tDTl5uZqwYIFGjhw oKvDAYAai4QhwM1QVQgAAAAAAAAAsHPnTleHAACV4qmnntJ9992nBg0auDoUAKjRLK4OAIBzFbQi k2R/BwAAAAAAAAAAANwFyUIAcPGoMAS4IVqSAQAAAAAAANWbYRiuDgEAnMI0TVeHUCbuuUDF1ITf NYCLR8IQ4GZoSQYAAAAAAADUDMnmfa4OAQAcNmNYsta+ctTVYZSbmdnC1SEA1d6wUbv1yjKShYDa goQhwM0UtCQ7/x0AAAAAAABA9bR+7RZXhwAAtcbalF9dHQIAANUGCUOAG6IlGQAAAAAAAFBz5OZY XR0CAFSIj7/F1SE4LCfH1REA1ZO/v6sjAFDVHEwYmuncKAA4DVWFAAAAAAAAgJrn7BmShgDUDJ7e NTdZqMCZM66OAKhevL1dHQEAV6hwwlBiopSYmFAZsQBwAlqSAQAAAAAAADWT9ayrI7h41nxTn8xP 185vsxUc7qlhsxq7OiSU4dUJe3XFHWFqe32Qq0NBDWBxo94lZ/NdHUHp8vOl+YtNfbvJVHi4NGt6 zU/UcncTnrHqjtsMXX+N4epQKsTTw9URAHAVN/pnHUABWpIBAAAAAAAANZNpNV0dwkXZ+W22Du8+ rUdebCIff0uNvJ6lU/brsh7BurR7sKtDqRKmJNM0Hfpb1ba5qu0MS81KgigPazUu7vbtd6Z2/2rq xVkW+ftV71hLMuWfVvW43lD3G9zvu1MS01qz/lYW8tCAWo2EIcDNUFUIAAAAAAAAqNnMmpdjY5f2 e66im/vK28/ilOt4bfI+dbolRO1uuPiElPKea+DfG0iquX8Hh+bMdOx6a/pcofwMN873qK7f39/3 Ss2bGfLzdU6Mk/9h1S09DN3Q9eL/mOU9198n2bJRquscl8WRObMlYVZeTM7kzr9rAOVDziDgZgpa kUmyvwMAAAAAAABAVTiTY5WHF08gAeBi5ZySvCj9AACoRPwzA7ghWpIBAAAAAAAAqGornj2kX78/ KUna+lmmruobpuvuqXtuvSEFh3vp0m5BurpvHenPvKLUTzL03apMnco6q8gmPuo+JEJRTX304bzD SvstV5/MT9cn89NVr4WvvaJNSSp6riUT96lZR38d+OW00n7L1c0jIpW6KkOXdj/XZmvJxH1q3jlA B3acUtqvuQoI81CPoRFqcpm/JCn72FmtXpSuAz+fVmBdT3W8MURrXz2iuAVN5RfkUWq8SybuU6N2 fjq8+7TSfz+joHBP3fpIpA7sOK3vVmXozCmrWl8TqBuHR9orQZQ2nyVd55lTVn29/Jh2fXdSuSfz 1erqQHUbHC4vH9v/X/mxQ3l6a/qBYq+vNMue2V9orsqai7LmMicrX+uWHNWeH3NkSGrSwV/dB4fL N9DDPl8X/r2ad/LXV28d065N2crNsSqmlZ96DotQcHjZj8BKmxdHv7eSlHfa6nBMgCQ9O9fU91tt ZWo+SzHVt5ehe/oZ9vWGIYXXlbpdZ6hvL8N+f/jkM1Or1pjKypKaNJaG3GdR08bSvAWmftsjzV9s av5iUy2anav+U5KKnmtivFUdLzP0yy5Tv/0ujRhqaFWyqe7XG+p+vS3AifFWde5gaMcu6dffTYWF SEMHGrqsnW37sePSoiWmft5pqm6YdGM3Q6++bmrBHIuCAkufs4nxVrVrbWj376Z+3yuF15EeGWbR jl226zh1WrrmCkPDB5+br9Lms6TrPHVKWv6eqe+2mDqZI119uaHB9xrysf38deiwNP05s9jrA4Dq hv8yAdwMLckAAAAAAAAAuEK/8fX02StHZM2XbhoeUWi9JJlW6cjeXK18/rBCIr3UpmuQjh/KU8rS P3TPlBhFNfXRkT25+nnDCUU19VHvMdHKOFz+9lqOnuvHlCzdObae6rXwlWGRUldlFDn3ti+zdMfj 0arbwEepqzK0KjFNo5Ka2pJ05h5WUF1PPTynsc6cturDeWkVmredG0/qzrHRqlPPS2tfPaq3ZxxU 62sDNXRmQ53KturNv+9X40uzdclVgWXOZ0nX+XFimk5n5+uuCfUUGOapHd9ka9+2U2rWKaDM66uI 8sxFaWOtfP6wvHwMDUloKNMqrUpK08eJabprQn378Rf+vT749yGdzTN1z5QY+QV6aMO7x/T+7EMa 9M+GZbbbKW1eHP3eSra4HY0JkKTxjxl6ZamUb5WGDzYKrZcMWa3S3v3S8/OtioyQul5l6FCatPQt U1PG2xJ79uyTNnxrqmljQ2MeMXQ43Sx3ey1Hz5XylamxcRa1aCpZLNKq5KK9ub5cb+rxURY1iDG0 ao2pxEWmkmbbknTmLrCqbh1DcxIsOn1amveStULztvF7U2NHWVQvWnp1makZs6269kpDM6dZlJ0t /f1fVl3aVrrqcqPM+SzpOhP/Yyr7pKkJj1kUFip9s8nUth2mOl1mlHl9AFDd0JIMcDO0JAMAAAAA AABQHRkWKbKJjzrdEqLdqbZKRBZPycPTkI+fRZ5ehuq18FXswHCHzu/ouTrdHKr6l9iST0rS+dZQ RTf3lZePoQ43hSgnK1/Zx88Ov9hrAAAgAElEQVQqIy1PB345rR4PRsgv2EMhkV66/r66FYq78y0h imrqIy9fi9peH6QzuVZ1+7OqTli0lxq181fab7lFjituPouTdfSsdn93UreOjFLdGG/5+Ft0WY9g e7JQaddXEeWdi5LGykzP0/7tp3TjsAgFhnkqqK6negyN0G+bc3Qy41ws5/+9Thw7q50bT+rmEZEK ifCSt59FNwwMV0Zanv7Yf6bUeMszL1LFv7cXExNQXhaL1KSRdEtPQ6mbbes8PSRPT8nPV/Lyklo0 kwbe7ViWiqPnurmHoUua2+Irya03GmreVPLxlm7qbijrhHQ8Q0pLl37ZJT040FBwkBQZId3Xv2Lx 39LTUNPGkq+PdP21Um6uNPheQ4EBUnSU1K6Nod/2FD2uuPksztFj0nebTY0cZlFMfcnfX+pxg2FP Firt+gCgOqLCEOCGaEkGAAAAAAAAuJmaVpngvHh/+SZb/3v/uI4fylNerq1aREwrX8mQQiK91Oux KKUsPapTJ/IV0dhHnW8NUURjnxLPVxJHzxUU7ln0/Ebh/fxDPOzLnj62D2fzTGUfPysvX4v8gs+1 HguN8iz2HCUpdG5vQ17eFnn5nnva7ult6Gyead+ntPks7jqzjubJsEihUV4lxlPS9ZXre/fndZZ3 LkqbS4uHoeBIr3PH17N9PnHsrALCbOc6/++VeSRPkrTg0d+LhJV5NE/hjbxLDLuseXH0e3sxMVUb RYvC1DrVohrMnzGcH8s3m0y9/5GpQ2m2ZBhJatVCMgxDkRHSY48YWvq2qRMnTDVuaOjWGw01blj4 nOW5NkfPFV636DrjgmsICT637PPnzyHvrC2pxtdHCg46t29UhCHJ1jKsPHGHBJ3bz9vbkLe3KV/f c9u9vaS8vHP7lDafxV3n0T9syUVRkSXHU9L1ufo7ZfK7BlAMEoYAN0NLMgAAAAAAAADVRU5mvj6c d1h3PlFPjdr5ydvXou8+ydCO9dn2fZp3DlDzzgEyTennr0/ojfgDGpnUVF4+RqlVf4rjyLku5iFu YJin8k5bdepEvvyCbIkyGekVq8xTEeWZzwuvMzjCS6bVVgEoNNpLleVi5yKorqes+aayjp5VcLjt 8VXG4Tz7tgLn/72Cw71kGNKol5rKL9BDFVHavFzM9/ZiYgJKk5klzVtg6ok4Q+3aGPL1kT5JNrX+ 23OZIJ07GOrcQTJNQ19/Yyr+/6xKmm2Rj3fpVX+K48i5LiYnJixMOp0rnciWgmwdGJV+pPKyXMoz nxdeZ0S4ZLVKaUek6MhKCw0AqkyFE4bi4iojjOolKWmiTDPB1WEADiloSXb+OwAAAAAAAAD3YLi6 REEZDBkyDNMe59k8U6Yp+fh7yNPLokO7cpX6cYYCQj1lGIb2/JCjvT+d0qXdghVU11OmVTp7xvyz IoWhgFBPHdl7RqZVsniUfu2On8soMq8FxxS3T8FqwzAUGu2l+pf4au0rR9XjwQjlnbbqqzf+sG8v 39/r/HMXfi+0l2GUOZ+SilxnSISXmncO0KcL0nXTiEgFhnlqx4YTCgjzVPPOAcXEcG688sRfMFdh 9bzLORclzGWUlxq08dPaxUd0818iZc2X1r16RE07BigwzKvQiAXHh0R4qfnlgfo0KV3dBocrsI6X /tifq2/eO647HouWh1fJ8Zc2L+ENvR3+3l5MTK5mUoKkCFffcs+vrJOXZ6sS4+9vaxO26zfp4zWm QkNs+/zwk6mffpa6XW+obh3Jakpnzpw7T2iIob37bes9ykgecvhcxVUCunCdcf5v/9x7dKR0SXPp lWWmHhxo6PRp6Y13zCLzUPqEnXfO8+awuH3Kmk+p6HVG1LUlUi1YbNWIoRaFhUobvjUVFmpbX9r1 ueq7xM8aQGkcqjCUlJTp7DgAOBEtyQAAAAAAAABUByERXop9IFwfzj2k3JNWRTb1UcsrA3Xwl9OS pAZt/JT2W67ennlA2cfOKqyet+4cG21vyXXlnWH6dEG6vv90t6Ka+uiB6Q1LHMuZ56qIOx6vp9Uv pWnR478rMMxTl/YI1qFdp+Xh6fynw2XNp1T8dd4+OlpfvnFUb884oLxcU62uDlS364JKGckxFzsX dzxeT+uWHNEr4/fKMKQmHfzVfUhEqcfcHhelDe8c09sJB5WTma/wht66qm+dciXmlDQvXj6Wi/re XkxMQEkiwqUH7jY0d76pkzmmmjaWruxs6JfdtoyQNq0M/bbX1MzZVh3LkOpFSWNH2SrnSNKdtxla 8IpVnyabatpEmv50yVlDzjxXRTw+yqKXXjX1+F+tCguTelxvaNdvpjwroVhXWfMpFX+do/9i6I13 pBmzrMrNla6+wtB1V/PbBlAzGTGdbzPj/vWOhrcvPgkoOXm1HnhgiH05Lq42JAzNpMIQqtyqVR8q KDjMvvzRJ58Wu1+vW2+xf76ua9ciSUEVqSqUmrpJt93WW0uXLin0OwcAAAAcMXv2bJmmqXHjxrk6 FAAAgGrPMAwlm/dp/dotys2x6uwZq6xnJdNqFl8N4LxKLLb3qosVFfPr9yf10bzDGvNyc1eH4nLM Rc1QcM+xVxgq5h5kGJJhMWTxlDy9LfLxt+jz/x7R2leO1ojKRIZhyMxsobUpvyonx1Yt52y+rb1U ceEXVyEGVe/7rabmvWTq5Reck5BUm5z7XRd+P59h2NqueXpI3t62akv/fcPUK8vMGvG7BtzVhXkD 5XFd1672Yzt3vrzM/f/zY4gSJ/R3rMIQgOqLlmQAAAAAAABALcED7Grh5/UnZPEw1OQyf2Wk5yll 6VG17hpUK/8+zEUNRE5AuZE0VPnW/8+Uh4d0WXtD6UekpctNdb3KYO4riFwfAOVFwhDghmhJBgAA AAAAANQOtekhauaRPC2I+73Ybe27Bev2R6OqNqA/NbnMX2sWHdGn89Pk5WvRJVcFKvaBcGUdrZ7x lpcj813SXLjie1pdvy/VCUkFFecu99wjR6W4cdZit3W7ztCjI1xzoZe1N7Roian5i63y9ZGu6mLo gXsMHf2jesZbHfG7BlARJAwBboaqQgAAAAAAAEDtYtSSTi2hUV766zstXR1GEf4hHuozLrrI+lDf 6hlveTky3yXNhStU1+9LdWEWn3uBcrC4QW5KVIT0zpLq949HSJA07lFDF5Yl862m8VY3VpKFAFQQ CUOAm6ElGQAAAAAAAFD7WNzhCTaAKmElq+CiWchdQTVjJQkQgANIGALcEC3JAAAAAAAAgFqInCEA ZSFXyGncpT0Zaj7akAFwFPmvgJuJiqoe5V4BAAAAAAAAAAAAAED15GCFoZnOjQKA09CSDAAAAAAA AKjdqHoB4EJUIKk83HPhKvyuAVysCicMJSZKiYkJlRELACehJRkAAAAAAAAAAAAAACiJgxWGAFRX VBUCAAAAAAAAIFH1AgAVSKoS91xUFX7XAJyFhCHAzdCSDAAAAAAAAIAdT7CB2ousgirHLReVjZ81 AGeyuDoAAM5HSzIAAAAAAAAAAAAAAFASKgwBboaqQgAAAAAAAAAuRNULoPagAonrccuFs/GzBlAZ SBgC3AwtyQAAAAAAAAAAAFyMrCE4C9lCACoJCUOAG6IlGQAAAAAAAAAAgAuR5AEAqOZIGALcDFWF AAAAAAAAAFyIFkUAUHW45QIAagKLqwMA4FwFrcgk2d8BAAAAAAAAAAAAAAAKVLjCUFxcZYRRuqSk iTLNhKofGKihaEkGAAAAAAAAQBKlhQCgCnHLBQDUJA61JEtKynR2HACchJZkAAAAAAAAACQeXANA VeKeCwCoaWpAS7KZrg4AqFFoSQYAAAAAAAAAAAAAAErjUIWhqkY7MqBiaEkGAAAAAAAA1F5UuQCA qsM9FwBQU9WACkMAKoKqQgAAAAAAAAAAAAAAoDQ1osIQgPIraEl2/jsAAAAAAACAWoAqFwBQZags BACo6UgYAtwQLckAAAAAAACA2sVq5ck1AFQVq9XVEQAAcPFIGALcDFWFAAAAAAAAgNrF5ME1AFQZ 8jMBAO6ChCHAzdCSDAAAAAAAAKg9aIkDAFWHey4AwJ04mDA007lRAHAqWpIBAAAAAAAAtQAPrp3m 2Xt3VvoY499sWeljAKg8lZUsdO+wyi8T9+ZiS6WPAQCoeSqcMJSYKCUmJlRGLACcgKpCAAAAAAAA gPujyoWzTdXUqdM0bVrlnN0wjEJ/s4zDefpq+R/aszVHktSovZ+6D45QYB3bY5uTGWe1bslR7fkh R/lnTbW4PEA3PhQpbz/bQ/81i9K1JTmz0Bjdh0Soy+2hxY6fk5Wvta8e0Z6ttvNFNvFRt8Hhim7m K0n67OUj+n51hi1WizRuWeHkprK2X6is65v30G7l5hRNkngksamC6niWeTxQ1Sr7njt1avEDxMdP k2lOu6hzX3j/OZwuLV9hautPtpXt2xgafJ+hOmG27dt2SO9/ZOqX3aZ8faTLOxkaOMCQn1/p45im 9Pf/s2r7L9LMaRY1aWRbn5EpLXnD1A8/mTqbbzvfQw+cO5/VKi1721TKV6bOnJEua2/o4SGGQoId G+/l10ytXmu7NotFWraocLLUoiWmkj8vPN9D7jd0+01GseOUNV9lXZ8kbf9FeuMdq37bI0VHSkPv N9SuTfHjAUBV4r+sADdDSzIAAAAAAAAAqN42r8lUq6sDddNDkco9ZVXyf9K1cu5h3T+tgSTp/dmH 5BvgoQefbSzTaurjF9O0KilNfZ6sZz9Hp5tD1fOhiHKN99nL6co+nq/BCY3kG2DRV2/+oXdnHtSo +c1kWKSeD0Wo50MR2p16Uu89d7DI8WVtr+j1jXm5eaH9k19O19F9ZxT0Z0JQWccD7ig+vmrGWbPO 1NVXSA8NtujUKek//zU1d75V0ybaEmtWrDR1521Si2YW/XFMmjPfqsVLpbiHS09wWbXGlLe3oQvL 381+0aoAf0PP/sMiq1V6cZGppJdNPfmo7XzvfWRqw7emnh5vUUiwNP9lU8/PN/XMBMfGe2iQoYcG GUrdYuq5ecUnYt3cw7ZPeZQ1X2Vd3y+7pJn/tmrwvYYmPGYo+6T00WpT7dqUa3gAqFTUnwPcEC3J AAAAAAAAAPdkmiavSnhV9d8udlBdtbg8QN7+hoLqeqh992Cl7T4t0zR14lieDv5yWl3vqSP/EIsC wjzU9d462rkxWyeO5f15DslU+a/vyN4zan1toILqesjL11CHm4KVk5WvE8fzCs/Dn3NR4jyVsb08 13fh68zpfG378oQu6xns0PG8atbvoKYp+NpX5quqr2PQPYYu72TI30+qW0fqfr20+/dz2yeNM9S+ rSFfXymmvtTjBkM//2KWeg0HDkmfJJsafN+fSTh/rj923JYwc08/W8WgsFDp3n6GNqaaOnbctk/y 56buuNVQowZSSLA06F5D2342deBQxccrbm4rsr64V2nzVZ7re+MdU92uM9Qz1pC/vxQZIQ17wKiS 7xY/awBlocIQ4GaoKgQAAAAAAAAANUf28bP6KSVLzS8PsK0oeMB7YfELUzqy54wCw2yPdrZ9eUI/ rMuSf7CHmncJ0HX31pWPf/H/f+ItrwzQjg3Zan55gHz8LNqSnKX6l/gqKKzyHxMVub4LbP86Wx6e hi65MtCh4wE47niGlPK1rY1WSbbvkBo3Knm71Sol/ceqwfcZCvAvvK0gYaXI7cyU9uw15eVp6Nhx qVnTc3vE1JN8vKW9+0zVjy46bmnjldeX602t+8JUcLDUpaOhe++yJQSV5cL5Kuv6goMM7dhpqm1r Q+OnWHXkqNQgRnrgbovatHIsdgBwJhKGADdDSzIAAAAAAADADVEloOa74G/40xdZ+mR+uiQpopG3 7ppQXzKlwDBPRTX10ddvHtPNIyJlmqbWv3VMMqTcHKtkSjcNj9BNwyNkzbdVD1r9UrpWJaap77h6 xQwsXXVnmN7bdUgvPfq7JCk43FN3/bV+sXGVuK4i20u5vgttTc5U+9hgeXgahbaX93igMrhbZZYL r+eLr03NX2xb2aiBNOFxS7HX/OlnprbvMPWPp4vfLknvf2wqoq6hLh0NZWT+Od6fY4aFSk0bS2+u MDViqK2qzlvvmTIMKeeU7SVJfr6FY/T3t20rbszSxivPtQ8fbGj4YEP5VmnvPumlV6xKXCSNG11y UlRJ81XW9Z3MkfKt0tovTI0bbVG9KOmTz0z963mrnptuUZ2wEocEgCpBSzLADdGSDAAAAAAAAACq t3Y3BGvc0hYamdhEMa389Pq0/crLtT2QvnNstAxDWvzUHv134j416+wvQ5JfUOHHOhYPQ1FNfdR9 SLh2p57UmdPWYsdaPuOg/IM9NTKxiR57uZk63xqq16fuV/bxsy65vgJpv+Yq7fdcXdYz2KHjATjm hq6Gli60KHGWRa1aGpo206rcM4X3+fQzUys+NDVpnEVREcWf58BBW0uxoQNLTrYZO8oiw5Ceetqq ifFWdb7Mtj4o0JYoJEmnThU+Jifn3LaKjldeHhZbss+Q+yxK3WLq9OmS9y1tvkq7Ph9vyTCk7tcb atpY8vWV+vYy5OUl/bSd+xkA16PCEOBmqCoEAAAAAAAAADWEIQWEeuqqPmHavCZTGWl5imjkreAI L/V96ly1oN2pJ+Xpbahe82KeoJfh1Il8Hdp1Wt0Ghysg1PZYqMvtofp6+R86tPO0WpbQCswpSri+ ApuTM9W4nb9Co7wcOh6A4wxDCg2R+txuaM06U2nptuo5kq2Kz6efmXp6vEUN6pd8jt/2mjp2XBr5 ROFkxYnxVvW62dAD9xiKCJeeGmOooHFX6hZT3l5S86aG/PykOmHS7t9MtWhm237gkJR7RmrcsGhS UHnGqywlzVdp1+ftLdWLKnwe07RVRDIo6wGgGiBhCHAztCQDAAAAAAAAgIqLj5+m+HjJNKdV6jim Vfpw3mFd1TdMdep7KyczX9+8e0wBoR6qU8+WOPPdxxmKaOyjes19dGh3rta+ckRX9akjbz/bE+b3 Zx/S1f3qqE59bx0/dEafv3ZUzToGyNu36BNovyAPBUd4afPqTIVGesnL19AP67KUf1aKaOzjkuuT bO3Vdmw4odtGRTl0POB+plX6CFarNO8lU317GaofLWVmSe9+aCo0RKoXbdvnzRWmvt5g6pkJFkVH lX6+6642dN3V55J0MjKluHFWJUy1qHFD27qPV5tq3MiWQLP7N1OvLDPVp5ctWUiSesYa+vBTU60v MRQSLC19y1SbVufiqeh4ZZn9oql+vQ3VrycdOiy99pZVHS815FtMPmZ55qus67upu6EPVpnq3MFQ vWjpk2RTVqvUvk3lJTcBQHmRMAS4IVqSAQAAAAAAAEBFxNs/GUZ8KftdPMMitb0+SMn/OaIje3Pl 4++hmFa+uufpGHl42R4gt7wyUMkvp2vftlMKquOpy3uFqdMtIfZzXNo9WJ8tPqKj+3LlF+ShFpcH 6pr+dUocs99T9ZSy7KgWP7VH+WelOvW9dMfYaHtlnx/WZWn1wnT7/rMG7pIkxS1oKr8gjzK3V/T6 JGnbVyfk7WdR8y4BDh0PuJP4+JK/2868J1ks0vXXSP/5r1V790v+flKrloaeHm+Rl6d0Old6/yNb q6wnJ5+r4uPlKb0637GSOFd2MfTya6a27bCqTpjU62ZDt/Q8d719bjeUkyP9c5ZVZ85Il7Y19Ngj jpffWfelqYWvnmv3NfBh23UsmGNRUKDU/Xpp8VKr9u2XgoKkyzsa6t+n+Pkva77Kc3239DSUc0p6 dq5Vp05JjRtKf33cotCQYocEgCpV4YShuLjKCOOcpKSJMs2Eyh0EcGNUFQIAAAAAAABqNoOciCr3 1OstqnS8Fl0C1OKCRJnzhUR4qv9fS+4D1LxzgJp3Lvn4C0U08taAv5V8vst6BOuyHsEOb79QWdcn SZ1vCVHnW4p/Yl6e4wFncfU99/X/VG1vqi4dDXXpWPxF+/leXDxhoUWPjwiX/jr2XMuuC3l4SIPu NTTo3or/IYobr8cNhnrcUPK5Oncw1LlD+ccqbb6ksq9Pku66w9Bdd/CPO4Dqx6EKQ0lJmc6OA4CT 0JIMAAAAAAAAqLkMCw8UAaCqWKo2VwcAgGqFlmSAG6IlGQAAAAAAAFDzWPi/2ANAlfH0KHsfAADc Gf/zA3AzVBUCAAAAAAAAah5Pb8pcAEBV8fZ2dQQAALgeCUOAm6ElGQAAAAAAAFCz+PiTLAQAVcXf 39URAABQPZAwBLghWpIBAAAAAAAA1d+MYcmuDgEAao1ho3a7OgQAAKoVEoYAN0NVIQAAAAAAAKBm WPvKUVeHAAC1xivLTFeHAABAtULCEOBmaEkGAAAAAAAAVH+myYNrVK7Zs2fLNE2NGzfO1aEALufu 99zPP/9co0aN0s8//1xofUBAgLZu3apmzZq5KDIAQHVGY2TADdGSDAAAAAAAAAAAwL2lpaVp8ODB 6t69e5Fkobvuukvbt28nWQgAUCIHKwzNdG4UAJyGqkIAAAAAAAAAAADuKz8/Xy+99JImTZqkjIyM QtuaNGmiF154Qb169XJRdACAmqLCCUOJiVJiYkJlxALACWhJBgAAAAAAAAAA4J5SU1M1atQoffvt t4XWe3p6asKECZo8ebL8/f1dFB0AoCZxsMIQgOqMlmQAAAAAAAAAAADuIyMjQ08//bSSkpJktVoL bYuNjVViYqLatm3rougAADWRxdUBAHCuqKhoV4cAAAAAAAAAAAAAJzBNU0uWLFGrVq304osvFkoW ioiI0Kuvvqp169aRLAQAqDAShgA3U9CKTCJ5CAAAAAAAAAAAoKb64YcfFBsbq6FDhyo9Pd2+3jAM PfLII/r55581ZMgQGYbhwigBADUVLckAN0RLMgC1iWmarg4BAPAn0zTtLwAAUHvwkBIAAOfKysrS tGnTNHfuXOXn5xfa1rlzZyUlJenKK690UXQAAHdBhSHAzVBVCAAAAAAAAAAAoOYxTVNLly5Vq1at 9O9//7tQslBoaKhefPFFffvttyQLAQCcgoQhwM3QkgwAAAAAAAAAAKBm2bJli2644QYNGjRIhw8X 7iDx4IMPaseOHYqLi5OHh4eLIgQAuBsShgA3REsyAAAAAAAAAACA6u+PP/5QXFycOnfurK+++qrQ to4dO+qrr77S4sWLFRkZ6aIIAQDuioQhwM1QVQgAAAAAAAAAAKB6y8/PV1JSki655BIlJSXJarXa t4WGhmrevHnauHGjunbt6sIoAQDuzLOiB8TFVUYY5yQlTZRpJlTuIIAbK2hJdv47AAAAAAAAUBkM w3B1CAAA1DgpKSl67LHHtHXr1kLrDcPQQw89pISEBEVERLgoOgBAbVHhhCFJSkrKdHYcAJyIlmQA AAAAAAAAAADVy++//64JEyZo+fLlRbZdddVVmjdvnq644goXRAYAqI1oSQa4GVqSAQAAAAAAAAAA VB/Z2dmaPHmyWrduXSRZKDo6Wq+88orWr19PshAAoEqRMAS4mYJWZBLJQwAAAAAAAAAAAK5itVq1 ePFitWzZUjNmzFBubq59m5eXlyZMmKBffvlFQ4cOlcXCY1sAQNVyqCUZgOqNlmQAAAAAAAAAAACu 8/nnn2vcuHFKTU0tsq13796aPXu2WrZs6YLIAACwIVUVcDNUFQIAAAAAAAAAAHCNX375Rf369VP3 7t2LJAu1bdtWn376qVauXEmyEADA5UgYAtwMLckAAAAAAAAAAACq1tGjR/X444+rXbt2eu+99wpt q1u3rhITE7VlyxbdfPPNLooQAIDCaEkGuCFakgEAAAAAAAAAAFS+U6dO6fnnn1dCQoKysrIKbfPy 8tJjjz2myZMnKywszEURAgBQPBKGADcTFRVNohAAAAAAAAAAAEAlOnv2rF599VVNnTpVBw4cKLK9 f//+mjlzplq0aOGC6AAAKJuDCUMznRsFAKcpaEl2/jsAAAAAAAAAAAAunmmaev/99zVp0iRt3769 yParrrpKs2bNUteuXV0QHQAA5VfhhKHERCkxMaEyYgHgJLQkA4DyMU3T1SEAgFvi/goAQM1jGIar QwCAIqri3sT/fkFFrFu3TpMmTdI333xTZFuLFi2UkJCg/v378+9qMfg9A0D1Y3F1AACcKyoq2tUh AAAAAAAAAADgBFM1daop06yc14VSUlJ06623KiQkRDExMYqLi1NWVpZ9+8iRI2UYRqHXnDlzSoz+ 0KFDuv/++xUREaGQkBANGTKk0Pny8/M1fvx4RUREKCAgQP369VNaWprD46HybNy4UTfffLN69OhR JFkoKipKiYmJ2rZtmwYMGECyUCmmTjWLfUlTnf57Hj16tP134+lZdg2Nsn7/6enpGjhwoCIiIhQc HKzY2Fht2rTJvj00NLTI79UwDO3fv9+h8QCgKpAwBLiZglZkEslDAAAAAAAAAACU1/Tp0zVu3Djt 27dPq1ev1hdffKExY8YU2ufRRx8tlKQwduzYEs83YMAAZWVl6YcfftC2bdt04MABDRs2zL49ISFB b775ppKTk7Vr1y7l5ubqvvvuc3g8ON/WrVvVt29fXXnllVqzZk2hbUFBQYqPj9euXbs0atQoeXl5 uSjKmiU+vuirMrzwwgsyTVMrV64s1/5l/f5Hjx6tvXv36rvvvtP+/fvVoUMH9erVS/n5+ZKkjIyM Qr/VuLg43XDDDWrQoIFD4wFAVSBhCHBDtCQDAAAAAAAAAKBi1qxZo5tuuknBwcFq166dRowYoS+/ /NKhcx08eFDr16/X9OnTFR0drZiYGE2fPl0rVqzQwYMHJUnz58/X+PHj1aFDB9WrV0+zZs3S559/ rh07djg0XlRUlF577TX7uuHDh6t79+72hAaU37Zt23TPPfeoQ4cOev/99wtt8/b21tixY7V79249 88wzCgwMdFGUcKayfv9bt27V/fffr0aNGik4OFhxcXFKT0/XoUOHipzr5MmTeu211/TII484PB4A VAUShgA3Q1UhAAAAAPthxjgAACAASURBVAAAAAAuXkpKijp27Fho3ZIlS+Tr66tGjRpp9OjRyszM LPbYghZJF7anMk1Tmzdv1h9//KEDBw7oiiuusG9r06aN/P39tWXLlgqPV79+fS1dulRxcXHavn27 lixZoo8++kivv/66PDw8HLr+2mj79u0aOHCg2rdvr+XLlxfa5uHhoeHDh2vnzp3697//rYiICBdF iapw4e+/f//+evPNN7V//35lZWVp/vz5uvbaaxUTE1Pk2GXLlsnb21v9+/d3eDwAqAokDAFuhpZk AAAAAAAAqIgLH2YDAKR58+YpJSVFzz77rH3d/PnzlZWVpezsbK1YsUJff/21hgwZUuzxMTEx6tKl i6ZMmaLDhw/r4MGDeuaZZ2QYhrKyspSVlSVJCgkJKXRcaGiofVtFxpOkG2+8UU8++aT69Omj0aNH a9myZYqO5jlBefz000+6//771a5dO73++uv2hC/J9u/kwIEDtX37di1atEiNGjVyYaSoCsX9/idO nChvb281bNhQISEheu+997Rw4cJi/ztqwYIFGjZsmHx8fBweDwCqAglDgBuiJRkAAAAAAAAAAI6Z N2+e/vGPfyg5OVnNmzcvst3T01NdunTRnDlztHLlSp04caLY87z99tsyDEOtW7dWp06d1Lt3bxmG ofDwcAUHB0tSkYpBGRkZ9m0VHU+SRo4cqT179qhTp07q0aNHRS+91vn+++81YMAAXXrppXrjjTcK JQpJ0t13360ff/xRS5cuVcuWLV0UJapSSb//G2+8UZGRkTp48KBOnDihxx9/XF27drW3GCywadMm paam6i9/+ctFjQcAVYGEIcDNUFUIAAAAAAAAAADHJCQkaMaMGVq3bp06dep0Uedq0qSJPvjgA2Vk ZCgtLU3NmjWTr6+vrrzyStWtW1cxMTHauHGjff/t27crJydHHTp0cGg8q9WqoUOHqnfv3tq5c6de fvnli4rfnX355Ze6/fbb1blzZ73zzjtFEoUGDBigrVu36q233lLbtm1dFCWqWkm//6NHj+p///uf xowZo3r16ikwMFBPPPGEzpw5ow0bNhQ6R1JSknr27KkWLVo4PB4AVBUShgA3Q0syAAAAAAAAAIC7 iI+fJsOYViVjTZ48WfP/n737js+qPv8//j539k4gCYQZEJlh0yCZom2tUhSLg1GpVGwVxVqp9qt1 wE9b/H4ddbSJVVrQVuuoVtSibRHNZEe2gCxBwh5ZJGTc5/cHcmvIuhPulZPXs4+7gfuc8znXOUkw 431f1wsvKDc3V0OGDGmw/dprr1VRUZFOnz6tzz77TPfcc4+uuuoqRURENLre008/reXLl6u8vFzL ly/XnDlz9MADDzg6CN1222164okntGHDBh06dEhz585VZmamBgwY0KbzPfbYY9q/f79eeeUVvfba a7r77ru1efNmF92d9s9ut+v9999XWlqaMjIy9OGHH9bbbhiGrr/+em3cuFFvvfWWhg4d6qVKrW5e Iw/va+7zPzY2VomJifrjH/+ow4cPq6KiQs8995xqamrqBfxKSkr0+uuv67bbbrug80nSvHnzNHDg QMffN2/eLMMw6n1ODxw4UPPmzWvD1QLAWf6tPWD2bHeU8Y3s7PtlmgvcexLA4hhJBgAAAAAAAABo /+Y7/mQY85vZ78KVl5frd7/7nSSpf//+jueDgoJUVVUlSZo1a5buuOMObdy4UXFxcbrmmmua/WX9 5MmTdfvtt+vTTz9Vjx49NHfuXM2ZM8ex/f7779epU6d0+eWX6/Tp0/r+97+vRYsWOba35nyffPKJ nnzySa1YsUJhYWG69NJLdd999+n666/X2rVrFRYWdgF3p307c+aMXnvtNT355JPaunVrg+02m01T p07V/fff32hwA64zf77R5DZXf44vXLhQt95667fWP3vuo0ePKjY2tt6+znz+v//++7r33ns1aNAg VVdXa+DAgXrrrbfqdRL661//qsjISF1zzTXN1ubM+QDAE1odGJKk7OySlncC4BVdunQlKAQAAAAA AAAAaPfOHxPlTuHh4S2eb8KECZowYYLTa/bu3VtLly5tcrufn5+efPJJPfnkkxd8vvHjx6u0tLTe cw8++KAefPBBp+u1muPHj+tPf/qTnn/+eR061PD3JoGBgbr55pt17733OjU+ChfGk5/P0tnA3axZ s5za15nP/6SkpAZdqc5355136s4773TJ+ebNm1cvIJiUlNTgmG3btrV4LgBoTpsCQwB817mRZN9+ CwAAAAAAAAAA0BFs2bJFzz33nF555ZVGu7VERETo5z//uX75y1+qW7duXqgQAADfQGAIsCBGkgEA AAAAAAAAgI6irq5OH3zwgZ5//nl9/PHHje6TkJCgu+66S7fddpuio6M9XCEAAL6HwBBgMXQVAgAA AAAAAAAAHcHhw4f1l7/8RS+88IL27dvX6D5Dhw7VPffco2nTpikwMNDDFQIA4LsIDAEWw0gyAAAA AAAAAABgVXa7XZ9++qlefPFFvfPOO6qpqWmwj2EYmjBhgu6++25ddtllMgzDC5UCAODbCAwBFsRI MgBwP9M0vV0CAPgc0zQdDwAA4Hn8MhQAYGWHDx/W4sWL9dJLL2nXrl2N7hMVFaWbb75Zd955p/r1 6+fhCgEAaF8IDAEWQ1chAAAAAAAAAABgBXV1dfrvf/+rhQsXasmSJaqtrW10v+HDh2v27NmaPn26 wsLCPFwlAADtE4EhwGIYSQYAAAAAAAAAANqzvXv3atGiRVq0aJH279/f6D4hISG64YYbdNttt2ns 2LF02gMAoJXaGBh63LVVAHApRpIBAAAAAAAAAID25MyZM1qyZIkWLlyoZcuWNTnuetiwYfrZz36m 6dOnKzo62sNVAgBgHa0ODGVlSVlZC9xRCwAXoKsQAAAAAAAAAABoD0zTVFFRkRYtWqTXXntNJ0+e bHS/8PBwTZkyRbfeequ+853v0E0IAAAXYCQZYDGMJAMAAAAAAOh4+MUpAKA9OXLkiP72t79p8eLF 2rRpU5P7paSk6JZbbtENN9yg8PBwD1YIAID1ERgCLIiRZAAAAAAAAAAAwJdUVVXpgw8+0CuvvKIP P/xQtbW1je4XFxenGTNm6JZbbtGgQYM8XCUAAB0HgSHAYugqBAAAAAAAAAAAfIFpmlqxYoVeeeUV vfnmm02OHPPz89NVV12lmTNnasKECQoMDPRwpQAAdDwEhgCLYSQZAAAAAAAAAADwpu3bt+u1117T q6++ql27djW5X1JSkmbOnKnp06erS5cuHqwQAAAQGAIsiJFkAAAAAAAAANCxzJ8/v97fV6xYIdM0 VV5eXu/5Rx55xJNloQM5cOCA3njjDb322mtat25dk/vFxsZq2rRpmjFjhkaNGiXDMDxYJQAAOIfA EGAxdBUCAN9imqa3SwAAj+PfPgAAXItfpAJoSU5Ojh5//HFVVVU12Paf//zH8efg4GBlZmbq0ksv 9WB1sLJjx47p7bff1uuvv66cnJwmvx8MDAzU1VdfrZtuuklXXnmlAgICPFwpAAA4H4EhwGIYSQYA AAAAAAAAHUtmZqYGDhyo9evXN7vfgAEDCAvhgp04cULvvvuu3nzzTS1btkx1dXVN7puRkaFp06bp hhtuUExMjAerBAAALSEwBFgQI8kAAAAAAAAAoGN55plnNGnSJJ06darR7dHR0XrmmWc8XBV8VWlp qSIjI53e//jx41qyZIn+8Y9/6L///a9qa2ub3Hf48OGaOnWqpk6dql69ermiXAAA4AatDgzNnu2O Mr6RnX2/THOBe08CWBhdhQAAAAAAAACg48nMzFRiYmKTXYZ69+5NdyFIkrZs2aIRI0ZoypQp+utf /9rkfsXFxXr33Xf1zjvv6NNPP222k1C/fv00ZcoUTZ06VYMHD3ZH2QAAwMXa1GEoO7vE1XUAcBFG kgEAAAAAAABAx9RUlyG6C+GcDz74QNOnT1dtba1WrlzZYPu2bdu0ZMkSvfvuu41u/7bExETdcMMN uvHGGzVy5EgZhuGusgEAgBswkgywIEaSAQAAAAAAWAO/fAXQGk11GaK7ECTp+eef17x581RaWipJ 2rlzp2pra7VixQq9//77WrJkiXbs2NHsGomJibruuut0ww03aMyYMfx3CgCAdozAEGAxdBUCAAAA AAAAgI7r/C5DdBeCJM2dO1eLFi3SyZMnHc8FBASoc+fOjgBRU/r376/Jkydr8uTJGjVqFCEhAAAs gsAQYDGMJAMAAAAAAACAjuv8LkN0F8LkyZO1bNmyBsGgmpoa1dTUNHrMmDFjNGnSJF177bUaNGgQ ISEAACyIwBBgQYwkAwAAAAAAAICO61yXoXN/RseVnJyszZs3q7Kystn9AgMDddlll+nqq6/WxIkT 1aNHDw9VCAAAvIXAEGAxdBUCAAAAAAAAgI4tMzNTsbGxMk2T7kIdWM+ePXXo0CHV1tY2uU9kZKRe fvllffe731V4eLgHqwMAAN5GYAiwGEaSAUD7ZJqmt0sAgAtmmqbjAQAAWsZ4FwDu9MUXX3i7BHhR YGCgamtrW/z+rLS01NGNCgAAdCw2bxcAwPUYSQYAAAAAAAAAQMd1/fXXa9CgQQoMDFR4eLiioqJk szX8tWBUVJTWrVvnhQoBAIC3tbHD0OOurQKAy9BVCAAAAAAAALA+OlQBcFZ1dXWT20pKSrRu3TqN Hj3agxUBAABf0OrAUFaWlJW1wB21AHABRpIBAAAAAAAAHcO8XYyCBdA21acr9PIdN+hA7lL97Gc/ 83Y5AADAC9rYYQiAL2MkGQAAAAAAANAxFOYs93YJANqp4E7x3i4BAAB4EYEhwGLoKgQAAAAAAOD7 GCcFV6qtPO3tEgC0M/4hod4uAQAAeBmBIcBiGEkGAAAAAAAAdDz2mmpvlwCgnbAFBHq7BAAA4AMI DAEWxEgyAAAAAAAAoOMx7bXeLqHNzLo6bX/jBR3btFrBMbEac99T3i4JLVj35H3qMX6iuoxO93Yp HvPZs79R17GXK+GSy7xdSpsZNn41CAAAzuKrAsBi6CoEAAAAAAAAdFym3e7tEtrk2KbVKtu/S2Mf +qP8g0Pb5XV89txDShh7mbqOHe/tUjzClCS72ab3VXu9V6Z59v/a48enJBk2m7dLAAAAPoSvDACL OTeKTJLjLQAAAAAAAIAOxDTb3aP8wF5F9LxI/kEhLlmv6JkHdHhNjkfXGjnn/6lr8qVev5ceu2dn P9jadK7W3itXvj8v6NFOP7++eX8BAAB8gw5DgAUxkgwAAAAAAADo2NpbPKC26rRs/gEurduU6+6D K9fyZa29Tk/eF195H/hKHa1heLsAAADgkwgMARbDSDIAAAAAAAAA7cmWvzyhE59/Jkk6uPJj9bx8 khJ/cMM3zxuGgqNj1SX5UvW6fJJknI0/FOd/pAO5H6q6vFThPRJ10TUzFN69j7b97XmVf7VHO954 QTveeEERvfppxJz/12wNrV2r6Pf3q9OgESrds0PlB/bo4utu1YG8D9U1ebxjzFbR7+9X58GjVLpn u8q+2q3AyBhdNOkniuk/TJJUXXJCO/6xUKV7tikoqrMSUr6rXe++rEvm/UkBYRHN1lv0+/sV3W+I yvbvUsWBvQqKjlX/G3+ukj3bdSDvQ9WdqVTc8HG6ePItjvvV3P1s6jrrqiq1999v6cSWdaqtqlDs 8EvUd+JN8gsMkiRVHj2oTS881uj1NWf98w87fa+arO1MlfZ+9KaOb16ruqrTiuwzQP2unamgmFjH mue/j/Z/8l6z75OWPuYAAACspNWBodmz3VHGN7Kz75dpLnDvSQALOzeS7NtvAQAAAAAAAMBXDfnp vdr1z8Uy7XXqN/mWes9Lkmm3q+LgPm3727MK7hyv+JGpqjx6ULs/eFXDbntI4T36qOLAlzr62QqF d++jgT+eo8rjh9Qt9Qp1GZPR4vnbutbh1TkaNONuRfTqJ8Nm04G8DxusfXhtngbN+IXCuvbQgdwP tf3vWbrk4WzJMPT5355TUHRnfef+Z1RXVaVtrz7fqvt2fNMaDZpxt0LiErRrycva9OLvFDciRaPv eVw1p8u1Mev/6Vj/oYodNrbF+9nUdW5/PUs1p8s15Jb7FBgZo2MbVqpk11Z1GjSyxetrrabWarq2 bNlrazTs9ocUEBqufcve0daXn9bIX/zWcf7z30f7P3mv2Zqbu0cAAABW06YOQ9nZJa6uA4ALMZIM AAAAAAAAwDntqTdKY7UaNpsiuieqW+oVOrGlSF1Gpsrm5y+bn7/8g0Lk5x+gyN79FNm7X4O1nLn2 tq7VLfX7ikrs3+x+3dN/oMieF53dP+V72vvRm6ouPSl7TY1K9+7QuHPdhMIi1eeqKdr4p986XXf3 tCsU0aOPJKnL6HQdXpuri64+2/0nIDRc0RcPUflXexT3dWDIUWMj97Ox+s+cOqbjW9bpO7/+vUJi u0iSEi65rH4NTVxfUFSnFut39l6dW6tebSUndHzzGl3y0B8VGBkjSeo7YZoKHp6l04e+UlhCz7Pr NPI+cqZmZ++RL2tvY9MAAIDnMZIMsBi6CgEAAAAAAABoqD1EHKRv13l040rtX75ElUcPqq76jCQp MnGAJEPBneI1cPpd2v2vV1VTUabwhN7qnvYDhXXr3eR6TWnrWkHRsY2sXz9OEhge5fi7LeDsGC97 TY2qS0/KLyhYAWGR39TRuUujazQl4Ntr+wfKLyBQfoHBju02/0DZa2sc+zR3Pxu7zqoTx2TYbArp 3KXJepq6Puc+3py7V/XXOlfbUUnSykfvaLBq1cljCkvoJanx91Fz53HuHrWHyBBxIQAA0DICQ4DF MJIMADoe0+SHQAB8C/8uAQA6EqMNY3cAr/HlD1dD9XIY1WUl2vbq8xo845eKvniI/AKDdSD/Ix35 rNCxT+cho9R5yCjJNHWkqEDrs+dr3CPZsgUEyTBs36zrhLasZRhGS3mh+sd9621gVIzqzlSp5nTZ 2Q5DkqpOHGl6jaY0snZj+zhzP8+/zuDOcTLtdlWeOKyQ2K6tq6H1eaFm12pQW6dYyTA0bv6LCggN b/oUjb2PmjhPdXnL96hV1+ctfDsGAACcZPN2AQBcj5FkAAAAAAAAABpn+Oijfm32mhqZpim/4FAZ fgEq3bdTX+Usdex3csdm7Vn6hiqPHZa9rk6maZe9plqm/ez2wMholR/cJ9Nub/HcbVursft5/nNN 7WMoJDZBkb37a+c/F6umvExVx49qz9LXW/E+anrtxvZp6X42dp1B0XHqNHiUdrzxJ50+XKzaqkod XLVcJ7Z+1ooanK2/+bUaq63zkDHa/nq2Ko8ekr2mWmX7d2vL4qdlr61tYc3Gz+PMPWr8eF96AAAA OI8OQ4DF0FUIAAAAAAAAQLN8OVfwdW3BnePU94fTte3V51RzukIRPfoodliySvfukAwput8glRfv 0eaFj+tMyQmFxCVo8Iy75Rd8diRXz/FXa8ebf1J+/r8V3qOPRv7isSZP2ea1GstoNJeHOS9PM2jG L/TFWy9q9YJfKCgqRl3HXqayfTtl8/d37n3U1Npq+FxL97Op6xw4/U7tXfq6Nr30O9VVn1Hc8EsU f3Vaw2xQI9fXqvpbWKvR2qbN1pf/eVubFi5QTVmJQrv2VK/LJ8kWEND0OZo5jzP3qFXX52l0FgIA AK1kdB91pTn7/97WLUklje6wbNl/NH36DMffZ8+WsrMb39c1HpdpLnDj+oBv+vDDDxQRGeP4+78+ +nej+034wRWOP6elpjYaDnJ2JFlR0VpdeeUP9eqrr9T7PAeA9uRCxt544lhX7+fqYwHAlZ599lmZ pqm7777b26UAAOAxbR1J5uxxrt7Pl47FhTEMQ/N2mSrMWa7aytNfd8SpPduBxTTrZQeMc/9vfPPW 8MnEQ8d24vPP9Pmrzyv1sb94uxS0M6bMrwND37xt8G+AYciw2WTY/GULCJR/SKh2vfdX7Xp3MT9b AgDAh5yfG3BGWmqq49hRo8a0uP+fN0cp677JdBgCrIiRZAAAAAAAAABaRODLq46uL5Rsfuo0YJgq jx/R7n+9qviRqbxf0DqEfQAAQBsRGAIshpFkAAAAAAAAnkF3HVhCB/g4rjpxVKsend3oti7fuVQD p93h4YrOiu4/TF+8vVA73nxBfoHBih02Vn1/OF1VJ4/5ZL3O8tX7bUmEhQAAwAVoY2DocddWAcBl vj2KjPAQAAAAAAAAgJYYNpu3S3CrkNguuvTZt71dRgOBEVEacvPcBs+HBAX7ZL3O8tX7bTWm3e7t EgAAQDvX6sBQVpaUlbXAHbUAcBFGkgEAAAAAAABoDcOwdmgIsBLTJCwEAAAuHCPJAIuhqxAAAAAA AACANukA48mAdo8xZAAAwEV4yQBgMedGkUlyvAUAAAAAAAAAAAAAADiHDkOABTGSDADQGJNXoAFw M9M0HQ8AANo7g04r6Mj4+Ad8D99nAQAAFyMwBFgMI8kAAAAAAAAAXCgiQ4DvICoEAADcgcAQYDHn RpJ9+y0AAAAAAAAAtBqdhgDvo7MQAABwEwJDgAUxkgwAAAAAAACAaxAaAryHsBAAAHAfm7cLAOBa Xbp09XYJAAAAAAAAAAAAAADAh9FhCLAYRpIBAAAAAABcGIMxTEBDfF4AnsMYMgAA4AGtDgzNnu2O Mr6RnX2/THOBe08CWBwjyQAAAAAAAAC4GpEhwP2ICgEAAE9pU4eh7OwSV9cBwEXoKgQAAAAAAADA HQgyAAAAANbBSDLAYhhJBgAAAAAAAMDlGJEEAAAAWIrN2wUAcD1GkgEAAAAAAAAAAAAAgKbQYQiw GLoKAQAulMmrRgFcIP4dAQD4MsMwvF0C0M7wtR0AAABgRQSGAIthJBkAAAAAAAAAlyAIDgAAAFgW gSHAghhJBgAAAAAAAOBCEBUCfNMtnUpdtNIJ6brx0nXj9eqrr7hoTQAAcCGmT5/h0fMRGAIshq5C AAAAAAAAAC4InYUAn+bpXyYCAABrsnm7AACudW4UmSTHWwAAAAAAAAAAAAAAgHPa2GHocddWAcCl GEkGAHA1k1eXAnCCaZqOBwAAvsAwjGb/DuA8fB0HAAAAdBitDgxlZUlZWQvcUQsAF2AkGQAAAAAA AIDWMk27t0sAAAAA4EFt7DAEwFedG0n27bcAAAAAAAAA0BTTTlgIAAAA6GgIDAEWxEgyAAAAAAAA AE5hDBkAAADQIREYAiyGrkIAAAAAAAAAnNIBwkI5c290+zkyn3rD7ecAAAAAXI3AEGAxjCQDAAAA AACQDMPwdgmATzNl/bDQOY880vi1zp8/T6Y574LWNgyj3r2sPHZIX370lk7u2ChJir44SX2vvklB UZ0kSSW7tmrfx0tU+uUO+QUGKzZpjPpMmCa/4JBG168pL9Wud1/WyR0bZa+tVXj3RPW9+iZF9Ozr 1HZJKtn9ufYsfV3lX+1RSGxXXTTpJ4ruN6TR81WXntKu917RqR2bZK+rVeyQMer3o5866jPtdu35 12s6vCZHdTXViuk/TBdfN0uBEVGSpMLf/FS1VacbrDv24SzHPThfc/V98Y+FOrhiWb39L7pmhrpn XOVUPQAAAGgagSHAghhJBgAAAAAAAKBJHScr5DB/vhsX/9b9PFj4X8UOv0T9fvRT1Z2p1Bdv/1nb /vqcht8xT5K077//VI/xVyuyVz+dOXVcW//2jHb+c5EGTJnd6NI73/mLzpSc1KhfLpB/cJj2fvSG Ni98XJc8/IIMm63F7aV7d2jzS4+r78SblPTT+1RzulwHcv+l6IsaDwxtfflp+YeEafSvnpBpt2v7 3/+o7a9na/BP7pEk7f/4XR1dv0LDfv6gAsKjtOPNF7Ttr89q2O0PS5JSHvtLg/orDu1XUGSnRj/u nKmvW+r31e/anzZ6z1uqBwAAAE2zebsAAK7VpUtXb5cAAAAAAAAAwGeZHezhCd+cr+/EHys2aYz8 Q0IVFN1ZXceOV9n+XY7tQ3/+gGL6J8kvOFihXbsrYexlKtm9rcn6y4v3KX5kioKiO8svOFgJKd9T TXmpqstOOrV974evq2vypUoYd7n8Q0IV0jle/a6d2ei5qktPqHTvDiX+4AYFRkQpKCpGiVfeqGOb 16i69IQkUwdXLFOPSycqrFsvBUZGqe/EH+vUrq2qPHqgwXp11VU6XJSnhHGXN3l9ztWnJo9vTT3W eQAAALgGHYYAi2EkGQAAAAAAAIBGkTVwjybua3XpSR1ek6POQ8Y0uU/Jrs8V3q13k9vjhiXr6PoV 6jxkjPyDQnRwxTJFJvZXUESMZDa/3aytU8me7Yq6aLDWPnGvqk4cVVjXHur7w+mK6juo4WXYzxVh nJfTMVV+4EtF+AXoTMkJRfTo69geGt9dtoAglR/Yp5DYbvXWO1JUIJufv2KTkhu9PrPOifpM6fDa PB1a9YkCwiPVefBoJV55o/yDQ1VzurxV9QAAAPexwkho0+x4XywTGAIsiJFkAAAAAAAAAOrreL8A 8Zz69/bw2lxtf+MFSVJYQi8l3XJfg30k6UDBv3Vq9+caedejjW6XpJ7jr1bpvp1a9dgdkqTgmFgl 3fJryTh73ua211ZVyLTX6dCq5Rpy81yFxCXoQP5H2vyX/9OYe59UUFSneucKiopReI8+2vvRG+p/ /a2SaerLf78pGYbqqk6rruq0JMk/JKRevf4hoV9vq38NB1cuU5fvZMrm79/o9TlT38WTb9HFk2+R aa9TRfE+7XjrRW1/PUtDbp7b6noAAIB7XfH34d4uoU0Mm/TRjRu8XYZXtDowNLvxMbouk519v0xz gXtPAlgYXYUAAN7UERP4AL5x7t8A/i0AALibFV69CngSX5251/n3N35MhuJHp6u6rET7Pv6n1v9x nsbc+4RsAUGOfYoL/q19//2nhv7sAQV37tLk+2jji79TcOd4jX0oS35BwTq0arnW//ERjf7VEwqM jGl2u39ImGQYgv6NOgAAIABJREFU6pI8XmE9+kiSel4+SQfyPtSpnVsUPzq9wfkGzbhbu959WWv/ 71cy/P3V87JJOrlzi/zDImQLDpEk1VZW1qu3tvK0bMEh9Z4r/2q3yg/s1cDpdzV5bbbAIOfrs/kp rEcf9b1mhja+8Jhqz1S1qh4AAOB+pmmqvX2nZkoy2l3VrtOmDkPZ2SWurgOAizCSDAAAAAAAAAC8 zDAUGBmtXpddo4OF/1XlscMKS+glSdq/fImK8/+tYbc/qNAuPZpcoqaiTGX7dqrv1TcpMDJaktQ9 4yrt/egtlX75haL6Dmp2e+zQZIXGJdRf1DTPPpoIXgbHxGnIzF85/n5ia5Fs/oGK6HmR/IJDFBjV SWVf7VJE736SpNNHDshec+bsWLVvKS5cpuh+QxQS26XJ67MFBLa6vm8LCA13uh4AAOAhhiHDz9tF OMe0S7J37IgxI8kAC2IkGQAAAAAAAAB82zy3n8G027Xt1efV6/JJConvppqyEu1b9o4CI6IV8nUw Zu9Hb+jIugINm/2wQmK7NrteQFiEgmPidLDwPwruFC+/oGAdXv2JTHutwhJ6t7hdkhJSvqf9y99T 58GjFBKXoOL8j2SadkX3S2r0nAdylyqsW29F9LxIZft3aee7i9Xr8mvk93U3n4RLLtdXn36gqD4D FRARpd3vv6qovoMc1ydJtVWndXT9Cg2YenuL96yl+ra+/LR6ffdahcZ30+kjB7X7vb+p08AR8gsK droeAADgWYZhyBbg2117TFOqO2P3dhleR2AIsBi6CgEAAAAAAADw7V/ReNb8+U3fDcOYf8Hrn1vd sNnUZXS6dr7zZ5UX75N/SKiiEgdo2G0Pys8/QHVnqrT/4yWSpLX/e4/jeJt/gNIWvNzo2kN++ivt +eA1rXviVzLrahUS302Db7pboV937mlpe/fUK1RXeVpbFj2h2spKhXfvraRbfq2grzsSnS92aLJ2 vvMXndq1VUFRndQjc4K6p17h2N7rsmtUV3Vam/70W9XVVCum/1AN+PFd9T7ejq7Ll39wiGKHjG7x 47Cl+hKSx2vXPxepvHi/AsMj1HnIGPX+/mTHus7UAwAAvMCQDJtv/hfZNE2pzttV+AYCQ4DFMJIM AAAAAAAA6OCcGOfUUWQ8+XePnq/zkNHqPGR0o9v8gkNaXU9YQi8l3fo/bd4uSb2+9yP1+t6PnDpf cKc4Jc36dZPbDT8/9Z34Y/Wd+OMm9+mWdoW6pV3R5PbW1Ndp8Ch1GjzqguoBAABe4qtfknbsKWT1 EBgCLIiRZAAAAAAAwKoMghBAswybzdslAAAAADLtJHN8HYEhwGLoKgQAAAAAAAB0TIaNH/kDAADA +0y7tyuAM/juAbAYRpIBAAAAAAAAHY8tINDbJQAAAACy15lSHd2F2gMCQ4AFMZIMAAAAAAAA6Dj8 Q0K9XQIAjznh7QIAAGiSaZoSWaF2o42BocddWwUAl6GrEAAAAAAAANAx/HXuTG+XAMDTrhvv7QoA AGiUzc/wdglopVYHhrKypKysBe6oBYALMJIMANAemCYvMQCsyjRNPscBAG1mGPyAGWiNXe8u9nYJ ADyNwBAAwEd9dOMGb5eAVmIkGWBBjCQDAAAAAAAArM3ZkHZVVZVWr16t3Nxc5ebmqrCwUBUVFc0e 06tXL3355ZeuKBOAi7366iveLgEAgAbc9QLCxYsXa+bMmUpNTVV+fr5bztGRERgCLIauQgAAAAAA AEDHVVZWpsLCQkdAaPXq1aqurnbq2MTERKWnpyszM1N1dXXy8/Nzc7UAAAAAvIXAEGAxjCQDAAAA AAAAOo5jx44pPz9feXl5ys3NVVFRkex2u1PHDh48WBkZGUpPT1d6erp69uzp5moBAAAA+AoCQ4AF MZIMAAAAAAAAsKbi4mJH96Dc3Fxt2bLFqeNsNptGjhzp6CCUlpam2NhYN1cLAAAAwFcRGAIshq5C AID2yl0zjgF4jmmajgcAAC0xDKPZvwM4+/XV3r17lZOT4wgI7dq1y6ljAwMDlZycrIyMDGVkZGjc uHGKjIx0c8UAAAAA2gsCQ4DFMJIMAAAAAAAAaJ9M09T27dvrBYS++uorp44NDQ1VSkqKY8TY2LFj FRIS4uaKAQAAALRXBIYAC2IkGQAAAAAAAOD76urqtGnTpnojxo4ePerUsdHR0UpPT3d0EBo5cqQC AgLcXDEAAAAAqyAwBFgMXYUAAAAAAAAA31RTU6OioiLl5uYqJydH+fn5KikpcerY+Ph4ZWRkKDMz U+np6Ro6dKhsNpubKwYAAAC85/Dhw5KkY8eOebkSa2p1YGj2bHeU8Y3s7PtlmgvcexKgHQgKCtKZ M2fqPRccHNzicYwkAwAAAAAAAHxDVVWVVq9e7egeVFhYqIqKCqeO7dmzpzIzMx0dhPr37y/DMNxc MQAAAOA7/vnPf0qSduzY4eVKrKlNHYays517xQOAtuvevZt2795T77ke3RKcOpaRZAAAAAAAwJcR eoBVVVRUaOXKlcrJyVFubq5WrlzZ4EWBTbn44osd4aD09HQlJibyuQIAAIAObenSperSpYseffRR b5diSYwkA3zUgH79JEnFB4olSd27ddPFXz/XHLoKAQAAAAAAAJ5RWlqqgoICR0BozZo1qq2tderY pKQkR0AoIyNDCQnOvVgQAAAA6Cg6deqkmpoab5dhWQSGAB9ls9k0qH9/Derfv1XHMZIMAAAAAAAA cI/jx48rLy9Pubm5ysnJ0fr162W321s8zmazacSIEY4RY+np6ercubMHKgYAAADcr713xjRN09sl eAWBIcCCGEkGAAAAAAAAXLjDhw87wkG5ubnatGmTU8f5+/trzJgxjoBQamqqoqKi3FwtAAAA4D2v PRTq7RLaZNqjp71dgtcQGAIshq5CAAAAAAAAQNscOHDAEQ7KycnRtm3bnDouKChIY8eOdQSExo0b p7CwMDdXCwAAAPgWw5DaU68he8dsLORAYAiwGEaSAQCsrqO2BgXaEz5PAaBja++t6NFxmKapvXv3 OsJBOTk52r17t1PHhoaGKiUlxREQSk5OVnBwsJsrBgAAAHyfn59kawffFtbUersC7yMwBFgQI8kA AAAAAACA+kzT1I4dO+qNGNu/f79Tx0ZERCgtLU2ZmZnKzMzU6NGjFRAQ4OaKAQAAgPbJ38/bFTSv ts7bFfgGAkOAxdBVCAAAAAAAAJDsdru2bt1aLyB06JBzPzeLiYlRenq6IyA0fPhw+fvz43QAAADA WTbDkC82oK3r6HPIvqWN3+E87toqALgMI8kAAAAAAADQEdXV1Wnjxo31AkLHjx936tj4+HhlZGQ4 RowlJSXJZrO5uWIAAACg4zDJ6ficVgeGsrKkrKwF7qgFgIswkgwAAAAAAABWV1tbq6KiIkdAKC8v TyUlJU4d2717d0f3oIyMDA0YMECGL778GQAAAGin7KYpERLyafRQBSyGrkIAgI7I5KUJgE8wTdPx AAB0DOcHLAhcwJ2qq6u1Zs0aR0CooKBA5eXlTh2bmJjoCAhlZmaqT58+fLwCAAAAblJd6+0K4AwC Q4DFMJIMAAAAAAAAVlBVVaVVq1YpJydHOTk5WrFihSorK5069uKLL67XQahXr15urhYAAACAJNXW ebsCOIvAEGBBjCQDAAAAAABAe3P69GmtWLHCERBatWqVzpw549SxQ4YMUUZGhiMglJCQ4OZqAQAA AJyPxuPtC4EhwGLoKgQAAAAAAID2oKysTAUFBY4RY2vWrFFNTU2LxxmGoWHDhjk6CKWnpysuLs4D FfsmT4xWY+QsAAAAWjLt0dPeLgGtZPN2AQBc69woMkmOtwAAAAAAAIC3nTp1Sh988IHuvfdeJScn KyYmRldeeaUWLFigwsLCJsNCNptNY8aM0dy5c/Xee+/p+PHjWr9+vZ599ln96Ec/6tBhoXMeecRs 9CE9ItM0L+hxvjvvvFOGYcgwDPn7t/ya5J07d2ratGmKi4tTXFycbrzxRh04cMCx/eDBg5o6dari 4uIUFRWlGTNmqLS01LH9tttuc5zv3OOZZ55p9py5ublKS0tTaGiohg0bpuXLlzt/MwEAANBqF/o1 Z1OPRYsWSZJSU1Pddo6OHI6nwxBgQYwkAwAAAAAA7uaJriZo344fP+7oHpSTk6MNGzY49cN4f39/ jRkzxtFBKDU1VZGRkR6ouH2bP98z5/nDH/6gP/zhD/rggw80adKkFvfPzs7W9ddfr6ysLJWWlur2 22/XlClTlJeXJ0m67rrrFB0drU2bNqmurk4zZszQzJkz9fbbbzvWuOOOO/SHP/zBqfoKCwt11VVX 6amnntL777+vEydO6Pe//70uu+yytl0wAAAAYFEEhgCLYSQZAAAAAAAAvOHw4cP1AkKbN2926rjA wEAlJyc7AkLjxo1TeHi4m6uFpzz11FOOP0dHR2vWrFmaNm2aJKm4uFiFhYUqKipS165nu6U/9thj Sk1NVXFxsbp169bq8/3mN7/RT3/6U/385z+XJMXExDgdNgIAAAA6EgJDgMWcG0n27bcAAAAAAACA qxUXF9cLCG3bts2p44KDgzVu3DhHQGjs2LEKCQlxc7XwBcXFxVq8eLGuueYaSXJ0nDq/Y5lpmlq/ fr0jMPTKK69o4cKFio+P19VXX63f/va3ioqKarB+TU2N8vPzNX78eCUlJWnPnj0aMmSInnjiCWVm Zrr56gAAAID2pdWBodmz3VHGN7Kz75dpLnDvSQCLYyQZAAAAAAAAXG3fvn3KyclxhIR27tzp1HFh YWFKSUlxBIS+853vKCgoyM3VwpcsXrxYM2fOlCQNGzZMS5culSR1795do0eP1kMPPaSXXnpJdrtd Dz/8sAzDUGlpqSTphRde0AsvvKDa2lpt2LBBs2bN0owZM7RkyZIG5ykpKVFtba1eeuklvfvuu+rf v7+ee+45/fCHP9Tnn3+uHj16eO6iAQAAAB/Xpg5D2dklrq4DgIvQVQgAAAAAAAAXyjRN7d69u15A 6Msvv3Tq2MjISKWlpSkjI0OZmZkaPXq0AgIC3FwxfNnNN9+sn/zkJzp06JBj5NjWrVsVGhqqf/zj H7rrrrs0cOBABQUF6YEHHtDy5csVGxtbbw1/f3+NHj1azzzzjMaPH6+ysjJFRETU2ycsLEyGYeiW W27R6NGjJZ0dUfbMM89o+fLlmjFjhseuGQAAAPB1jCQDLIaRZAAANO1cu3sA7sXnGgC0f+ePB4L1 maapL774wjFeLCcnRwcOHHDq2JiYGKWnpysjI0OXXnqphg8fLn9/fvSM+gzDUEJCgh544AFlZWVp 586dGjZsmBITE/Xee+859nv//fcVHBys5OTkVp8jJCREAwYMqPecaZoyTVM2m+2CrwEAAACwEr5r AyyIkWQAAAAAAABojmma2rp1q/Ly8hwdhA4dcu5nSbGxscrIyHAEhIYOHUoYwyfM83YBDdTV1Wnq 1Kl64IEHNHDgQB0+fFiPPvqounbt6gj2PP300xoxYoSSk5O1evVqzZkzRw888IAiIyMlSddee60e eughDRw4UNu3b9c999yjq666qkF3oXNmz56txx9/XBMnTtSAAQP07LPPqq6uTpdffrkkad68eXr9 9de1bds2SdLmzZs1dOhQbdq0SUlJSZKkgQMHasqUKZo3b56b7xAAAACaY7fb672FaxEYAiyGrkIA AAAAAAA4n91u16ZNmxzhoLy8PB07dsypY7t06aLMzEzHiLHBgwc7ulDRjco3zJ/f9PvBMOa79FwL Fy7Urbfe+q31z5776NGjDcaI+fn56aabbtLtt9+uDRs2KDo6Wmlpafrkk08UFBQkSZo8ebJuv/12 ffrpp+rRo4fmzp2rOXPmONaYNWuW7rjjDm3cuFFxcXG65pprmg3yzJkzRyUlJZo4caJKSko0YsQI LV26VAkJCS68CwAAAPCERYsWSZI+++wzHTlyRPHx8V6uyFoIDAEWw0gyAAAAAAAA1NbWav369Y6A UH5+vk6dOuXUsd27d68XEOrfvz/BIB/m6XGws2bN0qxZs5zef+LEiZo4cWKT23v37q2lS5c2uX3C hAmaMGFCq2p88MEH9eCDDza6bd68efUCR0lJSQ3u4bnuQwAAAPCuKVOmaNWqVerXrx9hITcgMARY ECPJAAAAAAAAOpaamhqtW7fOERAqKChQWVmZU8f27t27XkCob9++BIQAAAAAeN0dd9yhtWvX6n/+ 53+8XYolERgCLIauQgAAtI6nX40LWJlpmo4HAKD9OD8YQlCkfThz5ozWrl2rnJwc5ebmasWKFaqo qHDq2H79+ik9Pd0REkpMTHRvsQAAAAA6LFd8j7l48eILXoOfWTZEYAiwGEaSAQAAAAAAWE9lZaVW rVrl6CC0atUqVVVVOXXswIEDHd2D0tPT1b17dzdXCwAAAADfSFmZIj/DzyvnNk1T+Zfke+Xcvq6N gaHHXVsFAJdiJBkAAAAAAED7VlFRoRUrVigvL085OTlas2aNqqurnTp26NChjg5C6enp6tKli5ur BQAAAIDmGTI83+WHBrrNanVgKCtLyspa4I5aALgAXYUAAAAAAADan9LSUhUUFCg3N1d5eXlat26d amtrWzzOMAwNHz5cmZmZyszMVFpamjp37uyBigEAAACgdeyyy27aPXIuwzDkJ+90NWovGEkGWAwj yQAAAAAAAHzfyZMnlZ+fr9zcXOXm5mr9+vWy21v+wbmfn59GjhypzMxMZWRkKDU1VdHR0TIMXjoL AAAAwPfVmDVuDw0ZMhTkF+TWc1gBgSHAghhJBgDAhfF4W1TAYvgcAgDfdX6ohJCJ5xw9erReQGjz 5s1O/TczICBAY8aMcYwXS0lJUUREhAcqBgAAAAD3sMvu1p8h+htEYZzBXQIshq5CAAAAAAAA3nfw 4EHl5eU5Rox9/vnnTh0XFBSk5ORkZWRkKCMjQ+PGjVNoaKibqwUAAAAAzzLlnsCQIV4Y4ywCQ4DF MJIMAAAAAADA8/bv3+/oHpSbm6tdu3Y5dVxISIjGjRunjIwMpaenKzk5WcHBwY7tdIECAAAAYEU2 w+btEjo8AkOABTGSDAAAAAAAwH1M09SePXscHYRyc3O1b98+p44NDw9XamqqIyA0evRoBQYGurli AAAAAPAdjAzzDbwXAIuhqxAAAAAAAIBrmaapHTt2OMaL5eXlqbi42Kljo6Oj6wWERowYIX9/fzoH AQAAAOiQgmxB3i4BXyMwBFgMI8kAAAAAAEBjCKg4z263a+vWrcrPz3eEhI4cOeLUsbGxsUpLS3ME hJKSkuTn5+fmigEAAADA9/kZnv/eyJTp8XO2FwSGAAtiJBkAAAAAAIDz6urqtHHjRuXl5Sk/P18F BQU6fvy4U8d27dpV6enpSk9PV0ZGhgYOHCibzebmigEAAACgfak1a71dAs7T6sDQ7NnuKOMb2dn3 yzQXuPckgIXRVQgAAAAAAKB5NTU1Wr9+vXJzc5Wfn6/CwkKVlJQ4dWyPHj2UkZGhtLQ0ZWZmql+/ fnRvAgAAAIBmFF5S6O0S0Ig2dRjKznbum2cAnsdIMgAAAAAAgPqqqqq0du1a5efnKz8/XytXrlRF RYVTxyYmJjrGi2VkZKh3796OgBBBIQAAAABonmm2fSTY4sWLNXPmTKWmpio/P9+FVUFiJBlgSYwk AwAAAAAAHVlFRYVWr16t/Px85eXlac2aNTpz5oxTx/bv398xYiw9PV09evRwc7UAAAAAAHgegSHA YugqBACA51zIKyMAKzJN0/EAAHhWR+90U1paqhUrVigvL0/5+fkqKipSbW2tU8cOHjy4XkCoS5cu Hf5+AgAAAACsj8AQYDGMJAMAAAAAAFZ3/PhxFRYWOgJCGzdulN1ub/E4m82m4cOHKz09XWlpaUpN TVXnzp09UDEAAAAAAL6FwBBgQYwkAwAAAAAAVnLo0CHl5+eroKBAeXl5+vzzz506zt/fX6NGjXIE hFJSUhQVFeXmagEAAAAA8H0EhgCLoasQAAAAAABo7/bt26eCggLl5+crPz9fO3fudOq4oKAgJScn Ky0tTenp6UpOTlZYWJhjO6PGAAAAAAA4i8AQYDGMJAMAAAAAAO2JaZratWtXvYDQ/v37nTo2LCxM Y8eOdQSERo8ereDgYEmEgwAAAAAAaA6BIcCCGEkGAID3mKbp7RIArzn38c/nAQC41/lBmPYWjLHb 7dq2bZsjIFRQUKDDhw87dWxkZKRSUlIcI8ZGjBihgIAAN1cMAAAAAPCGLVu2SJIOHDigyspKhYSE eLkia2ljYOhx11YBwGXoKgQAAAAAAHxJbW2tNmzYoIKCAhUUFKiwsFCnTp1y6tjOnTsrNTVVaWlp SktLU1JSkvz9eQ0kAAAAAHQEn332mSRp//79hIXcoNXfXWdlSVlZC9xRCwAXYCQZAAAAAADwpqqq KhUVFTkCQitXrlRFRYVTxyYkJCg9Pd0REhowYEC766AEAAAAAHCNZcuWKSQkRH/+85+9XYol8XIc wIIYSQYAAAAAAFqjuLhY3bp1a9OxFRUVWr16tSMgtHbtWp05c8apY/v06aOUlBRHB6E+ffoQEAIA AAAAi2rr93vTp0/X9OnTW32caZptOl9HQWAIsBi6CgEAAAAAgNZ46623dMcdd2jSpEl68cUXW9z/ 5MmTWrFihQoLC1VQUKANGzaorq7OqXMNHDjQ0T0oJSVF3bt3d2wjKAQAAAAA1vfG76/wyHlu/OW/ PXKe9ozAEGAxjCQDAMD38CoGdCSmafIxjw4lLi7O2yUATjlx4kSjz8+ZM0fvv/++qqurtXbt2kb3 OXTokFasWKGCggIVFhZqy5YtTp3TZrNp2LBhSk1NVUpKilJSUhQbGyuJcBAAAAAAdGR1dXa3rs/3 nM4hMARYECPJAAAAAMBzfmz+2NslAE36z8z/6MjiI41uGzt2rPbv36/KykpJ0u7du2Wapr788ktH OKiwsFC7d+926lwBAQEaNWqUUlNTlZqaqksuuUSRkZEuuxYAAAAAgHXYbO4J9djdm0WyFAJDgMXQ VQgAAAAAPG9T7iZvlwA4bfXq1briiitkGEa9rnABAQHq16+fjh8/7tQ6ISEhGjt2rMaNG6eUlBQl JycrNDTUXWUDAAAAACwmKMDPpetV19ol0f3cWQSGAIthJBkAAAAAeEe4X7i3SwDqKa8rb/DcU089 peeff15Sw7GpNTU1zYaFIiMjHeGg1NRUjRgxQoGBga4tGgAAAADQofj5uabTkN1OUKi1CAwBFsRI MgAAAADwjkAb4Qn4hmp7dYPnrr32Wq1bt05lZWVOrREfH69x48Y5RowNGjRIfn7fvPrTMNzTPh4A AAAA0LHYDEO6gG8xz74ehsBQaxEYAiyGrkIAALQP57+iH7AC0zQdD6Aj87dZ58ctq29Zre7XdFf3 q7t7uxSvWnnTSvWe3lsJP0jwdilOqbXXNniuR48eqq6uVm1tw23fFh4ergULFiglJUUXXXQRoSAA AAAAgNuR9/GOVv8Ea/Zsd5Txjezs+2WaC9x7EsDCGEkGAAAAAN5nk83bJbiMIcNS19NW7eU+2GVv 9Plx48Zp9erVMgxDVVVVqq5u2IFIksrLyzVjxgx3lggAAAAAgIPd1LkWQfCwNr3kLTu7xNV1AHAh RpIBAAAAgPdZoTOLce5/FriWC9Ue7kNzHd7eeustGYahLVu26OOPP9aSJUtUVFSkqKgolZWVyW4/ GzSKjIzU+vXrNWLECE+VDQAAAADooGpqG3/RCzzDOj2yAUhiJBkAAAAA+BJDvh0wcZZVruNCnAtP +SrTyd7tQ4YM0ZAhQ3TXXXdJkj799FN99NFH+vDDD3X06FFVV1cTGAIAAAAAuJ1pSnV0FvIqAkOA xTCSDAAAAADQmPwf5ys+NV4nN55UyeclGvqbodr18i7Fp8TrxPoTKvuiTKE9QzV47mDFDI9xyfrx afHanr1dR3KOqKa8RjHDYzTkviEK6RrS4npfvvGl9vx9j6pPVityQKQGzx2syAGRkqS6yrpm1117 z1odLTgqGVJI1xD1vLqnLpp5kc7lfRqrNS4lTjv+tENHco+otrxWXS/vqkF3D5JfiJ8kqXxfuVbP Xq2Sz0sUFBukwb8arNixsa2+T75m/PjxGj9+vP73f/9XR44c0fLlyzV16lRvlwUAAAAAsDSDKWQ+ gMAQYEGMJAMAoH1qbowI0J7wsQz4rq/e/0ojHx+p6KRoGTZDu17epX3v7NOo/xulyAGR2vf2Pq39 5Vplvp2pwJjAC16/6NdFslfbNTZ7rAKiArTzzztVdF+RUhanyLA13a2nYl+FPn/uc43NGquoQVEq 3VGq4n8XOwJDG+ZtaHbdMU+PkSSZdlNlX5Tpswc+U0j3EHW7oluTta771TrVlNZozO/HKCg2SIc+ PqTj644rPi1eklS8tFgjfzdS4ReFa+/f92rDIxt0+YeXy4ebDrVafHy8pkyZ4u0yAAAAAAAWduMv /+3tEvA1m7cLAOBaXbp09XYJAAAAAIBGmF7+nyT1ur6XoodFS7ZvRlj1/FFPxYyKkV+Yn/rM6KPg uGAdyjlUb8RVW9avPFKpw58eVtJvkhTcLVh+YX7qf2d/nf7qtMr2lDW7luFvyBZgk1+4n4xAQ1FJ URpw1wCZMlu1rmxSxIAI9b6ht47kHWm61kOVOpJ3REMfHqqwPmHyj/BXj0k9FJcW59i/9429FTkk UrZgm3pe11PVJ6tVeazS6+9TAAAAAADaC9M0W/VYtGiRJCk1NbXVx/KixpbRYQiwGEaSAQAAAIAP 8/LPqkK6hDSoIbR7aL3nQrqHqOpwVf39nKz72+tXHqiUJH0y4ZMG+1UWVyqib0TT6ySEaPijw7X9 ue2qPlWtiH4RSrwxUREXRzi17qGPD2n3y7tVsb9CdZV1kqSYYTH1r/NbtZ4uPi3DZii0W2iT1xoY E+jY5hd2OvZIAAAgAElEQVR4dkyZvcruvfephTobAQAAAAAAzyMwBFgQI8kAAAAAAI36/+zdd3RU dfrH8c+dVFIhhCQgEFCkFxEVhSgooiAsuFgoosjaAZH9KUpUStDQllVXJdFVEXBVxIKrq4CADVxF EZSOgIiEXkMNSWbu7w+WyJCezMyduXm/OHPCzPfO/X5mQjgn9zzzPEUUmZzYecLt/skdJ5VwZUKl z18tqZoMh6Fr5l2jkNiQcp8qISVBCSkJMl2mdn22S8vuX6arP7m61PPmHszVz6N/1kUTL1LNS2sq uFqwfnvnN+1eeM7vyGdljagdIdNl6sSOE4qoG1HurAAAAAAAAIGGkWSAzTCSDAAAAAD8n1Xjq4p6 bPsH23Vg5QHlncjT1je3KmdvjhI6J1T6/GFJYap1ZS2temqVjv1+TPk5+Tq87rBWPLZCzjxniefa //1+/ZL5i45nHZfL6ZLpNOU85ZRpln7e/FP5Mk1TwVHBMkIMHVpzSL/N/q30rCm1tPrp1Tr22zHl HcvT9n9v196le0t876z6PgIAAAAAAFRWBTsMTfJsCgAew0gyAADshTnLCCTMBwfKx6rij3P3rXtj XW3K3KSjm44qol6E2j7TViHVQ9yOK0/Ws49tObalfn3tV/341x+VezBXUedHqeGghjJCjBLPWb1t dR3ZeEQ/jvhROftyFFk/Um3S28hRzSFTZonnDa8drsbDGuvn0T8r/2i+optEK7Fzog6vPlxoz7Pv txrXSpsyN2n5Q8vlPOlUYpdENRnepMj34dyCIV8xmEMGAAAAAAA8pNwFQxkZUkbGRG9kAeAhjCQD AAAAgMDgy2KTy9+4vMg9I8+PVKMhjYrMddlrlxX5nLKePygiSBc+eKEufPDCIs9fHCPEUPLtyUq+ PbnI55V23uTbkpV8m/tzz14vMmtUkJqObKqmI5sWes65xxuhhrp+17VMr8VTKBYCAAAAAACeVMEO QwD8FV2FAAAAACCwWN2Vi85g/s8wKBYCAAAAAACeRcEQYDOMJAMAAACAwGP1eLLS9s/ZlaNv+nxT 5FrtG2qr+ejm5drX0+ezMzoLAQAAAACqqtzcXLev8CwKhgAbYiQZAAAAAAQel+ny+Z6Xzry0THuH JoXq6v9eXex6ebN7+nx25TAcVkcAAAAAAMAyM2fOlCStWrVKBw8eVFxcnMWJ7IWCIcBm6CoEAID9 MTYG/o5/o0DFuUShDE5ziGIhAAAAAEDVNmTIEC1fvlzt2rWjWMgLKBgCbIaRZAAAAAAQ2Ci6g2Ew hgwAAAAAgNtuu00bN27UXXfdZXUUW6JgCLAhRpIBAAAAAAAAAAAAAKziyQ/DPPXUUx47Fx/U+gMF Q4DN0FUIAAAAAOzBFBewqhpDdBYCAAAAANjHo28/7lcFOn8bMNHqCH6FgiHAZhhJBgAAAAD2QdFQ 1UGxEAAAAADAtvzhV14usRRS7oKhIUO8EeMPmZmpMk2quoDKYCQZAABVjz99SgNVl2maBTcAAAAA AAAAkCSHw+HREWXl5XQ6Ldvbn1Wow1BmZrancwDwELoKAQAAAID9UIhnX1ZeMAUAAAAAwFeCQoN8 /zuwKeXn5vt2zwDCSDLAZhhJBgAAAAD2xHgy+2EMGQAAAACgKnE4HL4bT2ZKLqfLR5sFJgqGABti JBkAAAAAAAAAAAAAwN/46sMzfPCqdBQMATZDVyEAAAAAsDcueAU+OgsBAAAAAKoi02VyXcOPUDAE 2AwjyQAAwBmmyS9e8K2goCCdOnWKf3uAl1FsAgAAAAAAAo3pNOWU0+oYOAsFQ4ANMZIMAAAAVggL C9ORI0esjgEAAAAAAADAj5imqfy8fKtj4BwUDAE2Q1chAAAAWCU8PFw5OTlWxwBsi85CAAAAAAAg EJkuOpL7IwqGAJthJBkAAACsEh4erlOnTlkdA7Alw6BYCAAAAAAABJYp/SdYHQElqGDB0CTPpgDg UYwkAwAAgBXCwsLoMAQAAAAAAABApln5rkIzZszQ4MGD1bFjRy1dutQDqXC2chcMZWRIGRkTvZEF gAfQVQgAAJTEE7+kAcWJiopSbGws/84AD2IMGQAAAAAAALyBkWSAzTCSDAAAAFapXr261qxZY3UM wDYoFgIAAAAAAIC3OKwOAMDzGEkGAAAAKyQkJGjv3r1WxwAAAAAAAAAAlIIOQ4DN0FUIAAAAVomL i9Phw4flcrnkcPD5FKCiDIPOQgAAAAAAAPAuCoYAm2EkGQAAAKx0pstQUlKS1VGAgOSgGTQAAAAA AAB8gIIhwIYYSQYAAMrDNE2rI8BGEhIStGfPHiUmJlodBQg4DoNiIQAAAAAAAPgGBUOAzdBVCAAA AFZq3Lixdu/erdatW1sdBQgohhhDBgAAAAAAAN+hYAiwGUaSAQAAwErnn3++fvrpJ1133XVWRwEC hmEULhZaePlCr+/b9buuXt8DAAAAAACgor7++mtJ0ubNm3Xo0CHVqFHD4kT2QsEQYEOMJAMAAIBV WrVqpY8++sjqGEDAKKmz0NixRY+MTEsbJ9McV7l9DcNt7xNZJ7T5n5t14PsDkqSa7WqqyYgmCqsV Vqb1cx1aeUi/zvxV2auzFVQtSAlXJejCoRcqODLYI+vFMqUfhvygQysP6YpZVyi6cbQk6fNrP1f+ sfxCh1/10VUKTwiX6TK1adom7fhkh1w5LtVsX1PNH2uu0LjQIrdZN3mdsuZmuT3WZEQTJfdLliTl HsrVhmc36MD3B2TmmopuEq0mw5sopllMhd5PAAAAAACqouzsbBmGocOHD1Ms5AXlLhgaMsQbMf6Q mZkq05zo3U0AG6OrEAAAAKzUtGlTbdy4UaZpFtk1BcAfyjKGLC3NN/tnvZ+lpGuS1GJkC+Ufz9e6 Keu06slVuuzly8q0fq5fp/+qhrc3VGyLWOXsydHPT/6sDX/foFZjWnlkvTjbZm9TUFhQwes78xq7 LOridtz6v63X0V+PqlpCtdP7zfxVuxft1qUvXKrQGqFak75Gq55cpUszLi32vat/c301e6RZkesb pm5Qzr4cdZjRQcHRwdr00iat+L8V6vxJZxkOo9zvJwAAAAAAVdH777+vWrVqaebMmVZHsaUKdRjK zMz2dA4AHsJIMgAA4AmmWXRXC6AsWrRooTVr1qhly5ZWRwH8VlmKhXyZoelDTQv+HhIdorq96urn MT8XHFPa+rkufeGPQpuQ80NUr3c9/fbObwXHV3a9KMe3Hde2d7ep3TPttLTf0kKv8QznSad2zt+p Fo+2KFjP+iBLDe9oqJgLYwpe79J+S3Vi2wlFJkcWu2dxeY5uPqrkW5JVLel0QVLyzcn6/d3flbs/ V+EJ4eV+PwEAAAAACCSe/iBhjx49PHo+rn+fxkgywIYYSQYAAAArtWjRQmvXrqVgCAhQp/af0o5P dijxqsQKrRfl4MqDimkc47V102Vq9fjVavpQU4VEh5SYZednO+UIcSjxmtP587LzlLMvR7HNYguO iWoQpaDwIB3dfLTYgqGdn+5U1r+zFBoXqoQrE9T4/sYKjjp9qS3x6kTtWrRLCVclKDgyWL9/8Luq t6qu8Frhhc5TkfcTAAAAAAB/984T91gdoUh901+xOoLfoGAIsBm6CgEAAMBqLVu21NKlS9W3b1+r owD+x58ayJyTZcd/dmj1U6slSdGNotXuuXZux5S2Xpxtc7bp4IqDuuL1K4o8vrLrkvTrrF9VrU41 JXZO1KkDp/54fUUcv33udp3X8zw5Qh2SpPwT+ZKk4Ohgt+ODo4KVfzy/yHO0GNVCLUa1kOk0dXTT 0dMjzNJW6eKpF0uSLrjzAq0YuUJf9vpSklQtqdrp98vxxzkq+n4CAAAAABAonC6X1RHceLjxUcBz lH4IgEByZhSZpIKvAAAAgC+d6TAEwJ1Rjj9W5Knbs666f9dd13xyjWpcVEPL7l4mV46rzOtF/fl9 zu/aMn2LLnvxMkXWjfT4uiFDx7ce1/b3t6v5w83d3r+ijj2y/oiObDyi+n+uX/BYSOTpjkTOY063 Y/OP5Ss4MrjE1+cIcii2aaya/bWZ9i7dK+eJ0+f4YegPCq0Rqms+uUbXfXmdGvRroGX3LFPu/txK vZ9W/DsBAAAAAKAyHA7DL24ojIIhwIYYSQYAAAAr1a1bV9nZ2Tp69KjVUQCUlyGFxYfpgjsv0Mnd J3Ui60T51s+yZeYWbZmxRe0z2iumSeFxYpVdP+PIhiPK2Zejxd0Wa177efr8hs8lSd/c/o02PL/B 7djf3/9dNS+tqYi6EQWPhcSGKLxWuLLXZRc8duy3Y3LmOBVzYfH7Fif3cK4Orz2sBrc2UFh8mIKq BalB/wZy5bl0aPUh94PL8X4CAAAAABCowoKDLb1RLlQ0RpIBNsNIMgAA4C0uP2sfC//WokULrV69 WpdffrnVUYAAN87rO5guUz89+ZMuuPMCRTWI0qmDp7T5tc0KqxmmyPqRpa4X5ZfMX7Rz/k61f7m9 IusVPqay62er072O6nSvU3D/1IFT+vyGz9XxjY6KafxHwU/+sXztWrhLrce1LnSO+n3q69d//aq4 tnEKjQvVhn9sUNzFcYpMLnrvFY+uUKO7GikyOVLHtx3X+ufWq1aHWgqOCJYipGq1q2nbe9tU7bxq Cq4WrKyPsuTKdynmwpgKvZ8AAAAAAAS6oCBr+tlwXbt4FAwBNnNmJNnZXwEAAABfOzOWjIIhVHWm zAo/Ny2t+M+/GUZahc97RkE2x+mim7WT1+ropqMKjg5WjTY1dFnGZTJCT2coaf3c1+g86dSWGVsk SV/f/HXB445Qh65bcl2l18v6usz//Tljx7wdCo4MVsJVCYUyN7yzoXKP5WrZ0NNjwWq2r6mL0i8q 9vtXt3ddrZ2yVkc3H1Vo9VAldEpQo3saFRzf7u/ttOGFDVpy6xK58l2KTI5U24ltVa1utXK/nwAA AAAA2IXD8G2vH9Pkd+ySUDAE2BAjyQAAAGC19u3b65///KfVMQBLVeai1PXfXe/BJEU7O1+tlFqq lVKr2GNKWz+bI9xRbH7TNCu9XprQuNCC5599fL2b66nezfWKPo8hNXmwiZo82KRM+8V3iFd8h/hi 80WeH6l2z7Yrdr087ycAAAAAAHbhy997DR8XJwWiChYMTfJsCgAeQ1chAAAA+IPWrVtr69atOnDg gGrWrGl1HMDnXKLdNQAAAAAAwBkul68/JMOHckpT7oKhjAwpI2OiN7IA8ABGkgEAAMBfdO3aVQsX LlS/fv2sjgL4VL4r3+oIAAAAAAAAfiPP6bQ6AorASDLAhhhJBgAAfIXRKSjJNddco+eff159+/a1 OgrgM7muXKsjAAAAAAAA+A3TZcpJtx+/RMEQYDN0FQIAAIC/aNWqlfbs2aM9e/YoMTHR6jiA1x1z HrM6AgAAAAAAgF+hVMh/UTAE2AwjyQAAAOBPunbtqsWLF2vAgAFWRwG85rPBn1kdAQAAAAAAwK/0 TX/F6ggoBQVDgA0xkgwAAAD+okuXLvr73/9OwRBsbe+MvVZHAAAAAAAA8Bum6Zm+QjNmzNDgwYPV sWNHLV261CPnxB8oGAJshq5CAAAA8CfNmzfXwYMHtXv3biUlJVkdB/C4rVu3WrKvaZr697//rYkT J2rvXveCpdDQUH322WdKTk62JJsVDMNwu+9wOEo9xu6PAQAAAAAAlISCIcBmGEkGAACs5qlPj8A+ unTpooULF2rgwIFWRwFsYf369Ro7dqyWL19eaO3aa6/Vk08+qfr169v2/+Nzi2MolgEAAAAAACi/ wh+3AhDwGEkGAAAAf9K1a1ctWrTI6hhAwDt8+LDGjBmjP/3pT4WKhRo2bKgZM2bon//8p+rXr29R QgAAAAAAAAQKOgwBNkNXIQAAAPibxo0bKz4+nrFkQAU5nU7NmTNHU6dO1aFDh9zWIiIiNHz4cA0e PFghISEWJQQAAAAAAECgKXfB0JAh3oghZWamyjQneufkQBXCSDIAAAD4o8svv1xvvvmmHn74Yauj AAHlp59+0pgxY7RmzZpCa7169VJqaqoSExMtSAYAAAAAAIBAVqEOQ5mZ2Z7OAcCDGEkGAAAAf3Pz zTerc+fOGjZsmMLCwqyOA/i9ffv2acqUKXr//fcLrTVr1kxpaWm65JJLLEgGAAAAAAAAO2AkGWAz dBUCAAD+yDRNqyPAD9x222164403dNddd1kdBfBb+fn5mjlzpv7xj3/o+PHjbmuxsbH6v//7P/Xv 319BQUFV4v9WwzBKvA8AAAAAAOzrzLWREydOWJzEnhxWBwDgWWdGkUkq+AoAAAD4g4EDB+rNN9+0 Ogbgt7799lv16NFDEyZMcCsWMgxD/fr10+LFizVw4EAFBQVZmBIAAAAAAMA3/vWvf0mS1qxZo2PH jlmcxn4oGAJsiJFkAAAA8Efh4eG64YYbNHfuXKujAH5l586dGjZsmAYOHKjNmze7rV188cX68MMP lZ6erho1aliUEAAAAAAAwPfGjh2r0NBQde3aVVFRUVbHsR0/KRiaZHUAwDboKgQAAAB/NnDgwIJP BgFV3alTpzRt2jR17dpV8+bNc1uLj4/X1KlTNWfOHLVs2dKihAAAAAAAANbp1q2bMjMzNX36dKuj 2FKw1QHOMM2JVkcAbOHMSLKzvwIAAAD+IikpSU2bNtUXX3yhq6++2uo4gGU+//xzjR8/Xtu3b3d7 PCgoSIMGDdJDDz3EJ+cAAAAAAEBAMwzD6giFmKZpdQS/4TcFQwA8h5FkAAAgELhcLqsjwCIDBgzQ M888o06dOlkdBfC5rVu3asKECfryyy8LrXXo0EGjR49Wo0aNJFW9/ycdDvdG2P54UREAAAAAAJRP yuhlVkeQJOW7TH2XfrnVMfwKBUOAzdBVCAAAAP6uWbNmCg0N1c8//6w2bdpYHQfwiRMnTmjatGma Pn268vPz3dbq1Kmjxx9/XNdddx1FMgAAAAAAwHZcFnf1cXC9pUgVLBia5NkUADyGkWQAAAAIBHfc cYfmzp1LwRBszzRN/ec//9GkSZO0d+9et7XQ0FDdfffduv/++1WtWjWLEgIAAAAAAHhfntOaoqFg hyFRL1SkchcMZWRIGRkTvZEFgIcwkgwAAAD+rn379poxY4ZWr16tVq1aWR0H8IoNGzYoLS1Ny5cv L7R27bXXKjU1VfXr17cgGQAAAAAAgO/l5vt2/LrDME4XDKFIjCQDbIauQgAAAAgUI0aM0JQpU/Ta a69ZHQXwqOzsbD3zzDOaPXu2XC73C2ENGzbU6NGjdeWVV1qUDgAAAAAAwDoulylf9BpyGHQWKg0F Q4DNMJIMAAAEMtPiWdbwrcaNG6tBgwaaP3++rr/+eqvjAJXmdDr17rvv6plnntHhw4fd1iIiIjRs 2DANGjRIISEhVf7/O8Nwv2LncDgsSgIAAAAAAHzNJ5dFKBYqFQVDgA0xkgwAAACB4qGHHlLfvn0p GELAW7FihcaPH69169YVWuvdu7dGjhyphIQEC5IBAAAAAAD4D8MwFEQxj1+gYAiwGboKAQAAIJBE R0frlltu0fTp0/WXv/zF6jhAue3bt09/+9vf9OGHHxZaa968ucaMGaOLL77YgmQAAAAAAAD+JYRK Ib9CwRBgM4wkAwAAQKAZPHiwbrjhBt1yyy2Kjo62Og5QJnl5eZo5c6ZefPFFnThxwm0tNjZWDz/8 sG655RYFBQVZlBAAAAAAAMB/nC4WomDInzAgHrAhRpIBAAAg0Dz00EP6xz/+YXUMoEyWLFminj17 asqUKW7FQg6HQwMGDNDChQvVr18/ioUAAAAAAAAkOQzD0huKRochwGboKgQAAOzG5XJZHQE+0LVr V7377rtav369mjRpYnUcoEjbt2/X5MmTtWjRokJr7dq105NPPqlmzZpJ4v+uszkc7p9XM7hQBwAA AABAlbH0qfZWR0AxKBgCbIaRZAAAAAhUw4cP1/PPP69p06ZZHQVwk5OTo1deeUWvvPKKcnNz3dYS EhL06KOPqkePHhTCnKNp06Ze32Pr1q1e3wMAAAAAAFSMaZqVev6MGTM0ePBgdezYUUuXLvVQKpxR 7oKhIUO8EUPKzEyVaU70zsmBKoaRZAAAAAhELVu2VOPGjbV06VKlpKRYHQeQaZpauHChJk6cqF27 drmtBQcHa/DgwXrggQcUERFhUUL/N3Zs0RcG09LGyTTHVerc5xZojRkzRrNmzZIkBQUFlbmYyDRN 3XzzzVq2bJkWLFigli1bSpKeeOIJzZgxo+B827dvd3ve448/rtdff71gPSsrq8R99uzZozFjxujr r79WXl6eunXrpkmTJik6OrpMOQEAAAAAADypQh2GMjOzPZ0DgIfQVQgAAACB7KGHHlKnTp301Vdf WR0FVdzmzZuVnp6ub7/9ttBap06dlJqaqgYNGvg+WABKS/PNPuPHj9f48eO1ePFi3XvvvWV+3quv vqrw8PBCj6enpys9PV2LFi3SX/7yl0LrEyZM0IQJE7Rw4UINHjy41H3uuusuxcbG6quvvpLL5dKw YcM0fPjwgqIjAAAAAAAAX3KUfgiAQHJmFJmkgq8AAABAIBk3bpzGjRtndQxUUUePHtXEiRPVu3fv QsVC9evX10svvaSXX36ZYiGb2LJli15//XWv/5+ze/du/fDDDxo1apQSEhJUu3Ztpaam6tNPP9Xu 3XzoBwAAAAAA+F6FOgwB8G+MJAMAAHZX2dnX8G+dO3fWl19+qS+++EKdO3e2Og6qCJfLpblz5+rZ Z5/VgQMH3NbCw8N1//33684771RYWBj/B5Xg3DFh/szpdGrEiBEaM2aMqlev7tW9zvybOff9MU1T a9asUVISH/gBAAAAAAC+RYchwGboKgQAAAA7oMsQfGnVqlXq16+fnnzyyULFQt27d9e8efN03333 KSwszKKE8IaMjAzVq1dP3bp18/petWvXVps2bTRp0iTt3btXu3fv1qRJk2QYho4ePer1/QEAAAAA AM7lJwVDk6wOANgGI8kAAABgF+PHj9eYMWOsjgEb279/vx5//HH17dtXq1evdltr3LixZs2apWee eYbuLza0adMmzZo1S0899ZTP9nzttddkGIY6duyoa665Rtddd50Mw1DNmjV9lgEAAAAAAOAMPykY kkxzotURANtgJBkAAADs4KqrrlJwcLAWL15sdRTYTF5enl5//XV169ZNc+fOdVuLiYnR6NGj9cEH H+jSSy+1KCG8bfXq1dq9e7fatGmjunXrqm3btpKk66+/XuPHj/fKnvXq1dMbb7yhTZs2ad26dUpO TlZYWFjB3gAAAAAAAL7kNwVDADyDrkIAAACwkzFjxig9PV1Op9PqKLCJb7/9VjfeeKOmTJmi48eP FzxuGIb69u2r+fPna8CAAQoKCrIwpd2MK+JmrT59+mj79u3KyspSVlaWVq5cKUlasGCB1zqbvfTS S1q6dKmOHz+uJUuWKDU1VSNGjFB0dLQkacqUKbriiisKjl+/fr3i4+O1fv36gscuv/xyTZ482Sv5 AAAAAADwN//5z38kSevWrdO+ffssTmM/wVYHAOBZZ0aSnf0VAACgKjBN0+oI8JK0tDSNGTNGTz/9 tNVREMB27NihKVOmaOHChYXWLr74Yj3++ONq3ry5JP4/KSvDMEq8L0lpaYUf++P4NI/mmT17tkaN GlVwv379+pKkn376SXFxceU+31tvvaWRI0cW3K9Tp44kac2aNYqLi9Obb76pRx55pGC9du3akk5f xCxqv549e+rRRx/VN998ozp16mjIkCG6++67y50LAAAAAICqokaNGnI4HMrPz1etWrWsjmM7FSwY muTZFAA8ipFkAAAAsJOUlBR99dVXWrRoka699lqr4yDA5OTk6NVXX9Vrr72mU6dOua3VqlVLI0eO VI8ePYosdkHlbNiwQQ5H4ebWRb3XZT2upO9Tv3791K9fv2LPV5JatWopKyvL7bEBAwZowIABxe57 22236bbbbitzvrp16+qtt94q9rhHH31Ujz76aMH9Zs2aaf/+/W7HfPfdd/xbBQAAAABUGa+88oq+ /vprvfLKK1ZHsaVyFwxlZEgZGRO9kQWAB9BVCAAAAHb0xBNP6M9//rPat29fML4HKIlpmlq4cKEm T56sXbt2ua0FBwdr0KBBuv/++xUZGWlRQgAAAAAAAHvz1IdeOnXq5JHz0FXaHSPJAJthJBkAAADs 6vnnn9eQIUP0xhtvWB0Ffm7z5s1KT0/XsmXLCq2lpKQoNTVVDRs2tCAZAAAAAABA1TLq7XutjiBJ mtT/n1ZH8DsUDAE2xEgyAAAA2FG9evXUv39//e1vf9PIkSOtjgM/dPToUb3wwgt6++235XQ63dbq 1aun1NRUderUiZFOAAAAAAAAPkRjH/9EwRBgM3QVAgAA+IPL5bI6AjysW7duWr16tT799FN169bN 6jjwEy6XS3PnztVzzz2nQ4cOua2Fh4frvvvu0x133KGwsDCZpkn76QpwOBxu9ym6AgAAAAAA5eEI suZagstlSlwKKhIFQ4DNMJIMAAAAdjdy5EgNGjRILVu2VN26da2OA4utWrVK6enpWrt2baG17t27 65FHHlFiYqIFyQAAAAAAAHC24DDflqg4c52iWqh4FAwBNsRIMgAAANjdCy+8oEGDBmnu3LlWR4FF 9u/fr+eee04ffvhhobUmTZooNTVVl1xyiQXJAAAAAAAAUJygIEfpB3mAy0mhUGl8850A4DOJiUlW RwAAAAC8LiYmRiNHjtTo0aOtjgIfy8vL04wZM9SjR49CxUKxsbF68skn9e6771IsBAAAAAAA4KcM w/DqDWVDwRBgM2dGkUkUDwEAAMDeOnTooLp162rOnDlWR4GPfPPNN/rzn/+sqVOn6vjx4wWPG4ah W2+9VZ988on69esnh4PLHQAAAAAAAP7KNE3v3ax+cQGEkWSADTGSDAAAoHgul8vqCPCge+65R2PH jgP7e9wAACAASURBVFWrVq3UpEkTq+PAS7KysjRlyhR9+eWXhdbatm2rUaNGqVmzZpL4GfeEcwuu KMACAAAAAACe4nRy7cZflLtgaMgQz4fIzEyVaU70/ImBKigxMYlCIQAAAFQpaWlp6tWrl2bPnq2I iAir48CDTpw4oVdffVUzZ85UXl6e21qtWrX08MMPq3v37rSaBgAAAAAACAD5p/KtjoCzVKjDUGZm tqdzAPCQMyPJzv4KAAAA2N0bb7yh22+/Xe+//77VUeABpmlqwYIFmjp1qvbu3eu2FhISokGDBunu u++mQAwAAAAAACBAuJwMC/M3jCQDbIiRZAAAAKhqYmNj9dRTT2n48OF6/vnnrY6DSvjll180ceJE /fjjj4XWOnXqpJEjR6p+/foWJAMAAAAAAEBF0BzaP1EwBNgMXYUAAABQVTVv3ly9evXS5MmT9dhj j1kdB+V0+PBhTZs2Te+++65cLvdZ9snJyXrssceUkpJiUToAAAAAAABUxKT+/7Q6AopBwRBgM4wk AwAAKD/TpB2uXXTp0kU7duzQrFmzdPvtt1sdB2Xgcrn03nvv6cUXX1R2tvsI9IiICN17770aOHCg QkJC+Fn1AuOcj/g5HA6LkgAAAAAAALs5cy1n27Zt6t27t3766SePnv/UqVP685//rHnz5ql69epa smSJWrZs6dE97IyrQIANMZIMAAAAVdkdd9yhrKwsff75526Pt2nTRoMHD7YoFYqyYsUK9evXT+np 6YWKhXr06KGPPvpIgwcPVkhIiEUJAQAAAAAAUBnr1q3TgAEDPF4sJElhYWH64IMPdM011+jw4cPq 0aOH9u7d6/F97IqCIcBmEhOTrI4AAAAAWC41NVUffPCBNm7cKOl0sZB0+gLF/v37rYwGSXv37lVq aqoGDx5c8D06o1mzZpo5c6YmTJigWrVqWZQQAAAAAAAAlXXy5EmNGDFC33zzjdf2CA8P19y5c9Wy ZUv9/vvv6tGjh/Ly8ry2n51QMATYzJlRZBLFQwAAAKjaXnzxRaWmphYUC0mS0+nU22+/bWGqqqVD hw7q06dPwf3c3Fy99tpr6tWrlz799FO3Y6tXr64xY8borbfe0kUXXeTrqAAAAAAAAPCwCy64QPPn z/f6PjExMZo7d65iYmK0fPlyPfzww17f0w4oGAJsiJFkAAAAwGlbtmxxu5+Xl6fZs2dblKZque++ +3Tq1Cnt3btXy5cv19dff60+ffro+eef18mTJwuOczgcGjBggD7++GPddNNNcji4VAEAAAAAABDo 0tPTNXr0aJ9d62nUqJHmzJkjh8OhF154QR988IFP9g1kwRV72iTPpgDgMYmJSRQKAQAAeIDL5bI6 Aiqpbdu2xa59+eWXuuqqq3yYpmp59dVXtWbNGuXn5+vo0aMaPny4jh8/Xui4Sy+9VCNHjtSFF14o iZ87bzv3Ap1hGBYlAQAAAAAAdnbgwAGtW7dOb775pk/3vf766zVmzBiNGzdO9957r1JSUpSQkODT DIGk3AVDGRlSRsZEb2QB4AFnRpKd/RUAAACoakoqFjp27JhmzJhBwZCX/Pzzz5o1a5aOHTtW8Ni5 xUJJSUl6+OGH1aVLF4pWAAAAAAAAbGbu3LkFHxDztSeeeELz5s3TsmXL9Mgjj2jWrFmW5AgE9PkG bIiRZAAAAKjq2rZtq/DwcIWEhBS5vn79eu3fv9/HqaqGO++8U0ePHi1yLTQ0VPfee6/mzp2ra6+9 lmIhAAAAAAAAm/n55581e/Zs9e7d25L9g4OD9corrygoKEhvvPGG3nvvPUtyBAIKhgCbSUxMsjoC AAAAYLnp06fr448/1h133KGoqChFRUW5rTudTs2ePduidPbVp0+fYouAgoODNX78eD3wwAMKDw/3 cTIAAAAAAAB4m9PpVKdOnfTVV18pPT3dshytWrVSz549JUl33HGHZTn8HQVDgM2cGUUmUTwEAACA qi0+Pl7Dhg3TkiVLlJ6e7tZ1KC8vT++8847VEW0lLS1Nu3btkmmaRa7n5+dr+vTpPk4FAAAAAAAA XwkKClJUVJQcDodefPFFS7P89a9/lcPhUFBQkKU5/Fmw1QEAeB4jyQAAALzD5XJZHQEVlJKSopSU FO3fv1/vvPOO5syZo7y8PH311Ve68sorrY4X8ObPn6/FixcrJyenxOO2bdumH374Qe3atfNRsqrL 4XCUeB8AAAAAAMAbhg4dql69eikpydrmFp06dVJWVpaeeuopS3P4MwqGAJtJTEyiUAgAAAAoRnx8 vIYOHaqhQ4dqyZIlFAt5wJ49ezR27FiFhoYqOjpapmkqPz9fOTk5ioyMVExMjOLi4pSQkKCkpCSK hQAAAAAAAAJAcWPny+Lxxx+v1N5nd7CuTI4zMjMzK32O4hTXbTsQUDAE2MyZkWRnfwUAAABQGMVC npGYmKhhw4YpLi5O8fHxiouLU82aNRUXF2d1NAAAAAAAAFTCwyPe8ul+DkeQ/vZM30KPD3hrjE9z lIVhGHqzf5rVMSqFgiHAhhhJBgAAgIqg8wuqkh9//NHqCAAAAAAAAH7PUOU7/JSFqeI79RiS5IFO Qx4TwF2FzkbBEGAzdBUCAABAZdxvTrA6AuBVHw2epZ0zNlgdAwAAAAAAIDAYhoIcQV7dwulyllqE YxiSI8i7OcrC5XLJdFbRgqEhQzwfIjMzVaY50fMnBqogRpIBAAD4lsvlsjqCx/30NZ1XYH92+tl1 OBwl3gcAAAAAAKgMR1CwDMM71xtM03W6YKhMQQwFBVtXNGSaplyn7HNNqUIdhjIzsz2dA4AHMZIM AAAAlRUZFGF1BMDjjjtPWB0BAAAAAAAgIBmGIUOGDA+OBnOZrgpN9zIchu9HlJmmbToLncFIMsBm 6CoEAAAATwl1hFgdAfCYXFee1REAAAAAAAACXplKZipSBeQL/prLIhQMATbDSDIAAAB4UrCX55P7 2tK7/q36vZuofq+mVkex1Fe3f6ALbmutut0aWR3FJ/LL2tYaAAAAAAAARTJNU6bMMlYMeTmLy5Rf BAlwFAwBNsRIMgAAAHiSIe/MJ7eOw4avqfxON5G2//tgyj5z5QEAAAAAAKzgcuZbHeE0lylnrp9k sQEKhgCboasQAACA9UwbtrZ1+HomuBc5ZK/XUxHG/24VeR/2r9ipX2au1MHVexRcLUS1OzVQi6Ht FRwZ6vGcleUq4WcxUH9OjXO+Zw6H/Yu+AAAAAACAhUxTTj8oGDJNyZlPF2lP4qoSYDNnRpFJKvgK AAAAAJ6y8fUVanRbG3X7eKA6vtBD+1fu0s9Tl1odCwAAAAAAAF5g+uhPyRn+NxLNX26+eeu9zg86 DE2yOgBgO4wkAwAAQFXwxcB3ldgxWQdX7dbh9ft00ROdtGnmSiV2qK8DP+1S9qYDiqwXq9YPp6hm m/IX0xd1/qSUZK3P/F47v9qq/GO5qtmmtlo/mqKIpOhSz7flndXa8vYqnTp0UtWbxKvVwymq3iRe kpR/Mq/E8373f/O0+5ttkiFFJEUruVdTNRnc7nSboOKydqiv9S//oF1f/6a8Y7k6r8sFajWig4Kq nb4UcOz3bC0d8rEOr9+r8PgItX4kRQnt65X6Ojq+0LPg79Hnx6nBjc20Zfaq8r69AAAAAAAA8HN/ f26A1REkSW8NGG91BFvyg4IhyTQnWh0BsA1GkgEAAKAq+f3jDbps0nWq0TJRhsPQppkrtfWDdWo/ 5XpVbxKvre+v1bd//VRd3++vsBrVKn3+ZY8tkCvXqSszeys0NkwbXvtRyx5doM4zbpLhKH6817Hf s7X2+W/VMaOXqjerpexf9itrwaaCgqEfx31e4nkvf6a7JMl0mTqy6YC+f3yhIs+LUd3rLyw263eP zFfekRxd8ewNCo+P0I7FW7Tvxx1KSkk+ffynG3XZhOsUc0GcNr+9Sj+O/Vzd5w0qKEIqq/0rdiq2 cXw531kAAAAAAAD4s8qOc+/SpYsyMjLUpEkTy3LMnj1b/fv3V0JCgrZu3aqIiIhKZbGbChYM0RUI 8FdnRpKd/RUAAADwNH9pu9vwlpaq0fp096AzmRr0aa6aF9eRJDW6o61+/+QX7fxqqxrc2LzguLLm P/v8J/Ye164vt+r6T25XeHykJKn5sMv16bWv68jWQ4q5IK7Y8xjBDhkhDgVHhcoRGqQaLRNVo2Wi TEkny3Neh6GYJvE6/9aW2rXkN513VsGQW9bdx7R7yW+69v3+iqwbK0lKPuv1S9IFfVureouE08+9 uYXWv/S9Tu4/rvBakWV8d6Rf56zRgRU7ddXrN/nFv4ly1joBAAAAAADAS2699VbNmTNHo0ePtmT/ /Px8jRs3TpL0yCOPUCxUhHIXDGVkSBkZdAQC/BkjyQAAAPyPy+WyOoLnVfJTRp5QLTGyUI7I82Lc Hos4L1o5e465H1fG7Gef/8SObEnSgh5vFDruxM4jijm/RrHniagdpUueulZrn/9WuYdzFNMoTuf3 baXYC2uW6bw7F/+qX2au1LHth+U8mS9Jimud5PY63LLuPCLDYSiyTkyxrzW0RnjBWlBokCTJmZNX 5vfm13fX6JfXflSHF3sq8rxo6/89GOUrFwqEn0mHw+F23yjnawQAAAAAALBK3759lZKSYlnB0PTp 07Vx40YlJSVp6NChlmTwd34xkgyA59BVCAAAAFVKEQUUJ3Yecb+/46iSrmxQ6fNHJEXLcBjqNu8O hcaGl/tUSSnJSkpJlukylfXZZi29/yN1++T2Us976uBJLR+9SJdOvE61Lj1PwdVCtOWd1dqxcHPx WWtHy3SZOr4ju6DDkCdtmrlSW+asUceMXoouoVAKAAAAAAAAVVP16tXVtm1brV27Vi1atPDp3vv3 79fjjz8uSUpLS6O7UDEcpR8CIJCcGUUmqeArAAAA4E2mhbei9v/tg3Xav3KX8k7kafObP+vk3mOq 3blhsceX9fzhSVFKvDJZK576Ukd/z1Z+Tr4OrdunZY8tkDPPWeJ59n6fpXWZ3+tYVrZcTpdMpynX qXy5TLPU8+afypdpmgqOCpUR4tDBNXu0ZfaqQq+lUNaUZK18+isd+e2Qco/l6rd/r9fupduKfe/K +t6se+l7bZ27Tikv9VLU+TUs/f5b3+MKAAAAAAAAxRk2bJjGjBnj0z1N09TQoUN14MABXXLJJbrr rrt8un8gocMQYEOMJAMAAICvmRaVbpj/+3O2+jc20/rM73Vk0wFF1ItR+2e6K6R62FnHFX5OWc/f duzV+uW1H/XdXz/VqYMnFHN+nBoNukhGiKPEc8a1ra3DG/fruxGfKmffCUXWj1W79GsVVC1YpswS z1utdpSaD7tcP45epLyjpxTbJF61OzfUodV73PYslHXc1dqQ+b2+e+hT5Z/MU50u56vF8CsKjjn7 +D++lvy9zD+Zp00zVkqSFt8yu+BxR0iQeizx/cUXQ4zoAgAAAAAA8Fft27dXfHy8PvnkE/Xo0cMn e2ZkZGjOnDkKDQ3V66+/rqCgIJ/sG4goGAJshpFkAAAAsI5vi4Y6vdGnyH2jz6+hZkMuPefo08ek vNa7yOeU9fzBEcFq/mB7NX+wfZHnL44jxFCj21ur0e2ti3xeaee94LZWuuC2VkWc2Sw2a0hUiFqN 7KhWIzsWes65xztCHfrTd/eU+lqCqwWfdVzRWXyHYiEAAAAAAAB/l5aWprvuussnBUPz58/X8OHD JUnPPvusWrZs6fU9AxkFQ4DNnBlJdvZXAAAA+CeXy2V1BI8zTauHRJmSafpBDniTYVS+WMjffv4c DkeJ9wEAAAAAAAJRUlKSHnjgAd1///166aWXvLbPkiVLdNNNN8nlcmnQoEF64IEHvLaXXVAwBNgQ I8kAAABgJZdF48nO3r+0DCd3HdMXfd4pcq3uDReq9eiryrWnp89nlUB4HQ46CwEAAAAAAASUnj17 auvWrZo8ebI6d+6s9u3P7bJdcUeOHNHUqVM1depUnTx5Ur1799arr77qkQ+c2R0FQ4DN0FUIAAAA /sCqDj8dZ95Ypv3DkyLV/b9/KXa9vPk9fT6r+Pvr4EIPAAAAAABAYHrwwQd18cUXa/z48Xr11VfV v39/j5x38uTJmjBhgiSpT58+euuttxQcTClMWfAuATbDSDIAAAD4C5f8a+QTAptDjOgCAAAAAAAI ZAcPHpTT6dSSJUs8VjD05ptvKiQkRLVq1VJmZqbCwsI8ct6qoNwFQ0OGeDZAZmaqTHOiZ08KVHGM JAMAAIC/CJDGOvBzNBYCAAAAAADwH5XtAp2ZmanMzEwPpTlt586dSkxMLPfzrO6obaUKdRjKzMz2 dA4AHkJXIQAAgMDmctmvK4+pqvtLNyrPkHeqhaz8WXM4HCXeBwAAAAAA8HfD3omVGeCXMqf1r9q1 L4wkA2yGkWQAAADwTxQNoSJoLQQAAAAAAOCvArk5TwBH9xgKhgAbYiQZAAAA/BG/hKM8KBUCAAAA AADwf4Yj8MbJu1ziYqUoGAJsh65CAAAA8G/8Jo6yCLCrTAAAAAAAAFVYUKgRMEVDzjxTCvBRap5C wRBgM4wkAwAAgL8L5FbF8L5AubgEAAAAAACAPwRCpyEXhUJuKBgCbIiRZAAAAPbisuFvsiadhlAE w4edhXz1c+VwOEq8DwAAAAAAYBt+XjAEd1ylAmwmMTHJ6ggAAAAAAAAAAAAAgKrG9PMb3NBhCLAZ RpIBAAAgkPB7OiQ+fAYAAAAAABDoTBfX+gJNBQuGJnk2BQCPYiQZAAAAAgWFIgAAAAAAAEBgc+ZS KhSIyl0wlJEhZWRM9EYWAB5AVyEAAAAAAAAAAAAAgC/QWShwMZIMsBlGkgEAAFQNTqfT6giVYtBb CBbzxs9QUFCQ232Hw+HxPQAAAAAAAPyFEcCX+AI4usdQMATYECPJAAAA4M8C+UICAAAAAAAAAOnF vtlWR0Al8VE3wGYSE5OsjgAAAACUwODGrQw3AAAAAAAA+CvTNEu8ZWdnq2vXrqUeV9nbvHnzFBkZ KUmaNm1ahc5RlVEwBNjMmVFkEsVDAAAA8C9Wl6BwC6wbAAAAAAAAAlPr1q316aefen2fbt26acGC BYqIiNCwYcP00UcfeX1PO6FgCLAhRpIBAADA/1hdfsItMG8AAAAAAAAIJAMHDtSHH36o4OBgn+zX sWNHzZkzR5J00003ad26dT7Z1w4oGAJshq5CAAAAVZfL5arUzVsM/vCnEn+8xdM/L0FBQV7LCgAA AAAAEAj+9a9/qW7durrooot8um+PHj00YcIE5efnq0+fPjp+/LhP9w9UvinpAuAzZ0aSnf0VAAAA sIpBkxgAAAAAAACgSnj66ae1fPlyS/Z+7LHHtGLFCr377rsaNWqUXnjhBUtyBBIKhgAbYiQZAAAA /IGDprYAAAAAAABAlTBr1iw9+OCDioqKsmR/wzD08ssva8mSJZo2bZr+8pe/qG3btpZkCRTlLhga MsSzATIzU2WaEz17UqAKo6sQAAAA/IFBayEAAAAAAACgyli6dKluvPFGSzPUqFFDkydP1qBBgzRq 1CgtWLDA0jz+rkIdhjIzsz2dA4CHMJIMAAAAVnOIYiEAAAAAAACgqti6dau+/vprDRs2zOooGjhw oKZMmaLPPvtMb731lgYMGGB1JL/FSDLAhhhJBgAAgDNcLpdP96tIZ6GPL3/FC0nc/em7e7y+BwJL eX42HA5HifcBAAAAAACqsiuvvFJ79+7V8OHD9eWXX1qaxeFwqHv37lq7dq3uuusuCoZKQMEQYDN0 FQIAAIB1Kt5ZaOxYs9i1tLRxMs1xFT736SKmP7Idzzqijf9crn3fZ0mS4tvVUYsRVyi8VqT7E03p v0M+1oGVu9Rp1k2KaVyzyPObLlPrpy3T9k9+kTMnX7Xa11Xrx65UWFw1SdKBlbu0aeZKHVq9V8HV gpV0VQM1G3qZgiNDy7R+rlWTl2jb3PVuj7UYcYXO79dKkjT/2hnKO5Zb6HldP7pN4QmROnXopNY+ +632fZ8lV65TsU3i1Xz45arerFaR+62e+o1+e2/t6ffSYajnf92Lryr7+gEAAAAAABDYunfvrjff fFPPP/+81VEkSffdd5+effZZBQUFWR3Fr1EwBNgMI8kAAABgBcMDY8jS0jwQpBhn59v2/jrVueZ8 tR55pfKP52rVlCX68cnFSnm5t9tztsxepaCw4LPOUPRr3DRzpXYu+lUdXuip0BrV9FP6l1rx5GJ1 yPjT6fXpK9To9otUo0WCTu45ruVPLtSav/9XbcdcXab1ol5Lw5tbqNUjKUWud1802O3+qr8t1dFf D6paQpQkac3Ub5Sz74Q6zbhJIdGhWv/SD/r+/+bruk9ul+Eo/BpbP5Ki1o+kaM/Sbfr+0QWF3ofK vn4AAAAAAAAEtlGjRqlLly5q3bq11VEkSY0aNdLJkyf19NNPWx3Fr9FDG7AhRpIBAADAl4xK3ko2 zuMZWz50hep0bqjQ6FBFJEUpuVdTHV6/z+2Y49sOa+u7a9RyxBWlvsbfPlinRgPbKPbCmqoWH6GW D12h/St26vi2wzIkdXihpxIuq6uQyFDFnF9DDXo304GfdhU8v7T14t6vsry3rpP5ypq/SQ1ubF7w 2JHNB1X3ukaKSIpSSGSozr+5hU4dOqlT+0+U6fvk6dfv3X8/AAAAAAAAKI5hGB65NWrUSP379/fY +c7cKpM1NDRU48eP93gOO6HDEGAzdBUCAACA3VRmHFlpcvYf1++f/KLaVzX4Yz+XqRXjv1DLhzoo NDqsxOfnZucoZ99x1ThrnFd0gxoKCg9W9uYDikquXug5+1fuUmzj+GLPWdq6JG3/9Bdt+/cGhcVV U9KVyWp2/2UKiSo84ivrs01yhDhU55qGBY/VubqhdizaoqSrGigkMkRbP1inuFaJqnbuSLYy8Mbr BwAAAAAAgO+8+tYIqyMU6e4BzxV67O1JqTJN06c5BqRO8ul+vkTBEGAzjCQDAABAaZxOp2dOFEif rjkn6+//2aiVT30hSYppVFNXPHdDwTGbZq1URJ1o1e7cUKcOnPjf8wufQ5LyT+RLkoKjw9zWQ6LC lH88r9Bzfp2zRgdW7NRVr99U5PlKW5ekNqOuUptRV8l0upS96YB+Sv9KK9K+UPup3Qod+9vc9arf s6kcoX/8+n/hnRfr0Mj5+qzXvyRJEUnRuvy5G6QixpG5OZPnrFyefv2+VNzPwbmz7R0OmjMDAAAA AAB7Mwz5TScd0zRVWk2Qw0dZXT4uTvI1CoYAG2IkGQAAALzNPy4flN25eZN7NlFyjybKOXBCG1// UUvu/lBd3umrE7uOauv7a3X1GzcXOYbrXCGRIZKk/GO5but5x04pJDLU7bFf56zRL9N/VMcX/6So ujGFzlXaeqHXFORQjaa11OqvHbR0yEdynshTcERIwfrh9ft0eOM+XZp+rVuO/w79WJHnxajbJ3co ODJE2z5cryX3fKgus29VeHzxXYaMc756+vUDAAAAAADAOkFBDhmlfaDMy1xOl5zO0ot0DMNQcHBQ qcdVRl5evlfP7w8qWDBk35ZLQKCjqxAAAABQRoYUHh+hJnderK3vrdXxrGxlbzqgnH3HNa/bTLdD v7j9PTW6rY1aDr/C7fHQ2HCF14rU4XX7FNcyUZJ09LdDcubkK/bCmgXH/TJzpX59Z7VSMv6k6PPj CkUpbb0itr6/VrUuravIurEFj+UeztGhtXvV6q8dFR4fIUm6oH9rrXvpex1cvUd1rj6/XHt46vUD AAAAAADAet4uwimJaZpyOV1lPj7IYcgwvNMZOt9THdr9XLkLhjIypIyMid7IAsADGEkGAACAwDXO 6zuYLlPLn1ykxne2VVSDGjp18IQ2vvajwmtGKKp+dcU0qql63RsXHJ9z4ITm3zBLV79xs2Ibxxd5 zoZ9mmvTv35Szba1FRZXTWv+8a3iL66jqOTqkqR1md9r+/xflPJyb0XViy30/NLWz7Xs0QVqclc7 RSdX17Fth7Xmuf8qqUOyW3ehvGO5ylq4We3GXeP23NDq4YqoHa2t761R5HkxCq4Wot8+Wi8z3+VW 4FMelX39AAAAAAAA8B8Oh+Hz8WSmaZaps9C5HIbxv6n3nsvrdJW9aCnQMZIMsCFGkgEAACDQpKUV /0u9YaR5bB/DYahe98b6efISZW86oJDoUNVsU1sdM3rJEVqxT1A1vvNi5R3L1TdDP5YzJ18J7evq 4vSukqT8k3n6ZcYKSdKim98ueI4jNEi9ltxT6npRkns31aopS5S9+YDCqldT7U4N1PSeS9yO2T7v F4VEhqr2VQ0KPf/yv3fX2he+1aJbZ8uV71R0cg1dOvE6t05EZ9v27/VaOeGrgvsftn9JknTDgjsV Wj28Uq8fAAAAAAAA/qfE0h2z/IU93uee6eyIZsmvxo3hwcKjQEDB0P+zd9/xTdbr/8ffSboppVCg 7F2WIEO2KLg5yvQgow5woog4QEEFQY8eEMXjYAgqboZwHAiIXwdDUQERpaBQhpyyZXZBR5L79we/ xpautE1yp+nreR63SZPc9+edO7SP0/TKdQEBhq5CAAAAKA1nMZ+ccXrxjYD+P43y2rFz5M5fs2cD 1ezZoMjH5AipFu7KV+g5sEitH+im1g90y3c8a1hQoc/PnfsLUrNHA9XsUXT+RoMvUqPBF8nQ+U9o 5RbZpKq6/ud6t9er37+l6vdvWXjGMjx/MzmdTlmtedtW22zmtd0GAAAAAADwB06noWJKhvyG03B6 NGpJiosCAQVDQIBhJBkAAAA8zVDFacMLAAAAAAAAVFTZWXazI7gt2857lmVFwRAQgBhJBgAAAE+x Ox1mRwAAAAAAAADgZXZ7+Xkf0GkYcjrKT15/RcEQEGDoKgQAAABPyXJmmx0BAAAAAAAAgJeZPDm+ xIzyFthPUTAEBBhGkgEAAMAT0h1nzY4AAAAAAAAAwMvuin/Z7AhuGz5xmtkRAgoFQ0AAYiQZP+yQ iAAAIABJREFUAAAASmv57e+ZHQHwCavVanYEAAAAAAAAU3mqU8+AAQP01FNP6ZJLLvHI8QpS2qwr VqxQv3799Mgjj2jmzJkeTlW+UTAEBBi6CgEAAKAsDr+z0+wIAAAAAAAAAMqRM2fOKDo62uwYBQoJ CZEkZWVlmZzE/5S4YGj06NItNHfu4zIM2kMB3sZIMgAAAJTWqlWr8nztdDpNSlIxPPnkk/rtt98k SR07dtQzzzxjcqLARkchAAAAAAAA70hJSVFUVJTZMQpEwVDhStVhaO7cZE/nAOBBjCQDAAAAAAAA AAAAAPhCcnKyqlSpYnaMAuUUDGVmZpqcxP/w8TogwMTG1jI7AgAAAAAAAAAAAACgAsjIyJDFYnEV 5vibnFzZ2dkmJ/E/peowBMB/MZIMAAAA3uRwOMyOEJAMw+DcepDNZsvzNePIAAAAAAAAvCMlJcVv uwtJUnBwsCRGkhWEd8yAAMRIMgAAAAAAAAAAAACAt/nzODLp7w5DFAzlR8EQEGAYSQYAAAAAAAAA AAAA8IUzZ874dcFQTochRpLlR8EQEGByRpFJFA8BAAAAAAAAAAAAALzjf//7n/r27avly5friSee MDtOgXI6DFEwlJ+PCoam+2YZAJIYSQYAAAAAAAAAAAAA8K6GDRvKarUqIiJCt99+u9lxCsRIssIF +Wohw5jmq6WACi02thaFQgAAAPAph8NhdoRyyTCMPNc5j6Vjs9mK/BoAAAAAAADeM3nyZB0+fFhx cXFmRykQBUOFK2XBEB2DAH+VM5Is9yUAAAAAAAAAAACAwlksFrMj5JH7g0aAL5X2e+G5554r8T6+ +HeeUzCUmZnp9bXKmxIXDM2ZI82ZQ7cgwJ8xkgwAAAAAAAAAAAAomR4/9ZPNYm7nWsNw6vtuy03N AHTbeK9Xj28YhjZ2m+fVNXIEBwdLkux2u0/WK098NpIMgG/QVQgAAAAAAAAAAAAoHYtM7O7jX02O UIF59fvAx928cgqGGEmWHwVDQIBhJBkAAAAAAAAAAABQek455fRx0ZDFYpFNVp+uCRTFkOQwHB49 5vl/577t4mW1WmWz2ZSdne3TdcsDCoaAAMRIMgAAAJjN6XSaHcHvXfgpLc5Z8azWvG+c2mzmtokH AAAAAASubCNbTsM3v6tbZFGoLdQnawElkWXYPdhpyKIwW7CHjlUywcHBFAwVgIIhIMDQVQgAAAAA AAAAAACQsrOzdebMGZ05c0bJyclKTU1VSkqKUlNTlZ6e7trOnTtX4P5OGTK8XjRkUZAl/wdi+vTp I5vNpqCgIAUHB8tmsyk4OFhBQUGu24KCghQSEiKbzaaQkBAFBwe7tkqVKik4OFgRERGqVKmSwsPD ValSJUVERCgyMtJ1TJvNJqvVqqCgIIWFhSk8PFxBQZQR4G+e6LhlkUW2Av6d+0pISAgjyQrAdzoQ YBhJBgAAAAAAAAAAgECVmZmpQ4cOKSkpSYcOHdLRo0d1+PBhHTp0SMeOHdOJEyd08uRJnTlzJl8h kM1mU2hoqKvYxmKxyGKxFLmekeu/3mBRwevb7XbX9YyMDDmdTtntdjkcDtdlQZvT6ZTD4VBwcLDS 0tJcj8+9j9PplGEYslqtslgsslqtioyMVFpamqubTHBwsEJCQhQSEqLQ0FCFhYUpMjJSYWFhqly5 sqKiolSlShVFR0erWrVqCg8Pz7dFRES4ipAu3MLCwrx2TuEdZfkuKPq7zPtCQ0OVmZlpcgr/Q8EQ EIAYSQYAAAAAAAAAAIDyICsrS8nJyXk6AR07dky7du3Svn37lJSUpJSUFB05ckQpKSnKyMiQJFks FgUFBclqtcpmsyksLMxV1FK7dm01b948T0FL1apVFRUVpcjISFWqVCnPFhkZqbZt2xaYz2qxFni7 JzgNZ6EFS+vWrVNERISmTp2qm2++WTVr1vTo2g6HQ2fPntW5c+fyXaalpSk5OVnJyclKSUlxdWWS pKSkJJ05c0ZHjx5Vamqqq1tTaGioQkNDFRISoqCgINlstjwFWU6nU06nU9nZ2a4tIiKiwGKi8PBw RUVFKTo6WtHR0apatarrMvf16OhouiH5iLWYwrqiOA1DZdjdI0JCQpSenm5uCD/Edw8QYOgqBAAA AAAAAAAAAF9yOp35in6Sk5N1+vRp1+2F3W+32xUUFCSn06mMjAylpaUpLS1NFotFMTExql27tho2 bKhu3bqpUaNGatiwoZo0aaJ69eq5in+8VTRS0Kgwjyri+E6nUykpKXrkkUf02GOPadCgQXrooYfU o0cPjyxts9lUuXJlVa5c2SPHy3k9T58+rTNnzriu53x96tSpfPdlZGS4RqBVrlxZMTExrkKgiIgI BQcHy2q16q+//lJiYqJOnTrl+jeUc6yQkJBCC4rq1q2rqKgo1apVS7Vr11bt2rVls5k3Fqu8Kuso MZvZ7YV0vmMWI8nyo2AICDCMJAMAAIC/cjgcZkfwK0au2e+GYXB+LnDhG3hWq/c+0QkAAAAAyC81 NVV//fVXgVtGRob279/vKv45e/asq5tPdHS0qlSpoipVqqhq1aqqUqWK6tSpo1atWik6OloOh0Pb t2/X1q1btWnTJiUlJalGjRq65JJL1L59e7Vr105t2rRRXFycQkNDTXv+odYQ09aWzr+Psm/fPn34 4YdasGCBli5dqqVLl+ryyy/XM888o169epma70I5r3mjRo3c3sdut7uKf44dO6ZDhw65tp07d+rQ oUM6ePCgqlSponr16qlu3brq0KGD63rdunVVrVo1GYaRpxgp5/LEiRP6/vvvdeTIER09elRHjhxR dHS0atWqpTp16qhWrVquLffXniqiCgRhJn8feEpISIjsdrsMwyh2DGFFUuKCodGjS77I3LmPyzCm lXxHAKXCSDIAAAAAAAAAAAAU5vTp00pKSlJSUpIOHDigEydOKCkpScePH3cVBYWEhKhmzZr5tpYt W6p27dquAqEqVaooMjKyyPX27dunxYsX65NPPtHPP/+spk2b6qqrrtLUqVPVo0cPNW7c2K/+iF/W jiplYejvDxg1adJEkydP1pNPPqmVK1dqxowZWr9+vXr37q3+/fvr5ZdfVuPGjU3LWlZBQUGqXr26 qlevrri4uEIfd+LECR08eNBVTLR//35t2LDBVVCUkZGhunXr5ikkyrk+ePBg1a1b13WskydP6siR I64ioqNHj2rTpk06fPiw62u73a7atWurc+fOqlSpkpo3b67mzZsrLi5OVatW9cWp8Qvnx5B55/vS KP4hHhUScr7wKTs723UdpewwNHdusqdzAPAQugoBAAAAAAAAAAAgMTFR+/fv14EDB/IUByUlJSk0 NFQNGjRQgwYNVL9+fTVr1kxdunRRjRo1XIVBZe3uk5WVpaVLl+r111/Xhg0b1L17d918881atGiR mjVr5qFn6Xl2w/86AFutVvXr10/9+vXTN998o8cee0zLly/X119/rRkzZmj06NF+VXDlaTlFRe3b ty/w/oyMDFfxUE5R0fr163Xo0CFFRkbq+++/V4sWLdSyZUs1b95cLVu2VJs2bXTNNdcUeLxz587p 8OHDOnHihHbs2KHt27fr448/VmJiomw2m5o3b64WLVooLi7OVUwUExPjzVPgEz///LNeeuklSf75 fVAWwcHBks7/XKJg6G+MJAMCDCPJAAAAAAAAAAAAKo7s7GwlJCTk2bZv367evXsrJCTEVRh06aWX uq5HRER4LY/D4dCCBQv0r3/9S1lZWRo1apTef//9Eo2qMssP3T43O0KxrrrqKm3atEnz58/XY489 pjFjxujbb7/Vu+++W2ynp0AVFhampk2bqmnTpgXen5GRoV27dmnnzp1KTEzU+vXrlZiYqNTU1DxF RG3bttXFF1+s8PBw1/G6du2a51gnT55UYmKidu3apcTERK1YsUKJiYlyOByuoqQOHTqod+/eql69 ui+efpk4nU6tXLlSM2fO1J9//qmxY8dq0aJF2tztDbOjeVRYWJgkKTMzs8J+nxSEgiEgADGSDAAA AEAgGDx4sNfXWL16tdfXAAAAAABPW7Fihb7++mslJCRo3759atu2rdq2batOnTpp5MiRatOmjSm5 tm3bphEjRujw4cOaMmWK7rzzzjJ3KvIVw/h7SNLy5cs1btw4vfvuu+rRo0ex+7733nvauXOn/v3v f3szoovNZtN9992nPn36aMiQIfr444+1f/9+rV69WjVq1PBJhvIkLCxM7dq1U7t27fLcnpaW5ioi 2rlzpzZu3Kivv/5aTZo0UceOHdWhQwd17NhRzZs3d+0TExOj7t27q3v37nmOdfr0aSUmJmrv3r36 /vvv9eyzz6pGjRrq3bu3Lr/8cl122WU+ea7uysjI0AcffKCZM2cqIiJC48eP1+DBgxUcHKxx48aZ Hc+j9uzZo99++02S9MYbb2jixIkmJ/IfFAwBAYauQgAAAChPHI7Aam9cWoZhVOhzYbPZCv16ypTC p9o//fRUGcbUUq9bWLt2wzA0btw4JSQkaN68eUW2yt+2bZveeOMN7d69W3Xr1tXYsWPVsWNH1/2/ /vqr5s2bp8TERNWrV08PPfSQLrnkkjz3v/7669q1a5fq1aunhx9+WJ06dSp0va1bt2r27NnauXOn 6tevr/Hjx6tz586lePYAAAAAypvdu3frww8/1MKFC3Xttdeqd+/euu+++9SiRQuzo0mSli5dqttu u00333yz1q5dqypVqpgdqVTGjh0ru92u3bt3u73PoUOHVLduXS+mKljjxo21fv16jRgxQkuXLtVV V12ldevWqWrVqj7PUh5FRkaqU6dO+X4P/+OPP/TLL79o8+bNmj9/vg4ePOgqIOrQoYO6deumqKio PPtUrVpVXbt2VdeuXRUfH+86ztq1azV79mzFx8erV69e6t27t3r37m3aWL6TJ09q7ty5mjVrli65 5BLNnj1bV1xxRUCPtGvWrJmsVquCg4PzFY1VdBQMAQGGkWQAAAAAAs3TT/t2vY8//titT8Du2LFD EyZM0OjRo/X8888rJSVFH330katgKCEhQePHj9cDDzygGTNmuO7PKRhKSEjQuHHjNHbsWM2cOVMp KSlatGhRoQVD27Zt04MPPqiHHnpIL730kuvxFAwBAAAAge+ee+7R7t27dfPNN+vXX3/16kix0li5 cqXi4+M1a9YsjRo1yuw4pXLmzBndfffdGj58uG688cYS7Zuenp5vdJWvhIeHa9GiRQoNDdUHH3yg /v3765tvvlFISIgpeQJBq1at1KpVK918882SpLNnz+qXX37R1q1btWjRIs2cOVPBwcG64oor1Lt3 7zwfDCroOPfdd58Mw9C6deu0du1a3XXXXUpPT9eNN96ogQMHqlWrVl5/Tvv27dN//vMfffjhhxo4 cKC++eYbXXTRRV5f11+88cYb+uCDD/SPf/zD7Ch+hYIhIAAxkgwAAABA4JvqlaMeOHBAn376qZ57 7jndeeedRT72zTff1PXXX69+/frJZrOpcuXKevjhh133z58/X3379tWAAQMkSZUrV87T1nvevHnq 27evBg0a5Lp//Pjxha43Z84c9e/f3/XGdVRUlCZMmFDq5woAAADA/2VkZKht27b67LPP1Lp1a7Pj FGjfvn2Kj4/Xc889V26LhX7++WeNHDlSGzZsKFVnpKSkJC+kcp/NZtOCBQt05MgRffPNN3rkkUc0 a9YsUzMFkoiICPXs2VM9e/Z03fbrr79qzZo1euaZZ7Rr1y5X8dAVV1yhmjVr5juGxWJxdReSpCNH jmjt2rUaO3asQkJCFB8fr/j4eI93+tm0aZNefPFFffvtt7rrrru0Y8cO1a5d26NrmKG056k0++Ue VxhofFAwNN37SwBwoasQAAAAgIqiLOPICuJ0OjVjxgzde++9ioyMLPKxdrtdCQkJ6tChg26//XYd PXpUjRo10ujRo9W+fXvZ7XZt27ZNHTt21K233qojR46ocePGGjNmjDp06CC73a7ffvtNHTt2VHx8 vA4fPqwmTZrogQceUIcOHQpc79dff1WnTp00dOhQ1+MvHHEGAAAAIHCcPHlSXbp00fbt2xUeHm52 nAIZhqE777xTl112mR599FGz45TK4sWLtXjxYm3fvt3sKGUSHBysJUuWqGPHjpo9e7ZuuOEGuql4 Ufv27dW+fXs9/PDDSktL05o1a7R27Vo9//zzql69ugYOHKgbbrhBDRs2LHD/2rVra/jw4Ro+fLh+ ++03LVy4UBMnTtSQIUMUHx9fpt/1nU6nVq1apRdeeEH79+/Xww8/rLfeekuVK1cu9TH9UadFN8vb tTxb4j/07gIms/piEcOY5otlAOjvkWSSXJcAAAAAgOItXrxYtWrV0qWXXlrsY9PT0+VwOLRixQo9 /vjj+vTTT9WzZ09NmDBBx48fd93/+eefa9KkSVq+fLl69uyp8ePH66+//lJaWpocDoeWL1+up556 SqtWrdLll1+uRx55RH/99Ve+9XIe/8knn2jq1Kn68ssv1atXLz300EM6duyYN04HAAAAABMlJydr xIgR2rt3r98WC0nS0qVLtXnzZs2bN8/jnVF84bnnntPmzZv16aefluk4hmH4xfOPiYnRu+++K0ka PXq0MjIyTE5UMURGRqpfv36aOXOmfvnlF7388ssKDg5WfHy8Bg0apEWLFsnhcBS6f7t27fT888/r wIED6ty5s5555hldccUVeuONN3T27Fm3c2RmZmrBggVq27atJk+erFGjRmnv3r166KGHAq5YKDeL xTtbRVDKgqHpJdgA+BojyQAAAFCeORyOCrHlbmdsGIbpeXy1Xchms/nyn1ehkpKS9Pnnn2vMmDFu PT4sLEwWi0XXX3+9mjdvroiICN12220KCQnRli1bXPf37dtXLVq0UEREhEaMGKHQ0FBt2bJF4eHh slgs6tevn1q2bKmIiAiNHDlSoaGh+vnnn/Otl/P4AQMGqFWrVoqIiNAdd9yhkJAQbd682dOnAwAA AIDJ/vGPf2jOnDlmxyiS0+nUlClTNH78eNWtW9fsOCX2xBNPqFq1apo5c2aZj1WrVi2FhoZ6IFXZ 9e7dW8OHD9f+/fv1xhtvmB2nQmrdurXuvvtubdiwQU888YR++eUXNWnSRGPGjNH69euL3HfYsGH6 7LPPNH/+fB0+fFjt27fX6NGj9d133xW6z5kzZ/T888+rcePGWrJkiV555RX98ssvio+PV1CQD4ZO mc1qkcVm9ehWUSqGSlwwNGfO+Y5BJdkA+A5dhQAAAACg5Pbs2aMTJ05o8ODBuuaaazR06FBJ0qhR o/T666/ne3xoaKjq16+f5zbDMGQYhqxWq0JDQ9WgQYNS31/Qehe2MS/q8QAAAADKr6lTp+qOO+7I 9zuDv1m9erUOHDigBx980OwoJTZmzBg1atRI9913n0eOFxwcrD179njkWJ4wadIkSdIrr7yS5wNL 8L3OnTvrhRde0P/+9z9dffXVev3119WxY0fNmzevyP3i4uI0ZcoUJSYmqk+fPpo9e7a6du2qV199 VadPn5YkHTx4UI8++qiaNGmihIQEffHFF/ryyy919dVX+0XHK1+yhFhlCbF5ZguuOO+zVJxnClQQ jCQDAAAAEHimFrB51pVXXqmvvvrKtS1ZskSSNG/ePN17770F7jNgwACtWLFCiYmJOnfunN5//305 nU5dcsklkqRBgwZp+fLl2rVrl86dO6f33ntPDodDnTp1kiTdeOON+uyzz7Rz506dO3dO7777rpxO p+v+Cw0ePFiffvqp/vjjD509e1Zvv/22nE6nunTp4sp64403uh6/Z88edejQIc+b1gMGDNDcuXPL fsIAAAAAeMWPP/6oHTt26K677jI7SrHefvttDRs2TFWrVjU7Sok8/PDD6tWrl+655x6PHbNJkyba t2+fx45XVq1bt1bXrl21d+9ebdmyxew4+P8GDhyohQsXavXq1crMzFRcXJzeeuutYvfr37+/Fi9e rI8//lgZGRkaPny42rRpozZt2ig7O1tbt27VBx98oHbt2vngWfgvi81S9s1asQqtKkD/KaDiYSQZ AAAAgEDx9NOFv1FjsTztwyT53XjjjUpPT9cTTzyh9PR0NWvWTC+88IJiYmIknS/wSU9P12OPPab0 9HTFxcXppZdect1/0003KT09XePHj1daWprr/urVqxe43tChQ5WWlqZHHnlEaWlpat68uV599dVC Hw8AAACg/HnqqafcKiAwW0ZGhlatWqXPPvvM7Cgl8txzz6l58+a66aabPHrcxo0bFzkyygx9+vTR xo0btWbNmkI/mAJz1KxZU2PHjtXdd9+t6dOnq127dpo4caKGDx9e6D6GYWjXrl1as2aNfvvtN11+ +eUKCQmRdH48IP6/snZWqmAduSgYAgJMbGwtCoUAAAAABIRly5a5rhc0dstms7l1W0H7FjfGq1q1 avrqq6+Kfdytt96qW2+9tcB1JWnEiBEaMWJEoeuOHDlSd9xxR5Fr5HbnnXfqzjvvLPB4o0aN0qhR o1xfN2vWTFu3bs2zf3l7Mx8AAACoSD7//HM1a9bM70eRSdJ3330nq9Wqyy+/3Owobnv99ddlGIbH xpDl1rhxY2VnZ3v8uGXRoUMHSVJCQoLJSVCY8PBwPf300xo7dqymT5+uV199VZMmTdINN9zgeozd btd///tfvfDCC0pLS9P48eP1ySefKCwsTNL5905uu+02tWnTRpMnT1adOnXMejrmM1ThCn7KioIh IMDkjCTLfQkAAACUdw6Hw+wIHmdc8AZGID7HC4toCiuqAQAAAABIr7zyimbNmmV2DLds2LBBPXr0 cHU48XfLli3Tzp079fLLL3vl+E2aNNHBgwe1d+9eNW3a1CtrlFS9evUkSYcPHzY5CYoTExOjF154 QQcOHNBbb72lb7/9Vv/617/09ttva+bMmapTp44mTZqk/v375/sg0uDBgzV48GB9/vnnGjp0qAYO HKhx48aZ9ExMZEiGg05LJVX0x+QAlEuMJAMAAAAAAAAAACg/vv76a7Vv314tW7Y0O4pbtm7dWm7G XH3//ffavHmz14qFcgwZMkRLly716holERkZKUlKT083OQncVb9+fY0ZM0ZJSUmKjo7W6tWr9f77 7+v777/XwIEDi+yC3K9fP3333XeyWCzq3Lmz343I8ypDcmY6PLpVFBQMAQEmNraW2REAAAAAAAAA AABQAh9++KGuu+46s2O4befOnWrVqpXZMdzy4IMP6pFHHvH6OoMHD84zWttsOZ2Mg4IYOlQe7Nu3 T/fff7/i4uIUFRWl5cuXa9euXXI6S9Y155FHHtFnn32m2bNn6/777/dSWv9iOA2vbBUBBUNAgMkZ RSZRPAQAAAAAAAAAAODvMjIy9N133+maa64xO4pbDMNQUlKSGjVqZHaUYs2cOVO33HKLYmNjvb5W rVq11LVrV23ZssXra7kjJSVFklSlShWTk6AoW7Zs0bBhw9S5c2dFRUXp999/11tvvaU+ffooMTFR s2fP1v/93/+V6Jh16tTR4sWLde2116pVq1ZKSkryUnqTWS2y2Ly7BTrKCYEAxEgyAAAAAAAAAAAA /5eamqqPP/5YAwYMMDuK29LS0pSRkeGTIpyyOHLkiBYvXqzNmzf7bM1///vf6tGjh3bs2KGUlBRF RUX5bO0LnTx5UpJUvXp10zKgYIZh6KuvvtKMGTO0c+dOPfzww5o/f36B/14WL16sO+64Q+np6Ro0 aFCJ1hkwYICuvPJKXXfddXryySd1ww03eOop+IWfh35gdoRyr8QFQ6NHu//YuXMfl2FMK+kSAMog NrYWhUIAAACoEHJaa5dXhmHkuV7en4/NZivyawAAAABAfuPGjdNbb72lVq1aacyYMWrcuLHZkYqV 07nGzGIYd4wfP14vvviiT9esUqWKZs6cqd69e6tr1656/vnnfbp+bkePnv97Yd26dU3LgLzsdruW LFmiF198UdnZ2Xr00Uc1fPhwhYSEFLnfggUL1KVLF3Xt2lV16tQp0ZqVK1fWDz/8oFGjRikhIUET J04sy1PwG7nfVyvKggULdOedd2rKlCmaOnWqd0OVQ6XqMDR3brKncwDwkJyRZLkvAQAAAAAAAAAA 4H9q1qypkJAQtW7dulwUC0lSZmamJCk0NNTkJIVbuXKlIiMj1atXL5+v3adPHw0aNEg//fST7r33 XtNe15yCoXr16pmyPv62YcMGXXvttYqKilLz5s317LPP6vrrr5fF4v7Iqw8//FA333yz1qxZU6oM 8+bN08yZMzVnzhyNLkmXmHJu06ZNkqROnTqZnMQ/Wb136OneOzSAIjGSDAAAAAAAAAAAwP9169ZN w4cP10cffWR2FLfldPYoSbGDr82fP1+vvPKKaevPnTtXtWrVUmJiomkZjh07JokOQ2Y7fvy4Bg8e LOl88da6det0ww03lPj7Jy4uTkOHDtWzzz5b6izjxo1TZGSk7rrrrlIfo7zZsmWLJKlz584mJ/FP peow5C7GkQG+R1chAAAAAAAAAAAA7/FGoczbb7/tsWO5O6qntHLGJ2VlZXl1ndL69NNPVb9+fYWF hZmW4fbbb5d0vtuQr1z4uucUDNFhqHC+Lnr74osvyrT/vffeq/Hjx+unn35St27dSnWM2267TeHh 4Xr44Yf1n//8p0x5/F12drYSEhJUp04dxcbGmh3HL3m1YAiA7zGSDAAAAAAAAAAAwLuGLVxodoR8 rDabFg4d6vV1IiMjJUlpaWmqUaOG19crqaVLl+qee+4xO4Yuv3yjT9ax2w398EP+4pETJ05IkmrX ru2THOXVkol95XA6vbqGzWrV0OkrVL169TIfq1OnTlq2bFmpC4Yk6aabblJaWpomTZpUpo5F/u6P P/5QZmamOnToYHYUv0XBEBCAGEkGAACAisput5sdwW25P/lnGEa5yh4UlPftBJvNZlIbN/AwAAAg AElEQVQSAAAAADCPX43k8nJXodyioqJktVp18uRJNW7c2GfruuPkyZPavn27evXqZXYUSZLT6d3X xWot/N/gmTNnJEkxMTFezRAYLPLWt7OnvzUHDBigF198sczHuf322/Xaa6/p+eef14QJEzyQzP9s 27ZNktSuXTuTk/gvq9kBAHhWbGwtsyMAAAAAAAAAAABUCNagINM3Xxcu2Ww2Va9eXUeP+t8H15cu XaqbbrrJ7Bh52O2GV7biClHS0tIUFhbmGiGHollkUZDN6tHNIs9/b4aHh6tSpUrau3dvmY/1wAMP yDAMLVq0yAPJ/E9CQoIk6eKLLzY5if+iwxAQYBhJBgAAAAAAAAAA4Ds2EwsyDKdTDofD5+vWr19f SUlJPl+3OMuWLdOsWbPMjpFPZqZnR17ZbBbZbEUXo2RlZSk8PNyj6wa6IKtFVg8V4DkNQw6HdzpM 1a5dW4cPH1bTpk3LfKyJEyeqV69e6tKli0eO50+2b98uSWrbtq3JSfwXBUNAAGIkGQAAAOCfVqxY 4bp+4sQJ1/Xjx4/nua9v374+zQUAAAAAKBuL1erzTj+G0ynfDSLLq3Hjxh7pcOJJiYmJatasmVq2 bGl2lAI5ncV3BXJHUWPIcjMMQ1YrA4dKymKxyM1TXCinIa+OCbz44ot1+vRpjx1v2bJluvbaa7V1 61aPHdMf/P777woKClJcXJzZUfxWKQuGpns2BQCPoasQAAAA4J8SExO1evVqZWdn57vvr7/+0uef fy5JCg4OVvPmzdW8eXNfRwQAAAAAwC0tWrTwu+KCX375RZGRkWbHQKAoSwGgF4uFpPMfQsvIyPDY 8WrUqKGpU6fq/vvv1+zZsz12XDOdO3dO+/fvV8uWLRUcHGx2HL9V4oKhOXOkOXOmeSMLAA9gJBkA AACQlxmt2QvStGlTxcbG6uDBg0U+LjY2Vk2bNvWb3DabLc/XQUE0KwYAAACAC5nZ7ccMrVu31vvv v292jDx+++03tWvXzuwYhXK3MxC8y263a9u2bfrxxx8LvN+Q5PByhyB/NGDAAG3YsEELFy5UfHy8 2XHKbM+ePZLEB/KKwbt8QABiJBkAAADgn2666Sa9/vrrOnfuXIH3h4eHa/DgwT5OBQAAAAAoC6fd bnYEn2vfvr2SkpJ08uRJxcTEmB1H0vmCoeHDh5sdo0DBwRQLmSUrK0s//fST1q5dq++++04//vij srKy1LFjx3yPdRqS0+E0IaV/mDFjhuLj49WjRw81atTI7Dhlsnv3bkkUDBWHgiEgwNBVCAAAAPBf cXFxiomJKbTLUExMDG9kAAAAAEA54nQ4JD/pEOtLLVq0UKVKlbR582b16dPH7DiSzhcMXXzxxWbH yCcoyCKJgiFf2r17t1auXKnVq1fru+++k9VqVc+ePXXllVfqqaeeUufOnRUWFiZLnrFjhrLtFe97 +UITJ07U6NGjtWrVKrOjlMnevXslne/4jcJZzQ4AwLNyRpFJcl0CAAAA8B833XSTwsPD891OdyEA AAAAKF8Mwzg/iswfNh8/d5vNpq5duxY61snXEhIS/LJYyGq1eHXD33bs2KHJkyerVatWatGihT76 6CP16NFDX331lU6dOqUvvvhCjz/+uC677DKFhYVdsLchp+GdTeVsWOHFF1+sjh076p133jE7Spn8 +eefkqTGjRubnMS/0WEICECMJAMAAAD8V2FdhuguBAAAAADlx+L4eLMjmK5nz55at26d2TEkSbt2 7dJVV11ldow81q/vanaEgJeWlqb3339f8+fP1/bt23XNNddowoQJ6tu3r6pXr+7WMYZOX+HllOXP s88+q2bNmmnYsGEFFFeVD0lJSZKkhg0bmpzEv9FhCAgwdBUCAAAAiudwOEzd/vnPf+bpMhQeHq4b b7zR9FwXstlsvnxZAAAAAKBcMAzDre2iiy7S6dOn3X68pzZfueKKK/Tjjz/q5MmTPluzMAcOHLhg vJS5DMPQVVddpSVLlgTc6+4PUlNT9fTTT6t+/fp67bXXdPvtt+vIkSNatWqVRo4c6XaxUEnPscPh UP369SvEa/Tyyy/roYceMjtGqR06dEiSVL9+fZOT+DcKhoAAw0gyAAAAwP81a9ZMMTExrq+rVaum uLg4ExMBAAAAADzp8ccf14QJExQdHW12FK+w2+3au3evsrOzddFFF+nYsWOm5jl9+rSqVq1qaobc BgwYoFdffVVDhgwxO0rAWb58uZo3b67ly5frgw8+0I4dOzR27Fi3i4Tgnr59+yo9PV1r1qwxO0qp HDp0SFFRUapUqZLZUfwaBUNAAGIkGQAAAOD/croMhYeH65///KfZcQAAAAAAHrJhwwbt27dPt956 q9lRvCYoKEixsbEKDw/XyZMnFRsba2qeU6dOqVq1aqZmyNG/f39NmTJFrVu3NjtKwPnXv/6lYcOG acqUKdq8ebNuuOEGv+osFWjKa5chu92uEydOmP5zqTygYAgIMHQVAgAAAMqHZs2aKTIyUpUqVaK7 EAAAAAAEkHfeeUdTp041O4bX9e3bVx9++KGuvPJKs6P4TcHQiy++qBEjRqhjx45mRwk477//vmbM mKG1a9fq3nvvldVKqYO3xcTEaPz48Zo1a5bZUUrk1KlTMgxDNWvWNDuK3wsq6Q6jR7v3uLlzH5dh TCvp4QGUUc5IstyXAAAAAPzTU089ZXYEAAAAAICH/fTTT6pVyz8/4O2tbiy+6vJiGEaBt/tDwdCh Q4e0dOlSbdy40dQcgejYsWMaM2aM5s2bpy5dupgdp0K59dZb1bBhQ913332y2Wxmx3HLqVOnJMn0 nwnlQYkLhiRp7txkT+cA4EGMJAMAAABKzm63mx3Bp4KC8r4lUF7e9AEAAAAAf/bbb7+pQYMGqlq1 qtlRCrVw8uWSCi688Vc2q1VDn15X6P3BwcGqUaOGDxPlN336dE2cONHUDIHqhRdeUIcOHTR8+HCz o1RIY8aM0axZs/Tggw+aHcUtycnn61mio6NNTuL/SlUwVLzp3jksgGLRVQgAAKDi6X3FFWZHACq0 tWvWmB0BAAAAgJ/45ptv/GJEV3Esski+aQpUZoV1FcrtyJEjbj3OW/bu3asTJ05o0KBBpmUIVE6n Ux988IHmzJnjs05WyOv+++9X+/bty03BUHp6uiQpMjLS5CT+z2uD/RhHBpgjZxSZJNclAAAAKgDD YGNj8/F2/xQ357YDAAAAqDASEhLUtm1bs2O4xWa1KMjm35u79SE2m00Oh8O7J6wIixYtUq9evUxb P5AlJSXp2LFj5aIQL1BFRERoyJAheuedd8yO4pZz585JksLDw01O4v+81GEIgJkYSQYAAFAxbbNv MzsCAAAAAAAV2tGjR1W7dm2zY7gt2GZ1uyjH15xOyeF0rwgoODhY2dnZXk5UuBUrVmjZsmWmrR/I Tp06JZvNxngpk91///3q37+/Ro4caXaUYuX8LAgKohymOJwhIMAwkgwAAKBiS0tJMzsCUCFERtHW GgAAAEB+R48eVa1a5WsChNXificfX3EakmS4/XgzOwwlJCSoatWqqlevninrB7oqVarI4XAoNTVV lStXNjtOhVW7dm21b99eP/74o7p37252HLcwwq54FAwBASZnJFnuSwAAAFQsWRlZZkcAAlpIWIjZ EQAAAAD4qUaNGqlGjRpmxygFf/vDuvvFQpK5HYY2bNigQYMGmbJ2RdCwYUNFRERo27ZtuvTSS82O U6HVrl1bf/zxR7kpGELxKBgCAhAjyQAAAGC3282OUGGN6jNKQ0YN0VWDrjI7SrnwwMAHdP2w6/WP Yf8wO4pbaGcNAAAAoChbtmyR0+mU1Wo1O4rbnIYko2QFOv7GZrOZ9l7Ir7/+qr59+5qydkUQFBSk nj176quvvqJgyGStW7fWzz//bHYMeBDvcgEBhq5CAAAAyOF0OM2OUGE5nU6fn/8Hb3xQfYb20T+G lo/CGxfDnPNVGlZb+XnDHwAAAIA5QkNDlZmZqfDwcLOjuMVxvlrI7BhlVqNGDaWlmTOmPTExUc2b Nzdl7Ypi4MCBmjNnjqZOnWp2lAqtdevWeu+998yOAQ8qZcHQdM+mAOAxjCQDAABAbkY5/4SgP3hg wAPqf1t/XfPPa9zfySjduU/YmKDFry/WH7/8ofBK4ep+dXfd8dgdioiMKHbfl//78vml3Vy3VM/L W0p5vnyJufcAAAAA3BEaGqqMjIxyUTDkdBpyOv37dzF31apVS/v371e3bt18vjYFQ973z3/+Uw88 8IC2b9+uNm3amB2nwmrdurWOHuVvz4GkxAVDc+ZIc+ZM80YWAB7CSDIAAADk5u+FGOWBYRglOo+G Svb4HAtnL9Tguwer5astdfzIcU0bO02zp87W+BfGl/hY7ijp8/JahlKeL1+hWAgAAACAu2JjY3Xq 1ClVrVrV7ChFOv97mNkpPKdBgwZKSkry+bp79uxRs2bNfL5uRVOzZk316dNH7733nmbMmGF2nAor KChIycnJyszMVGhoqNlx4AGMJAMCDF2FAAAAUJ7c3+9+dendRTu27NCe7Xv04L8fVJcru+jdme/q x69+VHpqui7qdJHun3q/atat6dbx2nVrp8SERO3dsVc16tTQuBnjtP3n7fpkwSc6l35Ol99wucb+ a6ws1vNFIFPunqJNazbJYrGoZt2auu6m6zRs9DBZLBZNe3Cadm/frZcmvKSXJrykFu1a6OX/vqyz aWf13n/e00/f/KS0lDRdfv3luufJexQWHiZJOrjvoCbeMlGJCYmqVrOaRk8ZrY49Oxab/9/v/tt1 vWFcQ/UZ2kefvfOZW+fyoX8+pD5D+6jPkD6uc9H1yq76fcvv+XIU9rzOnT1X5Lkv6PX6aN5Hha5T 3PkFAAAAgEBTv359/fnnn2ratKnZUQoV/6/1ZkfwuAYNGujrr7/2+bp0F/KdESNG6N5779XTTz9d Ljp4BaqsrCyFhISYHQMeYjU7AADPyhlFJsl1CQAAAEiSLH64Sfpy2Zca+ehILft1mXr166UXx7+o Q/sP6fmFz+u9799T/ab19cx9z5zvQOPG8X746geNmjxKCzctVKsOrfT4bY/r4J8HNXfVXL362ava +O1Gff/l9659nn7zaX2x9wut2LVCk+dO1tcff621K9ZKFunxVx9XXJs4PTLjEX2x9wu9/PHLkkV6 YfwL2rNjj5556xm9u+5dxbWN028//ebK8M0n3+j2x27Xoo2LdPWgq/XCuBdkyI38F2wJmxLUpHWT Ep3P3NcLy1HY8yr23BfwehX3fIs6vwXm9qcNAAAAAEooNjZWq1atUnZ2ttlRCpTTabasW1JSkmw2 m6666iqPHdOdrTD169fXgQMHfHgmpezsbK1du1bR0dE+XbeiGjRokKpVq6bZs2dr165dZsepkJxO pywWCx8CCyAUDAEBiJFkAAAAKIzFz/4nSf1v7a+LOl4km82mk0dP6of/+0EPT3tYtevXVqXISrpr wl06knRESbuT3DregBED1LxNc0VEROjqG69WxtkM3fvkvYqKjlK9RvXUoUcH7d2xN9++NptNzVo3 04ARA7Tx6415jpn7cccPH9dPX/+kcTPGqWGzhoqMitT1w65Xtyu7uR4/cORAtWzXUmHhYep3Sz+d OXlGp/86XaJzs/y95UrYlKC7H7+71Oe2qBwXPi93zv2Fr1dJnm9h59df/wcAAAAAJbVx40a99tpr mj17thYsWGB2HK+aNWuWHA6HHn30UbOjSDKnYOjVV1/VK6+8ovnz52vHjh0+XbsiCgoK0mOPPaYJ EybohhtuMDtOhZSVlaXg4GCzY8CDGEkGBBhGkgEAAKC8qVnn71FjRw+c//+yN/e4Od/jjh48qkYt GhV7vOhqf3+yLyQkRKHhoQqLCHPdFhwarMyMTNfX3636TovnLtah/YeUcTZDknTRJRcVevxjB4/J arOqdoPahWeIyZUh7Hyb5txrFuez9z7TwtcWavr704tcpzglyeHuuc/9ermzTknPLwAAAACUV127 dlWPHj30008/qWfPnmbH8Zpz587pzTffVMuWLXXttdeaHUeSVLNmTZ05c8an45L69++vyZMn69JL L9VFF/F7ri8cPXpUoaGh+vPPP5WZmanQ0FCzI1Uo2dnZjCMLMBQMAQEmZyRZ7ksAAAAgHz9qoGKx Wlx5atarKYvVoiWblyiqalQpD6i8Y65yX17wmNMnTmvaQ9M0afYkdbi0g8IiwvTp259q3Yp1rn0s VkueY8TWj5XT4dSRA0dUp2GdkmVw47wvmbtEn77zqWYsmqGGcQ2L36GwdYvJceHzcvfc5369ilvn 9Mniz2+Buc1UeId7AAAAACjWypUrNXPmTDVt2tTsKF6zbNkynTp1SlOnTvWr0UQ5XYZ8de7j4uI0 depUjRw50ifrQZo8ebKuvfZazZkzRxkZGRQM+Vh2djYdhgIMI8mAAMRIMgAAALgjZ+a4mdv5IH9n ia0bq+5Xd9fMR2fq0P5DysrI0u6E3Xrm3mdkz7aX+Hiuop8LH6vzl9mZ2TKchiKjIhUcEqxdv+7S Jws+ybNPTM0Y/bnrTzkdTlfGrld21UuPvaQDew/obNpZrV6yWpvWbCowQ85t7pyPd2e+q5UfrtTM j2aqUfNGZTqXxeUo6HkVd+4LO2Zh67hzfgva39R/jwAAAAAqLE/8XhEWFqYnn3xS4eHhAft7y5tv vqmwsDDdeuutZkfJo0GDBkpKSir1/qV5PSZMmKDY2Nhy/Xr6C3fPWbdu3fTee+8pOjqa9wl8zJcd vOAbdBgCAgxdhQAAAFAS/vDmh0V534SZ8J8J+uCVDzRp5CSdPnFajZo30rD7hykk1L03JHIf78LL XA+SxWJRrfq1dNfjd2na2GlKTU5VXJs49ezTU7//8rtrnyH3DtFLE17SZ+9+prg2cXr101c18ZWJ WjBjgZ647QllnMvQ5ddfrlGTRv29XkEZVPSbTefSz2nR7EWSpDuuuMN1e3BIsFYmrizxcy8uR0HP y51zX9DzKGwdd86vO+fGFwyD1kIAAAAApEUvPum3vx/EP/pvsyNo//79Wr9+veLj4xUdHV38Dj5U 1oIhSZq5cKKH0hTNZrPqoaHmv57+5vZFL0t+8P1nSHon/mGzY/gdOgwFHgqGgADDSDIAAACUlJmF GvNWz8t3W0RkhO558h7d8+Q9ZT5e646t9fkfn+e5bdyMcXm+HjJqiIaMGlLoMdt0bqMF3y7Ic1tk VKTGPjtWY58dW2yG0LBQffW/r4rNHhEZ4dbjCvPaZ6+VKEdBz6u4c1/Q61XcOsWd3wtzm8Ff/xgA AAAAwDxWP/iATQ5Dhj/UUEiSFi06/0GXW265xeQk+dWrV08HDx4s83Eslpz/eIfh9JMX04+5xqib wDDkF0VL/igrK4uCoQBT4oKh0aOLf8zcuY/LMKaVJg8AD2AkGQAAAErK7O4ugFkoFgIAAABQEIvV oiCbzewYcjiccjgdZsdw+eijjxQTE6Orr77a7Cj5NGnSpMwdhnJYrVbZbFaPHCs3e7Zd/BbqBotV 1iATvv+cTjns/vP95m+ys7MZSRZgStVhaO7cZE/nAOAhdBUCAABAaZn56S13HD1wVDd3v7nA+669 6VpN+M8EHycqmbLkL+/P3V/xqU4AAAAARbFZrSZ3OjHkcDhNW/9C+/fv16+//qo77rjDL7uMtGnT Rk899ZTHjmezWT36ASuH039ey/LAarPKYvF80VbhDDmyeI2KwkiywMNIMiDAMJIMAAAAZWG1+vKN mJKp07CO1hxeY3aMUitL/vL+3P2RkzdqAQAAALjBarGY0pXXMAw5/Kwj6qpVqyRJ/fv3NzlJwerW rSuHw6GjR4+qVq1aHjmmxeqZ15/fQUvHYrV4dTzc3wwZjuK/3ywWi1q0aOGDPP7JMAw1aNDA7Bjw IAqGgADESDIAAACUhT8XDQGewBu1AAAAAEqkBHU7RgAPnPryyy8VHBysK6+80uwohercubM2b96s fv36eeyYhb6mgftS+xk3TrSPXgvDMLRr1y7fLOaHHA6HDh8+bHYMeBAFQ0CAoasQAAAAPMGMT08C vmD42Sd0AQAAAPg3p9MQlSHnCwXWrVun7t27q3LlymbHKVSXLl20adMmjxUM8YETcxmcf8CrvFAw NN3zhwTgNkaSAQAAwGOoGUKg4T1+AAAAACWQbXeYHcFvJCQkKDk5WZdddpnZUYrUuXNnLVmyxCPH ys7m9TeTM9tudgQg4Hmlw5BhTPPGYQG4iZFkAAAA8BQ6DSFQ0FkIAAAAQEk4nYacomAkx6ZNmyRJ 3bt3NzlJ0dq0aaPdu3crMzNToaGhpT6O00FnGzMZTqd4CQDvYyQZEGDoKgQAAABPo2gI5R3FQgAA AABKit8j8tq6dask6ZJLLjE5SfE6d+6szZs3q2fPnqXa//xLz+tvlvOnn/MP+AIFQ0CAYSQZAAAA AAAAAABA6Qwf/5zZEfxSQkKCatasqVq1apkdpVidO3fWpk2bSlUwNC5+uhcSwV1vD3/I7AhAhVLK giF+UAL+jJFkAAAA8AY6DaG84RPBAAAAAErCk79DvPPOO9qzZ4+effZZjx3TTImJiWrZsqXZMdzS pUsXzZw5UwMHDlSTJk3c3q8kr//LL78su92u8ePHlyYiClDc+c/OztZtt92mlStX6pNPPtFVV13l o2RA4CpxwdCcOdKcOdO8kQWAB9BVCAAAAN5E0RDKC4qFAAAAAJgpJCREWVlZZsfwiLNnz+r48eO6 /vrrzY5SrDNnzujpp5/WmjVr9Mcff2jXrl1eWWfXrl3l4nwEiuzsbA0bNkxr167Vt99+q06dOpkd CQgIVrMDAPCsnFFkklyXAAAAAAAAAAAA8J2goCDZ7XazY3jE4cOHJUl169Y1OUnxoqOjdf/99ysi IsKr49N27txZbjoulXfZ2dkaMmSI1q9fr7Vr11IsBHhQKUeSAfBnjCQDAACAt9FpCP6KzkIAAAAA /EEgdRg6efKkJKl69eomJ3HPoEGD9Oabb+r06dNeWyMsLExVqlTx2vFxnmEYuueee7R27Vp99913 atOmjdmRgIBCwRAQYBhJBgAAAF+gKAMAAAAAgMIFBwcrOzvb7BgekZaWJkmKjIw0OUnJP8B03333 lXqtot77+PPPPxUREVHqY8M906ZN0+LFi7VmzRqKhQAvoGAICDA5I8lyXwIAAAAAAAAAAMB3Aqlg KKdTUnBwsMlJzrtn0SLJix9kstpsen3o0CIfk5aW5hcFVIHsv//9ryZNmqTFixerW7duZscBAhIF Q0AAYiQZAAAAvIXOQgAAAAAAFC+QCoZsNpskyW63m5wkL4vV6vFjGk5nsY9JSUlRVFSUx9fG37Zt 26bbbrtNkydP1pAhQ8yOAwQsCoaAAENXIQAAAHgLxUIAAAAAALgnKCgoYAqGKlWqJElKT083OckF LBbZgjz3526Hm69XZmammjZt6rF1kdfJkyc1cOBAXX311ZoyZYrZcYCARsEQEGAYSQYAAFC+OBwO nT17Vunp6UpPT1daWprrenp6us6ePeu67ezZs64tLS1NZ8+eVc2aNfWT2U8CqOC++OILRUVFqVKl SoqMjFRkZKQqV66sypUruz6JCwAAAKBiCQkJCZiCoWrVqkmSjh8/bnKS/Cw2mywWS5mP405noRzV q1fXr7/+WuY1kZ/D4VB8fLxCQkL0/vvvy+qFLlIA/kbBEBCAGEkGAADgfU6nUxkZGUpJSXEV+uQU 9lx4PT09XampqXkKgXK2c+fOlXjt0NBQhYeHq1KlSj5544TOQkDRjh49qr1797q+13P/DAgKCnIV EOW+LOi2Cy8BAAAAlF+BNJKsXr16kqSkpCSTkxTMYrWWqWjIcDpVknc+LBaLoqKilJycrCpVqpR6 XeQ3depU/fDDD9q0aRNj34pQo0YNhYWFmR0DAaDEBUOjRxf/mLlzH5dhTCtNHgBlRFchAACA4hmG oXPnzrn+sJ+SkqLU1NQ8f+jPuS3n6wu39PT0EhfShIeHKzIyUpUqVVJsbKwqVaqUb4uIiFBERESe 28LCwvLcFxQUJIfD8feBr7jCw2fobxQLAcW7/fbbC+wkZLValZGRke9nR1pamuvny7Fjx/IVGqWm purs2bOqXLmyq3NRThFRVFRUnqKiqKiofIVGvGkIAAAAmC+QCoYqV66s2NhY7dy50+woxcrzPoY7 72mUstAoJiZGJ0+epGDIg7744gs999xzWrJkiVq1amV2HL+WlJSkNm3amB0DAaBUHYbmzk32dA4A HsJIMgAAUBE4HA5XgU9qaqpSUlLyFP3k3Jb769wFQampqXKWoNV0ToeQyMhIRUdHq27duq4/zEdE RLjuyxlHlFPok/u2sLCwfN2ACsrg7m0+Qa0QUGZhYWEKCwtT9erVJanArmCF3Xbhz63chUXHjx/X n3/+mef+nOsWi8U1Ei2nkCgqKko1a9aUJEVFRalKlSqKjo52XY+KilJoaKh3TwYAAABQgQRSwZAk tW/fXmvXrlVWVpZCQkLMjpNHSTsE5d25dHt27NhRp0+fLu2quMD//vc/3XLLLRo7dqxuuukms+P4 vYyMDD4sBI/wwkiy6Z4/JIASYSQZAADwd4ZhKD09XcnJya5in5SUFCUnJys5OVmpqan5LnMKgJKT k3X27Fm317Jara4/mFeuXFl16tRxFfjkdOrIveU8LiIiwvXH9pCQEFksFreLeQrqymNa0U8p0VkI MF/Oz6McBbXYL6jYyG63F1hs5HQ6dfz4cR06dEi///6762dwzs9ei8Wi6OhoValSJc+W+7ac6zmX vhiLCAAAAJRHgVYw1L17d3355ZfauHGjLrvsMrPjuDhNOsctW7bUF198oUsuucSU9QNJVlaWhg4d qri4OM2YMcPsOOXCuXPnFB4ebnYMBAAvFAyJcWSAiegqBAAAfMUwDFcBz5kzZwIyjN4AACAASURB VFx/eM65fuEfoi8sCMozUqsINpvNNXInJiZGjRs3dn2dc1nYljPGK/cf2QO1wMeTKvJzBwJBSEiI YmJiFBMT47qtoMKeCwuQMjMzXT/Xc28pKSnau3dvnp/3OdcrVaqUp7ioatWqro5FOV/nLjiKiory +vMHAAAA/EGgFQxdd911mjp1qlasWOE3BUOG0ymHSe9hXH311brrrrs0adIkU9YPJE888YQSExO1 detWv+te5a/oMARP8UrBEADzMJIMAACUlN1ud/3ht6jt9OnTOnPmjKsoKCUlxe2in/DwcNcfj+Pi 4hQVFeXacv6InFPkk/MH5ZzroaGh+f6oXVCBD0U/nsE5Ayqu0NBQhYeHu0aX5Siq2CgtLS1PcVHu gqIDBw7kKyZNTU0tsGNRTqFR7gKjqlWrqmrVqoxKAwAAQLkUaAVDXbp0Ud26dbV48WJNmzbN9G6j hlTqcWKe0KxZM2VmZurAgQOqX7++aTnKu5UrV+qll17Sxx9/rIYNG5odp9ygwxA8hYIhIAAxkgwA gIrJbrfnKe7J2XJ/XVAhUGpqqlvHDw4Odv1Bt1mzZgWOqskpAMpdCBQVFaXg4OB8x6PTT+nZ7Xbt 3btXf/75p6pVq6beHjqu4WQMGYCSyRnnWLduXbdGphmGkaeAKHeHur/++ku7du3Kc3vt2rX1+++/ KyYmRtWqVXNdVq1aVdWrV1e1atVUrVo113U+YQkAAAB/EWgFQ1arVbfeequmT5+ur776Stddd53P M+SsOX/4cJ+vXZBhw4Zp3bp1uuWWW8yOUi4d+n/s3XlcTfn/B/DXbd9o3xd1SyHJrppKKimMnbLv 0zB2YeyMnTRDEsOYsZexh5FISMYYRJJoU7Rvk2i99/7+8L3356pouXXq9n4+HufR7Syfz/tc9+os 7/P+vH2LyZMnY+7cuRg2bBjT4bQolDBERIUShggRM1RViBBCCBEPpaWlyM/PR15eniDZJz8/H/n5 +SgoKBCaz5+Kiopq1baioiJUVFSgqqqKdu3aQUVFpcr0aTIQ/3cZGZl6V/qpbh6pnXfv3gmSg5KS kpCSkoKMjAwYGxvDxMQEpqamIumH6X+j/u36N3ofYa/DGr0PQsiXsVgswd+WT32pihH/b+KnU15e Hl69eiX0e35+PlgsliCxiJ9cxP+dn1TEX0aViwghhBBCSGPKy8vDu3fvkJubCw0NDabDEYmZM2di 27ZtCAwMbPKEoUmTJmHZsmUIDQ1t0n6/xNvbG5aWlpQwVA+PHz/G4sWLYWhoiO3btzMdTotTUlJC D8wQkaCEIULEDA1JRgghhDQ/5eXlgoSfvLw8oenzG538qaSk5KvtysjICKos6OvrC4Zu+XTi35T9 dIiXz6v90PBezUd2drZQclBSUhLKyspgYmICNpuNnj17YvTo0TAwMKj1cHC1wXSyEN/atTXHsX79 OvB46+rdNovFEtrP9JR0HPY7jEeRjwAAXe26wnuVNzR0hC/i8ng8+Hj6IOafGAReCYRpp+oTtJ7e f4qggCA8f/Qc8orysOtvh+k/ToeCkkKt2ivMK0Tg+kA8inyE8rJymFmawXuVN8y7mH9xv2pqLz87 H/s27MPju49RUV4BOzc7zPlpjiCeuva3a8UuXD5xWWje92u+x4hpIwAAw62G4/2791W2O3HvBDR0 Nb4aDyFfIicnBz09Pejp6VVbxejTeSUlJULJtfy/sfHx8bh3757Q32JJSUmhykX81xoaGoLf+fPo QiwhhBBCCKkrDw8PpKWlYciQIYiKimI6HJFgs9nw8PBASEgIUlJSYGxs3CT9+vj4YODAgXB2dm6S /mpLTk4ObDYbcnJyCA0NRd++fZkOqUWIjY2Fo6MjysrKEBMTQw9z1ANVGCKiQglDhIghGpKMEEII aVwlJSXIzc2tMvFvQPJf5+bmIj8/v1aVfxQUFAQ3Kc3NzQUVEVRVVQU/P5/k5eUFN0mp0k/L8/r1 ayQmJiIxMRFJSUlITk6GoqIijI2NwWaz0b9/f5iYmEBDQ6NRk7Wa22di/frGa/vTfQ05FgKHgQ6Y s2EOPhR/gP8qf2yesxk7/9wptM3Z385CVk5WsH1N79fx3ccx5vsxWNl1JXLSc7Bp7ibsWbMHS3Yu qVV7e1bvQV52HvaE7IFSWyX84fsHVk1dhZP3T0JCsmrlla+199Osn6DUVgn7r+4Hh8PBjsU7sMNn B9YErql3f0MmDcEP63+o9j09+/Ss0Pw9a/YgJT4F6jrq4PF4X42HEFGRl5eHvr4+DA0Nqyz7PNno w4cPQom7/ASjuLi4Ksm9UlJSNSYU8asX8V/LyMg01e4SQgghhJBmbNq0adiyZQvmz5/PdCgiNW/e PFy5cgV79uyBr69vo/e3Y8cOGBoawsvLq9H7qo+8vDxISEggLS2N6VBajH///ReVlZXgcrmwsLBg OpwWqbS0lBKGiEjUM2Foq2ijIISIDFUVIoQQQuqutLQUeXl5yMnJQW5uLrKzswW/fzqf//pr1X/4 NxU1NDRgaGhYpUrBp0Ok8CdZWVlK+hFT5eXlSExMREJCApKSkgQVhIyMjGBsbAxTU1P06dMHJiYm UFRUbNJKTi3ns7ROJK18ur8zV8wUvFZsowj3Me7YumCr0Dpvkt7gwuEL+Om3n/Cv279fTBjacnSL 4LVReyN4eHrg/B/na91e0oskDJ08FJq6mgCAwRMG48LhC8jLzqtS9ehr7eVl5eH5w+cICAmAisbH YZ8mL5qMRaMXITczF+ra6nXujwfeF/f/U6UfSnHj3A3M3Ti31vEQwgQFBQUoKipWSS6qrorRhw8f BMlD/GOCgoICxMbGVkkukpaWRq9evfD+/Xtoa2tXmXR0dKCqqtpUu0kIIYQQQhiyYMECsFgsjB49 mulQRMrNzQ2dOnXCgQMHsGbNGrRt27bR+nr79i3i4uKwY8eORuujoR49eoS+ffuiS5cuTIfSYvTo 0QOenp7Yv38/06G0WDQkGRGVOicM7d0L7N275esrEkIYQUOSEUIIIR+TAoqKipCdnY2cnBzk5OQI XvN/8hODcnJy8O7duy+2JysrC01NTWhoaKB9+/ZCVQQ0NDSgoaEhqDigpqaGtm3bCt1spKSf1uO/ //4TVA3iTzk5OTAzM4OJiQksLCwwcOBAmJiYQEJCgtlh3lrYR7Ahw5H9fyPVz87LysO1M9dg62or WIfL4cLXxxffrfwObdq2+f/ta/m+Pb3/FOyO7Fq3Z+9uj1uXbsHW1RYKSgq4fPwyOnXvBHUt9Wr7 /GJ7n67/yWsej4ek50lQ11Kvc3/gAdfPXsfV4KtQUVeBjasNpiyeAsU2ilVWvXnhJqSkpWA/wL7W 8RDS3CkqKkJRURFGRkaCeTUNj1ZcXIzCwkKkp6cjOzsbWVlZSEhIwN27d5GZmYmsrCwUFxcLJRDx f/Jfa2trQ12dvhuEEEIIIUyr7pivrlatWiWCSJrPtSQWi4XFixdj+vTp2LdvH5YuXdpofT19+lQw lHBzUt3nwtraulH6YvrfXRTfgZocPny43tsy/b4wqbS0lJKFiMjQkGSEiCEakowQQog44vF4eP/+ PbKysgRTdna24Ebcp69zcnJQVlZWY1uSkpLQ0NCApqYmevToIXjNT/7h/66urg5NTU0oKipWe3JM iUCtW0ZGhqByED85iMvlwtTUFCYmJrC1tcWECROgr68PAMwmB5FqhZ0Jw86lH4cgM+lggo2HNgqW Be8Lhra+Nuz626Egp6BO7V44cgEx/8Rg97ndtW7Pc5YnXkS/wIRvJgAAtPS1sPHQxhovzH2pPXVt dbTv3B5Hfj6CBZsXgMvl4sjPR8BisfCh+EO9+pu3cR7mbZwHDoeDpLgk/LL8F+zw2YF1+9dVWffK yStwG+UGaRnpWsdDiDhRUlKCkpISDAwMAFR/gb2yslJw/MJPIkpOTsbff/8tOM4pKCioklT0aWKR jo4OtLS0mnr3CCGEEEJanRO7VjDav6SkBDznbPz6ik1owoQJWLt2Lfz8/DBnzhwoKCg0Sj/79+8X WcKVqC05seTrKzXQjnHNo7LSyJ/uMx2CAIfLw/l1NkyHwSgajoyIEiUMESJmqKoQIYSQlobD4SAn JwcZGRmCG2T8G2f8n/wbah8+1HxjWUZGBpqamtDS0oKlpSW0tLQEv/MnfiKQqqoqJCQkAFDSD6md 8vJyPHv2DM+ePUNsbCwyMjIgISEhSA4aPHgwTE1NoaamBqB5f4Z4La20kAh9vu+uI13hMsIFBTkF OBlwEgtHL8Svob8i620WLh2/hIBLAR+H4vpku6+9fxePXMQJ/xPYcnQLdIx0wAMPqQmpX23vx4k/ QtdQF8fvHYe8kjyuBl3FwtELsf/q/ipDdtWmvZUBKxH4UyBm9J8BaRlpeM72RPS9aLRRbQMeeHXq 71MSkhIw62wG71XeWDZ+GT68/wB5xf+/SPUq5hUSYhPw4+4fheL6WjyEtDbS0tIwMDAQJBUBVROL uFyuUEJRVlYWMjIyEB0dLXidlZUlVJmousQibW1twXEPIYQQQgipH4lGrLLyJdxmen1BRkYGy5Yt w9y5c7Fv3z4sWrRI5H1ER0fDyMgIPXv2FHnbosJisYDG+Gjwmt+1pebwWWTqe9jcvH//HpqamkyH QcQEJQwRImZoSDJCCCHNxaeJQJ9PmZmZyMzMREZGBnJycmqsvCIhIQFNTU1oa2ujffv2ghtg2tra 0NLSErzW1NREmzZtvloit7mdaJPmKzc3FzExMYiNjcWzZ8+QlpYGS0tLdOrUCWPGjEGnTp0gKysL oIVVDmrtX4Fq9p8FFtQ01eA1ywuXjl1Ceko6kuOTkZeVB69eXkLr/vDtDxg5fSRmLJ9RbfPB+4Jx 4fAFbDu+De3atxP0l/As4Yvtjfl+DOKj4+G90htqmh+TzoZPHY7DfocR9ygO9u72Qtt9rb0Zy2dA W19bqPrP/fD7kJGVgUUXCxTlF9Wpvy/6bMixS8cvoatdV+gZ6QnN/1I8rf5zSUgNJCQkoKurC11d XaH5nx/vfFp9kZ9w/ezZM8HxVlZWFtTU1IQSinR1dYVea2trQ1pauil3jxBCCCGkxZGWbtrbqhWV HKAZX8uaMWMGtm3bhi1btmDGjBlo27atSNuPjY1tEVVUJCUlwZIQXSILj8sDp5IjsvZEqaKSuWtg UpISjZOc1QLl5ORAUbHqEPGE1AclDBEihmhIMkIIIY2Jx+Phv//+Q3p6umDKyMio8jMrK6vGRApZ WVno6urC2NgYtra2VYbW4N/AUldXh6SkZJX+q4uJkIZISkoSJAc9e/YMXC4XlpaWsLS0hJubG8zM zAC0sOSgFmtdo/fA5XCxdcFWeM32ggHbAIW5hTix5wRUNVVhwDaASQcTOA91FqxfkFOAcbbjEBAS AHZHdrVtHt55GOEXwrHj5A7oG+sLLXMe6vzV9rQNtBFyLAQ6hjqQV5RH6KlQcCo41fZXm/bOHjoL 046mMLc2x8snL7F3/V54zfKCgpJCnfsDgJ9m/YRxc8bBkG2IN8lv8OumX9HLqZdQdaH3797j1qVb 8NnhU2X7r8VDCKk/fiLQl+Tm5golFGVmZuLFixdC89q1awd5eXkYGhrCyMgIhoaGgunzpCVCCCGE kNZKSkry6yuJQEu4/iAnJ4f169dj+vTp2LZtGzZt2iTS9l+8eIEOHTqItM3GIiElAZYIsll44IFT 3jyThfgqOE1/HVaCBTTRV69FyMvLg7p6zdWhCakLShgiRMxQVSFCCCENweVykZOTg7dv3+LNmzd4 8+YN0tPT8fbtW6GfNQ0NJiMjA11dXbRr1w42NjaCp9c//amrq4u2bdtWeTqekn5IU+FyuYiJiREk Bz179gy6urqwtLREnz59MH36dGhpabWIi3O19bXqW83F+vU1x8lirW9w+/z3QVJKEi7DXeC/xh9J cUlQaqsEy56W2H58O2RkZWrc7vPXfCUfShAUGAQAmOH6/9WHpGWkERIXUqv21h9Yj4NbDuK7Ad+h sqIShmxDrAxYWSX56Ev79elrB3cH+K/2x5P7T6Cpo4mRM0Zi6KShgvXq2p+HpwcC1gUg+UUylNWU Yetqi4nzJwr1HX4+HApKCrBzs6vyPn0tHkJI49LQ0ICGhgY6d+5cZRn/+1pYWIg3b94gLS0NaWlp ePz4MS5cuIC0tDRkZWWhXbt2MDAwEEoo4v9sCU9+E0IIIYSIioQESyTJITVpDkM/1dbkyZOxa9cu 7Ny5EzNmzICJiYnI2i4rKxM8wNUSsCRYDbr+wgMPPAaSceqDx+OB20ShSrAAtJDrWk0lNzcXGhoa TIdBxAQlDBEiZmhIMkIIITXh8XgoKChAWlqa4GYQPykoLS1NkAxUXl5e7fZqamrQ09ODvb099PT0 oK+vDz09Pejq6kJPTw96enpQU1Or1YkxJQeRppaYmIgHDx7gwYMHqKiogKSkJKysrDBixAisWbMG cnJyTIfYaFpKslBoUmiT9mfragtbV9taraumpfbF+BQUFeoUf3XtmViYYNMf9Xsas7r2tA20sfH3 jTVuU9f++jj3QR/nPl9cZ+jkoRg6ufokoK/FQwhhnoqKClRUVNC5c+cqfzu4XC5SU1Px5s0bpKam Ii0tDf/++y/S0tKQmpoKBQUFGBkZwcDAAEZGRoLJ0NAQWlpaDO0RIYQQQghzeOC1iuGXJSUlsXv3 bjg5OWHu3LkICQkR2XUIdXV1REdHw8HBQSTtNQVedf/oDH4OWCxWoz0QV6t/ZVYd1iW1lpeXBzU1 NabDIGKCEoYIEUM0JBkhhLROFRUVgps4/Bs5/Js4/Nc1VQbS0NCAoaEhrKysoK+vDwMDAxgYGEBf Xx/6+vrQ0dGpVUIFJQKR5qKoqAgPHjzA/fv38eDBA6ipqaFXr16YMGECrK2tq6wvrp9dCUkJpkMg hBAiBiQkJGBsbAxjY2Oh+fybQfn5+ULHnPfv38eff/6JtLQ0FBQUwNDQUFChiJ9I1K5dOxgaGkJG pmplN0IIIYSQ5ozL5aFVZAPVUt++fTFx4kQcPXoUwcHB8PLyEkm7FhYWuH79ukjaagrNsVK1rKws SkpKRNrmx4I/LMoCYlB+fj5VGCIiQwlDhIgZqipECCHiq7y8HGlpaUhJSUFKSgpev36NlJQUpKam 4vXr10hPT6826aFt27YwMjJC3759YWhoKBhKgp8YpKenJ5QMVF0b4ppMQcRLTEwM7t+/j3/++QeZ mZno3bs3evbsCW9vb6iqqgrWa44XcBqDlBSd7hFCCGkaampqUFNTQ9euXas8UV5eXo43b97g9evX guT2qKgoQYKRiopKlWHO+JO6ujpDe0QIIYQQUhWXx0N5RSXTYTRLfn5+CA0NxQ8//AAHBwfo6399 eO2vsbGxwcGDB0UQXePjlHOYDqFaioqKKC0tRVlZGWRlZRvcHovFgrQUZQoxLS8vDxYWFkyHQcRE na8gz5795eWBgcvB422pbzyEkAaiIckIIaTl4nK5yMjIQHJyMpKTk5GSkoKkpCRBglB1CUEsFgu6 urowMjLCN998I3SThf9aWVkZACX9EPGTmZmJf/75RzBZWFigT58+8PHxgbm5OYDWkxz0ORk5qtZA CCGkeZCRkQGbzQabzRaaz08sys7OFlTFfPPmDe7cuSOomPnhwwcYGhoKVSRq166dYCKEEEIIaSo8 AJWVzTMppDnQ0NDAwYMHMWTIEEyYMAFhYWENfpBJR0cHxsbGOH/+PIYNGyaiSEWP04w/FyoqKgCA 3NzcBidxsQBIS1KyUHOQl5dHD1cQkanX/9SBgf+JOg5CiAjRkGSEENJ8lZaWIiUlBQkJCUhOTkZi YiKSkpIEiUFlZWVVtuGfHNvb28PExEQwHISxsTEMDAwgLS3NwJ4QwoxXr17hxo0bePLkCfLz89G7 d2+4u7tj9erVNKTJ/yi1VWI6BEIIIaTWtLS0oKWlhR49elSpTlRSUiIY5uz169dITExEeHg4JCUl ERERATMzM5iamgr9ZLPZtRpKlxBCCCGkLuhBvK/79ttvMW/ePOzevRsrVqzA9u3bG9zm999/Dx8f n2abMNTcPxf8YasyMjIanjDEomSh5oIShogoUY16QsQMVRUihBDmlZaWIikpCa9evcKrV6+QkJCA xMREJCYmIi0trcqJpJKSEthsNjw8PMBmswXJQCYmJjAyMoK8vPwX+2vuJ6aENFRycjLCw8MRHh4O eXl5ODs7Y9WqVdDT0xNar7V/F35Y9wPTIRBCCCEiJS8vD3Nzc0HlQD7+zQr+cXZCQgIiIiJw8OBB JCYmQl1dHWZmZkKTqamp4AlrQgghhJC6GDd/M9MhtBg7duzAo0ePsGPHDnTs2BFTp05tUHudO3dG 586d8ffff8PGxkZEUYrGjnE7mA7hq3R0dAAAqamp6NmzZ73bObOmj6hCIiJACUNElChhiBAxQ0OS EUJI0+ByuUhNTcXLly8RHx+Ply9f4uXLl0hISEBqamqVxAVtbW2w2Ww4OjoKhmQwNTUFm82GpqYm Q3tBSPOVlpaGGzdu4MaNG2CxWHB2dsa2bdtgYGAAgJKDqhOwfi/TIRBCCCFNip8MNGDAAKH56enp gmSiJ0+e4MyZM0hMTISEhESVJCIzMzPo6uoytAeEEEIIae4aev3h4sWLuHr1KvbubR3n7DIyMjhz 5gxsbGwwc+ZMaGho4Ntvv21Qm9u3b4exsTFSU1NFFGXDffq5SE5OxqRJk3Dnzh0GI6oev6pQQ967 r30HgoODMXXqVJSWlmLr1q1YsmQJVSNqRC9fvkRqaiqKioqYDoWICUoYIkQM0ZBkhBAiOh8+fMDL ly/x4sULvHjxAnFxcYiPj8erV69QWloqtK6qqirMzc3h6OiI9u3bw9zcXHAjQknpy0MEUfIDIUBm ZiauX7+OGzduoLS0FC4uLtiwYQOMjIyYDq3Zi7h5E8DHZMbPVTePw+HUar3ablvb9mq7bUPmVVZW 1nvbpnL8+HHIyclh5MiRjMVQE0lJyS/+DgBSUlUvJVS3nqjnSUhIVJl38uRJhIaGoqioCOrq6nB0 dISzszOMjY2FLlBWt21182rbb3XzCCHNh56eHvT09NC3b1+h+QUFBYKKRPyqRAkJCdDT0wOXy0WH Dh3QsWNHdOjQAZaWll+t9EkIIYQQ8jWqqqooKChgOowmpaWlhatXr8LBwQGjR4/GuXPn4OHhUe/2 JCQkcOjQIUyZMgV//PGH6AIVkUWLFsHPz4/pMKrFT4x//fq1yNuuqKjAjz/+CD8/PygrK+PMmTMN +ncmtePu7o7c3FxMnjwZDx48YDocIgYoYYgQMUNVhQghpH7ev3+PuLg4xMXFITY2FrGxsYiLi0NK SopQMo+MjAzMzc0xaNAgmJubCxKD2rdvX20ZUEoEIuTLcnNzBUlCBQUFcHV1xfLly9G+fXvBOtUl nhDSklVUVKBNmzZMhyEWJkyYgLFjxyI6OhoRERH466+/cO7cORgZGaFv377o27evoAQ7IYSoqqqi V69e6NWrl9D8srIyxMbGIj4+HnFxcTh//jyeP38OLS0tdOzYER07dkSnTp3QsWNHwVPahBBCCCG1 oaKigsLCQqbDaHLm5ua4fv06+vXrh6FDh+LEiRMYNWpUvdtzdXXFzZs3cfjwYUyePFmEkTZMUFAQ 2Gx2lePL5oKfMJSWlibSdtPT0+Hl5YU7d+7AysoKZ8+ehZmZmUj7INUbO3Ysfv75Z+zfv5/pUIiY oIQhQsQMDUlGCCFfxuFw8PLlS8TExCAmJgbPnj3Ds2fPkJSUJJTco6ioiI4dO+Kbb74R3Bzo0KED 2Gw2pKSkKBGIkAZ6/PgxTp48iXfv3qFjx45YtGgROnbsSN8t0ipUVlZCWlqa6TDEhqSkJHr06IEe PXqgtLQUDx8+REREBE6cOIGjR4+iQ4cO6NevHxwcHKCiosJ0uISQZkhWVhbdu3dH9+7dBfNYLBZS U1MFDxWcOnUKcXFxKCwsFCQRfZpIJCMjw+AeEEIIIaS5aq0JQwBgZWWFW7duoX///hgzZgx27tyJ BQsW1Hu4qk2bNsHGxgYuLi6CIeuZFhkZie+++47pMGqkra0N4GNVb1EJDQ3FxIkTkZOTg4kTJ2Lf vn1QUFAQWfvky+bMmQM7OzuhcxdCGoIShggRQzQkGSGEfFRUVIQnT54gOjoaT58+xZMnT/Ds2TOh ocTk5ORgaWmJyZMno3PnzrC0tESHDh1gYGBAw40Q0giuXr2KoKAgKCoqwtPTE/b29kyHREiTq6io qHZYL9JwcnJycHR0hKOjI969e4fIyEhEREQgMDAQ+/fvR7du3dCvXz/Y2tpCUVGR6XAJIc2ckZER jIyMMGDAAMG84uJixMXF4fnz53jy5AmCg4Px/PlzGBgYoFOnTujVqxfat2+Prl270o0TQgghhLTq hCEAsLS0RFRUFAYOHIhFixYhNjYWe/bsgZycXL3aO378OMaPH49bt26JONK64/F4uHDhAvbs2cN0 KDXiPzQjis9geXk5Vq9eje3bt0NOTg4HDhzA9OnT650A1po1h/eMHtokfHSFkhAxQ1WFCCGtVV5e Hh4+fIiHDx/i8ePHiI6ORkJCgtA6pqamcHd3R5cuXdC5c2d07twZZmZmkJSUZChqQlqHsrIyBAUF 4eTJk7C1tcWKFStgbm5OQ40RRjH5fz+Hw4GMjEyL+PvD4XBaRJzVadOmDTw8PODh4YG8vDzcunUL ERER8PX1hYyMDGxsbNCvXz/07NmTKj4RQmpNSUlJaFgz/sX+pKQkxMXFITU1FXv27EF0dDT09PTQ tWtXwdS5c2cmQyeEEEIIA9q0aYPi4mLweLxmkSTABGNjY0RFRWHcuHH47bffEB0djeDgYJiamta5 LVNTU/j6+mLmzJk4cOBAI0RbexcuXMDQoUMZjeFrZGVlAXy8NtcQ8fHxUbLlPQAAIABJREFUGD9+ PB4+fAhLS0sEBQXRsW0Djbk/kZF+OTwOzticYKRv0jzVM2Foq2ijIISIDA1JRghpDd6/f4+HDx/i /v37ePDgAf79918kJycLlktJSaFz586YNm0aunXrhm7duqFLly5QUlISaoey6AlpXKmpqQgKCsKV K1fg5eWFoKAgKCsrMx0WIYyrrKykCkNNTFNTE6NGjcKoUaPw+vVrQfLQ7du3oaSkBHt7e/Tr1w9d u3alCoOEkHphs9lgs9kAgFmzZgEAEhMTER0dLbgp9uzZM3Tt2hXdunVD165dYW1tDWNjYwajJoQQ QkhT4FcZUlVVZToUxqioqCAkJAQ//fQTNmzYgG7dumHv3r0YP358nROpevXqhVevXmHRokXw8/Nr pIi/LjIyEl5eXoz1Xxv8Svv1rejE5XIRGBiIJUuWoKSkBLNmzYKvry9V0hQRHo8HHpruHoUEi653 kKrqfIVy715g794tjRELIUREaEgyQog44fF4SEhIQFRUFKKiovD333/j2bNngsoksrKysLa2xoAB A9CtWzd0794dnTt3Fjw9QQhpeg8ePEBQUBDevHmDsWPHYunSpZSgR8gnKGGIWe3atcOkSZMwefJk xMfHIzw8HLdv38bVq1ehrq6Ofv36wdnZGWZmZq32CWBCiGiYmprC1NQUI0eOBPDx3IafQHTjxg34 +fmhoKBAkERkbW2Nrl27Qk1NjeHICSGEECJKqqqqyM/Pb9UJQ8DHSr/r16+Ho6MjJk6ciIkTJ+LC hQvYu3cvNDU169TWuHHjICUlxWiloYiICPj4+DDSd21lZGQAALS1teu8bXJyMqZPn46bN29CW1sb p06dwuDBg0UdYqtXyeOAx2v8KuxSElRZmVSPrlASImaoqhAhpKWrrKxEdHQ0bt++jTt37uDu3bvI yckRLGez2fDy8oKNjQ1sbGzQpUsXyMjIMBgxIYTv8ePHOHnyJEpKSjB27FjY2toyHRIhzVJLHuZL nLBYLHTo0AEdOnSAt7c3oqOjERERgStXruD06dPQ19eHs7MzXF1dYWBgwHS4hBAxwGKxBBVQ+b// 999/ePLkCR4/foxjx45h8eLF6N69O9TU1GBjYwNbW1vo6+szHDkhhBBCGkJVVRWFhYVMh9FsuLi4 ICYmBrNmzcKff/6JiIgI7N69G15eXnV6aGPMmDFo06aNoKp1U/rw4QOKioqgo6PTpP3W1dOnTwEA lpaWtd6Gw+Fg9+7dWLVqFT58+IDRo0cjICCgzkldpPYqeZxGrTQkSZWFyBdQwhAhYoaGJCOEtDQc DgfR0dEIDw9HeHg4IiMjUVxcDOBjqVQbGxvY2dnBxsYGffr0gZaWltD2VLWEEOZVVFRg06ZNyM7O xrJly2BkZMR0SIQ0a5Qw1PxISkqiR48e6N27N8rKynD//n2Eh4fj5MmTOHr0KMzNzeHi4gInJydo aGgwHS4hRIwoKyvD0dERjo6Ognlv377F3bt3cffuXfj6+kJSUlJwTmRraws9PT0GIyaEEEJIXfGH JCP/T11dHcHBwRg5ciTmzJmDcePG4ejRowgICICJiUmt2/Hw8ICSkhK+/fZbhISENGLEwhISEmBm ZtZk/dVXWFgYAKBv3761Wv/ff//F999/j4cPH0JbWxtHjhwRVMskjYvL4zZK0hAlC5GvoYQhQsQQ DUlGCGnuXr9+jdDQUFy7dg03btwQnDDLy8vDzs4OTk5O6Nu3L3r37k1DixHSzP3555/w9/fHihUr 4O7uDoAS+Ujz09ySczgcDmRkZJpdXLUl7kOqycrKCm7eFxcXIyoqCjdu3MC+ffuwb98+dOnSBa6u rujbty/atGnDdLiEEDGkr6+PMWPGYMyYMQCAN2/e4N69e7h79y527NhBCUSEEEJIC0MJQ9VjsVjw 9PSEi4sLFi9ejCNHjsDS0hKrVq3C4sWLa31d2MHBAUpKSpg5cyY2bNjQJFV/cnJyYGFh0ej9NERu bi5CQkLQpk0bDBgw4Ivr5uXlYdWqVdi/fz94PB5mzpyJbdu2tfph9JoaC9VX2GKBhfqMmM6la7Sk FsT3Ch8hrRRVFSKENEeVlZWIiorCpUuXcOnSJcTFxQEApKSkYG9vj/79+8PJyQk9e/ak4cUIaSHi 4uKwefNmWFtb4/bt20yHQ0iLQhWGWg4lJSW4u7vD3d0deXl5uHXrFsLDw7Fz507s2rULvXv3hrOz M7755hsoKioyHS4hREwZGhrC0NBQkECUlpZWbQKRra0tJRARQgghzRAlDH2ZhoYGDh8+jMmTJ2P2 7NlYuXIljhw5An9/f/Tv379WbXTr1g3Lli3D4MGDsXDhQowfP76Rowby8/MbvY+G2LlzJ0pLSzF7 9uwaz1fLy8uxd+9e/PTTTygoKIC1tTX27t0LOzu7Jo6WSLJEf51Ish5JRqT1oYQhQsQMDUlGCGku SktLERYWhrNnz+LixYuCEygDAwPMnDkTHh4ecHFxQdu2bRmOlBBSV1u3bkV8fDzWrFnTIsovE9Lc cDgcSEhQSeiWRl1dHSNGjMCIESOQmZmJ8PBwXL9+HRs3boSsrCwcHBzg4uKC3r17Q1pamulwCSFi rKYEosjISOzevRuSkpLo378/XF1d0atXL4ajJYQQQgglDNWOs7Mznjx5Al9fX2zatAlubm4YOXIk /Pz8YGRk9NXtzczM8O+//2LZsmW4fv06fv/990aLVUpKCpWVlY3WfkPFxcXBz88PysrK+PHHH6ss 53K5CAoKwurVq5GUlAR1dXUEBATA29ubHnBigLQEXUMgzKGEIULEEA1JRghhSmVlJW7cuIETJ07g 3LlzePfuHQCgd+/eGDlyJAYOHAhLS0uw6lM/kxDCuJCQEGzevBnLli0TXGyg4ccIqTsul0sX4Fo4 PT09TJgwAePHj0dycjKuX78uSCBq06YNnJyc4Orqim7dulFyGCGk0fETiDw9PQEACQkJCAsLw+bN m5GYmIj+/fvDzc0Nrq6u9PeHEEIIYYCKigoSExOZDqNFkJWVxcqVKzF+/HgsWrQIZ86cwZUrV7Bi xQr4+PhATk7uq21s27YN165dg5GREY4cOQInJyeRxykhIQEOhyPydkWhpKQE48ePR3l5Ofz9/aGp qSlYxuFwcPr0aWzYsAGxsbGQk5PD0qVLsXz5cqioqDAYdeslzaJ0DcIs+gQSImaoqhAhhAkvXrzA oUOHcOTIEWRlZQH4mCQ0evRojBo1CsbGxswGSAhpsLVr10JSUhJRUVGU9EdIA9GQZOKDxWKBzWbj u+++g7e3N2JjY3H9+nXcvHkTISEh0NDQgKurK1xdXWFhYUH/fxJCmoSZmRnMzMwwa9YsFBYWIiws DKdPn8b3338PBwcHuLm5oX///tDW1mY6VEIIIaRVUFVVpQpDdWRsbIyzZ8/i2rVrmDdvHlavXo1D hw7Bz88PQ4cO/eq5lZubG1JSUjBp0iT8/fff1VbZaQhJSUlwuVyRtikKXC4XM2bMwOPHjzF8+HDM nDkTAFBcXIyjR4/Cz88PCQkJkJaWhre3N1atWgUDAwOGo2696BoBaQ4oYYgQMUNDkhFCmgqHw0FI SAh27dqFiIgIAICpqSkWLlwIT09PShIiREyUlJRgzJgxWLt2Lbp37850OIR8lZRU8z/N5XK5kJKS ahGx1hYlQX18wtTKygpWVlaYN28eHj58iOvXr+PixYsICgqCgYEBXF1d4ebmRsdJhJAmo6KigtGj R2P06NEAgIiICFy7dg27du2CpqYm+vfvj/79+8PKyorhSAkhhBDxRUOS1Z+bmxuePn2K3bt3Y/36 9Rg+fDjs7e2xefNmODg4fHFbCQkJHDt2DMePHwebzca6deswadIkkcTVHIckKywsxMyZM3H69GlY WVnh8OHDiImJwYEDB3DkyBEUFRVBTk4Oc+bMwZIlS2o1zBtpPKf6HGU6BEIA1CNhaPbsLy8PDFwO Hm9LfeMhhIgADUlGCGlMZWVlOHLkCLZu3YqkpCRISkpi5MiR8Pb2houLCw27QYgYiY2NxezZs3Hq 1Cloa2s3yyenCGmJuFwu/b0Uc5KSkujduzdsbGxQVlaGe/fuISwsDMePH8cff/yB9u3bC27SU4UP QkhTcnJygpOTEzZv3oyYmBiEhYXBx8cHWlpasLa2hqenJwwNDZkOkxBCCBErqqqqKCgoYDqMFktG RgY+Pj4YN24cVq1ahcOHD8PR0RFOTk748ccf4ebm9sVKLePHj8fo0aOxbt06ODg4YN26dXBxcWlQ TA8ePEBycjLevn0LfX39BrXVUGVlZTh06BDWr1+PrKwsWFlZYfTo0XBycsKjR48AfBzCdtmyZZg5 c6bQEGWEGTwer87b5Ofnw8nJCU+fPm2EiEhrVq/HGQMD/xN1HIQQEaGqQoSQxsLlcnH8+HGsXLkS aWlpaNu2LdasWQNvb2/o6ekxHR4hRMTy8/Oxdu1a3Lp1i+lQCBE7PB6PEoZaEVlZWcEN+uLiYkRG RiIsLAz79u3D3r170aVLF7i5ucHFxQWqqqpMh0sIaUX4VdEWLVqEnJwcnDhxAp6enjAwMICnpydG jhzJdIiEEEKIWKAKQ6Khp6eHQ4cOYenSpdi0aRNOnjyJiIgIdOzYEbNnz8b48eNrPKeSkZHB5s2b kZycjHXr1uHAgQNYsWIFlJSUYGBgABkZmTrFsmzZMpSVlWHRokUIDg4Wxe7VWXJyMg4dOoQDBw4g KysLUlJSMDY2RmxsLGJiYiAtLY0RI0Zg2rRpcHd3b/VVgVu6pKQksNlspsMgYoiuUBIiZvhDkQEQ /CSEkIaKjo5Gnz59MGnSJOTn52PFihVITk7G+vXrKVmIEDEUExODJUuW4PTp00yHQohY4vF4NE59 K6WkpISBAwfi559/RkhICHx8fMBiseDr64tBgwZh/vz5uHz5MoqLi5kOlRDSymhpaWHBggWIiorC woULcefOHRgbG+PHH38UPJlOCCGEkPqhhCHR6tChA44ePYqEhAQsXLgQ6enpmDt3LvT09DBu3Dhc uXIFFRUV1W5rYmKCw4cPY86cOZgxYwY6deqEiRMn1jmG3bt3Q1paGgsWLGjo7tRJUlISfv75Z9ja 2oLNZmPjxo3IyckBAFRWVuL169dwcHBAYGAgMjIycObMGQwaNIiShcRAcnIyTExMmA6DiKF6VRgi hDRvNCQZIURUuFwutmzZgrVr14LD4WD27NlYu3YttLS0mA6NENJI3r59i9WrV+PcuXNMh0KI2KKE IQJ8HJZgxIgRGDFiBLKzs3H9+nVcu3YNGzZswNatW2FnZ4cBAwbA3t4ecnJyTIdLCGlFbG1tYWtr i507dyIoKAjr169HUVERPD094eXlBRUVFaZDJIQQQloUZWVlShhqBMbGxvDz88OGDRtw6tQp/Pbb bzh58iROnjwJNTU1DBs2DCNGjICLi0uVcyp7e3v0798fDx48wNmzZxEZGQkHB4c6x2BnZ9egffja 0FQFBQW4ffs2rl+/jkuXLiElJaXKOlJSUnBxccGwYcMwdOhQGvZaTKWkpMDY2JjpMIgYooQhQsQM DUlGCBGVsrIyjB07FufOnYOuri7++OMPuLm5MR0WIaQRlZaWwsvLC3fu3KnXWNqENLWW/ISclJRU i46/Njgcjtjvo6jo6OhgwoQJmDBhAl6/fo2wsDCEhYVhxYoVkJeXh6OjIwYMGAAbGxtIS0szHS4h pJWQlJTE+PHjMX78eCQkJCAoKAgODg7o3bs3vL290bt3b6ZDJIQQQloMVVVVFBYWUuJtI1BUVMTU qVMxdepUJCQk4OTJk/jzzz9x6NAhHDp0CAoKCnBxcYGHhwfc3NzAZrPBYrGwadMmbNq0Sagt7T+a bnixrCmeQr9zuVwkJCTgn3/+QUREBG7evInk5ORqr9EZGxvDw8MDHh4ecHZ2hqKiYlOFTRiSnJwM d3d3psMgYogShggRM/whyT79SQghdcXhcDB+/HicO3cOrq6uCAoKgrq6OtNhEUIa2fjx43Hs2DGm wyCEkFatXbt2mDFjBmbOnIlXr17h2rVrCAsLQ2hoKNq2bQtnZ2e4ubmhR48ekJCgkeYJIU3DzMwM q1atwqpVq3Dt2jVs27YNcnJyWLZsGaytrZkOjxBCCGn2+MOSUcJQ4zIzM8Pq1auxevVqvHz5Ehcu XEBISAiuXLmCkJAQAB+TbZydnWFvb48LFy7g/Pnz/98Ah9M0gf6v6vD06dPBYrHw4MEDxMfHo6ys rNrV9fX14erqChcXFzg5OcHQ0LBp4iTNRlJSEthsNtNhEDFECUOEiCEakowQ0hA8Hg9z587FmTNn MGTIEJw+fZqeZCekFfD398fQoUPRrl07pkMhhBACgMViwdzcHObm5vjhhx8QExMjqDx0/vx5qKur w9XVFe7u7rCysqJh7gghTcbNzQ1ubm64ffs2li9fDh0dHSxbtgwWFhZMh0YIIYQ0W/yEIdJ0zM3N sWTJEixZsgSFhYW4fv06wsLCcOPGDUH1IQCQlpZGUlLS/2/Y2A9mcLnA/6oG8WP4lKKiIjp16oR+ /frB3t4etra20NDQaNyYSLOXnJwMExMTpsMgYogShggRM1RViBDSULt27UJgYCDs7e0RFBREyUJ1 ICXV+IdW5eXljd4HaX1iYmLw+PHjai9SiLMuXbo0eh///PNPo/dBWiYa9o/UBYvFQpcuXWBtbY1F ixbh4cOHuHbtGv766y8EBwdDV1cXAwYMgJubG8zNzZkOl4hQU9wYoBtXpL4cHR3h6OiIsLAwzJ49 GxYWFli2bBkloItAUySB0rEIIYQ0LUoYYpaKigpGjRqFUaNGAQBSU1OxY8cOBAQEoFOnTkhPTxda nyUl3SiJQ7yK/13b5XI/9sNiQVdXF5MmTYK9vT2sra2hr69PD4QQIbm5uZCXl6eh50ijoNrVhIgZ /lBkAAQ/CSGktsLDw7F48WKw2WycO3cO8vLyTIfUAq0Fj8drlOlz8+fPh4yMDGRlZaGgoFBluZaW FmRlZQWTnJwc5OTk8PbtWwDAnDlzBPP4k7+//xf3LjIyEi4uLlBXV0evXr0QEREhWJaYmIipU6fC yMgIRkZGmDRpktDJNofDwYoVK2BkZAQtLS2MHTsW2dnZ9XyfiSgtXrwYO3fuZDoMBqzF2rWN832t 7jvr6+sLGxsb2NjYwM7OrtZR8iu/OTo64tWrV4L5XC4X+/btw7Bhw+Du7o7Vq1ejoKBAsPzt27fY tGmT4ILYxo0bkZubW2M/hYWF2L59O7y8vDBy5EgsXbpUqD8iWnSTjtSXhIQEevXqhZUrV+Lq1av4 5Zdf0LVrVwQHB2PcuHEYOXIk9u3bh5SUFKZDJSLTdMeXS5YsgYqKCpSVlaGmplZlOYfDwerVq8Fm s6Gjo4Nx48YJHc9FRkZi+PDh0NPTg7m5ORYuXIh3797VuGc5OTmYOnUq2rVrBx0dHQwYMACPHj0S LNfV1YWiomKViX88e+fOHQwZMgQ6OjowNTXF/PnzUVRU1JA3m9SDm5sbbty4gQEDBmDcuHFYvHgx srKymA6rhWva41Q+Ho+Hvn37gsViITo6usb1MjIyMHbsWGhqakJZWRmTJk0S+u7dunUL7u7uUFZW hr6+PmbPnl3lu3n79m3Y29tDQUEBXbp0QXh4eI39ZWdnY9y4cdDU1ETbtm3Rt29f/Pvvv3V4Pwkh hHmUMNS8GBkZYffu3SgpKcGTJ0/Qp0+fqitJSACSkqKbPk0CkpQEADx58gRPnz7Fli1bMGjQIBgY GFCyEKmCqguRxlTPhKGtX5gIIUyjIckIIfWRmZmJsWPHQk5ODhcuXKAypy3Arl27UF5ejnPnzlW7 PDs7G2VlZYLJ29sb9vb20NfXF6zz/fffo7S0VDDNnTu3xv7+/vtvDB8+HOPGjUNiYiKCg4Nx4cIF wfIDBw5g+PDhiImJwd27d1FcXIzJkycLlvv6+uLMmTO4fPkynj59irKyMqHlhBmbN2/GrFmzoKqq ynQoYs/Hxwd///03fH1967TdqVOnICsrW2X+8ePHcfPmTezcuRPHjx9HRUUFNmzYIFh+8eJF9O3b F3/88Qf27t2LkpISbNq0qcZ+AgMDkZ2dDX9/fxw9ehRsNhvr168H939PvTFNUlJSbCYJCQlISEgw HkdTTJ/jcDgMfHrEl7S0NBwcHLBx40Zcv34d27ZtA5vNxu+//47hw4fD09MTv//+uyC5gpCv2bFj BwoLCxEcHFztcj8/P5w5cwYXL15EdHQ0ysrKMHXqVKHt586di/j4eFy4cAF3796Fj49Pjf0tWrQI aWlpiIyMxKtXr2BlZYURI0YI/q/IyMjA+/fvBdN3330ndDy7bds2zJ8/Hy9fvsSlS5cQGRmJxYsX i/AdIXUxdOhQ3L17F71798bAgQOxYsUK/Pfff0yHRergl19+qdWDQ6NGjUJRURFiYmLw/PlzvH37 Vuj/go0bN2Lx4sVIS0vDtWvXcPv2baFzzaioKAwcOBATJ07E27dvce7cOZw9e7bG/ubMmYPU1FQ8 fPgQb968gbW1NQYNGkTHFYSQFkVVVVXoIR/CPBaLVe31ls/XYUlINHyqIQnIysoK6urqjbF7pJGw WCz06NGjSftMSkoCm81u0j5J61HncTP27gX27t3SGLEQQkSAhiQjhNQHl8vFlClTkJ2djaNHj6Jz 585Mh0RE7P379zh58iR2795d7zbWrVuHSZMmYfr06QA+Phn1888/C5Zv3bpV8LSqsrIypkyZInTR +ODBg1i0aBGsrKzA4/GwZcsW9OjRA69evUL79u3rHRepv6ioKGRmZmL58uVMh0JqkJqaitOnT2P7 9u2YOHGi0LKLFy9i7NixMDU1BQDMmjULU6ZMQVpaGgwNDTFr1iwAH/+PV1JSwsCBA7F58+Ya+0pO TsaQIUOgqakJABg0aBAuXryI/Px8SiJtBFRhiIianJwcXF1d4erqipKSEkRERODq1asICAjA7t27 YWVlBXd3d7i5uUFLS4vpcEkLdejQISxYsEBwvrB582b06tVLcDx34cIFwc2Qjh07YsqUKdi7d2+N 7T179gyzZs2CoaEhAOC7775DYGAgMjMzhZLcgeqPZy9duiR43bZtW0ybNg0BAQEi219SP56envD0 9MSRI0dgZ2eHqVOnfjFxjDQP8fHx8Pf3x+XLl9GpU6ca10tPT0dUVBQePXoEHZ2P1c03btyIb775 Bunp6dDT00NYWJhgfUtLS8ycORO7du0SzFu5ciWmTZsGb29vAB9vou/Zs6fGPp8+fYq5c+fCyMgI ADB79mz4+/sjIyMDBgYGDdpvQghpKioqKpQw1IzweDxkZmYiNjYWz58/rzIk2WcrN11gpNnLyspC Wlpak/ZJFYZIY6IhyQgRMzQkGSGkPvbv34/Q0FBMnDgREyZMYDoc0giCgoIgLS2N4cOHC80/fvw4 lJWVYWZmhgULFtT4BHBFRQWioqKgrq6OHj16QENDAw4ODrhz506162dkZODYsWMYPHgwACA/Px/p 6elCT19YWFhAQUEBMTExItpLUleHDh3Ctm3bmA6D1IDL5WLjxo2YN28e2rRpI7SsqKgIubm56NCh g2Beu3btICsri8TExCpt5eXlITQ09ItDoX3zzTe4ffs2cnNz8eHDB1y5cgUdO3akJ90agYSEBCUM kUalqKiIQYMGwd/fHzdu3MDq1ashLy+PnTt3ws3NDdOmTcOpU6eQn5/PdKikBeEfz3Xv3l0wz8LC AvLy8jUez0VGRqJLly41tjls2DCcPn0ab9++xbt373Dw4EHY2NhAT0+vyrqnTp2CjIwMhg4dWmN7 d+7c+WJ/pGlNmjQJsbGx0NHRgaWlZY3nDoR5HA4HkydPhp+f31crj/KPYT6vlMDj8WocxuzWrVvo 2rUrgI/nlpGRkdDQ0EDnzp2hqKiI3r1749atWzX2OXLkSAQHB+PNmzcoKirCvn37YGdnVyWxkBBC mjNVVVUakowhXC4Xr169wokTJ+Dj4wMXFxdoaWlBT08Pw4YNw9GjR6tPGOLxwONwRDZVZ86cOTh/ /jx9NlqQ3NzcJn+wjhKGSGOihCFCxBANSUYIqYvU1FQsXboUBgYG8Pf3Zzoc0kgOHjyIyZMnC5XZ 3bNnD3JycpCXl4dTp07h3r17gupBnysqKkJlZSV+//13HDx4EMnJyRg8eDBGjhwpNMzJsWPHoKio CDMzM7x+/RpbtmwRbA98rDz0KWVlZcEy0rTCwsKgqalZqyEHCDOOHj0KXV1dODg4VFn2/v17AB+T Aj6lpKSEDx8+CH4PDQ1F//794eXlhaysLMFT3NUZM2YMpKSkMGnSJIwaNQr37t3D3LlzayybTepP QkKi2Qz1RsSfsrIyRowYgQMHDiAsLAzLli0Dh8PBpk2b4OzsDG9vb5w9e5aGDSJf9e7dOwAfK/l8 SkVFRbDsU/v27UNkZOQXh8P08fGBjIwMLCwsoKuri5CQEAQEBFT7t+e3337DxIkTaxw2IjAwEHfu 3PliNT3CjAkTJiAqKgp79+6lSkPN1NatW2FsbIxhw4Z9dV19fX306NEDq1evRmZmJtLT07FmzRqw WKxqz+38/f1x69Yt7NixAwDw33//obKyEgcOHMDhw4eRmZmJoUOHYvDgwXjz5k21fS5fvhwyMjIw NDSEsrIyzp8/jwMHDtBxKiGkRVFRUaGkkCZSWlqKW7duYcOGDXB3d4e6ujrMzc2xYsUKJCUlwcnJ Cb/99huSkpJQVFSEBw8e4MiRI8KNcDlARbnop88EBARg+PDhUFdXh42NDVavXo1bt26hvLzquqR5 yMvLg7a2dpP2SQlDpDFRwhAhYoaqChFC6mr+/PkoLi7G/v37qyRzEPHw8OFDPH78uMZkICkpKXTv 3h2+vr64fPlytTd8FBQUwGKxMGXKFHTr1g1t2rTBsmXLICsri4gn/SEjAAAgAElEQVSICMF6EyZM QHFxMRITE2FnZwcXFxd8+PBBcGPp85uR//33X5WbTqRpnDlzBiNHjmQ6DFKDlJQUnD9/HgsXLqx2 OT9RiJ84xFdcXAwFBQXB7wMGDMC1a9cQHByMzp07Y8GCBSgrK6u2zRUrVkBFRQXHjh3DmTNnMHTo UCxZsoQqkDQCShgiTNHQ0MDYsWNx+PBhXL16FQsXLsS7d++wbt069OvXDz/88ANCQkJQXFzMdKik GeJXu/s8IaCwsLBKJbx9+/Zh27ZtCAkJ+eKF7cGDB0NTUxMJCQnIysrC7Nmz4ezsjIyMDKH1Hj16 hOjoaEybNq3adgIDA7FlyxZcuXIFbDa7PrtHGpmysjJOnjyJnj17wtzcHOHh4UyHRP7n+fPnCAwM rNMDRKdPnwaLxUKHDh3QrVs3DB48GCwWq8rT9v7+/tiwYQOuX78uGEZXUVERLBYL06dPR48ePdCm TRusXLkScnJyNX4uXF1doaWlhfT0dLx79w7z588XDIFGCCEtBSUMNa6XL1/Cz88Pbm5uUFVVhYeH B27evIlevXrh+PHjyM7ORkpKCs6ePYvVq1djyJAhMDExgYRENbfKRVxZSKjKUA3XArhcLu7fv4+N GzfCyckJampqGDx4MH755RfExcVRleJm5Pnz5zA3N2/SPpOSkug8hzQaShgiRMzQkGSEkLoIDQ3F +fPnMWrUKAwcOJDpcEgj+fXXX9GvXz/BBdr6kJeXr3IixOPxwOPxqpxYs1gs6OjoYMmSJUhNTUVS UhLU1NSgp6eHhw8fCtaLj4/Hhw8fYGVlVe+4SP2kpqYiJycHPXv2ZDoUUoP4+Hjk5ORg8ODBsLe3 FzztPX36dAQEBKBt27bQ0NDAixcvBNu8fv0aZWVlVb7rLBYLampqGDt2LLKysoSqgvEVFRUhPj4e 3377LdTU1CAvL4/hw4ejsrIScXFxjbuz1ZCUlBTriT8kGdNxMDV9jlNDaXbSuHR1dTF58mScOHEC ly9fxuzZs5GdnY3ly5fD0dER8+fPx19//SVUtYy0bvzjuUePHgnmxcfHo6SkROh4bufOnfD19cWV K1dgbW1dY3t5eXl48OABvv/+e+jo6EBRURFz585FRUUF7t+/L7TugQMH4OTkVO3x7I4dO7B9+3aE hoZ+sT/SPHh5eSE6Ohp//PEHFixYwHQ4BB8T8t6+fQstLS2wWCzo6uoCALp161ZjRShjY2NcvHgR hYWFyMrKApvNhpycHHr37i1YZ8uWLdi8eTNu3ryJbt26CebLy8vDwsJCqL2azi2Bj8N+3L9/H3Pn zoWuri6UlJSwcOFClJeX4969e6J4CwghpElQwpDoJSQkYP369ejUqRM6dOiAoKAg2Nra4tq1aygs LER4eDg2bNiAgQMHQlNTs/YN83gNnngV5TUvr4X379/j8uXLWLhwITp16gQjIyNMnz4df/75Jz3Y xbCoqCjY2dk1WX9ZWVlQVlaGnJxck/VJWhcppgMghIgeDUlGCKmNyspKLFq0CPLy8vDz82M6HLHC Yq0Dj7eO6TAAfKzgc+rUKRw6dKjKsjFjxmD58uWwsLDAy5cvsXTpUri7u1d5Qpzvu+++g6+vLwYO HIj27dsjICAAHA4H/fr1A4fDweTJk7FkyRKYm5sjOzsbW7duhba2Ntq3bw8AmDFjBn755RfY29tD U1MTy5cvh729vWD55s2bcfr0acFNqOfPn6NPnz64f/8+OnXqBADo3r07Ro0aheXLlzfG29VqnD59 mqoL/c/69euwfj2azXeWb8CAARgwYIDg99zcXAwbNgy//fab4DszZMgQBAcHw9raGqqqqggMDIS1 tTUMDQ3B5XKxceNGjBs3DgYGBigoKMDx48ehpqYGQ0PDKv21bdsW2trauHTpEnR1dSEnJ4fQ0FBw OBzBE0wnTpzA7du3ERAQAOBjgtK8efOwe/duGBgYAADmzp0Le3t7eHp6NvZb1KJJSUlRkgxpVgwN DTFjxgzMmDEDr1+/xl9//YWrV69iyZIlkJWVhZOTEzw8PODo6EgXKZvcWgDN5/hy2rRp2LVrF775 5htoampixYoVQsdzP/30E4KDgxEaGvrVZHV1dXW0a9cOv/76K0xMTKCoqIgjR46goqJCKAGpqKgI p0+fxoEDB6q0sW7dOpw8eRJhYWEwMzOrsnzjxo34888/8eTJEwBAbGwsevbsiYcPH8LS0hIA0KVL F4wZMwarVq2q9/tC6kZBQQFHjhzB6dOnwWazsW/fPri5uTEdVrPTVMepEyZMwIQJEwS/Z2ZmQldX F48fP8b/sXfn8THc/wPHX7ObO5FLIlEhqCpBWnFXqfsWVE+K0uOrKK1SX/WltF9XW9WDOH6pHlSV 1hn3fd+3Kr5KKXXnIIdkszu/P9IsIXd2dzab97OPaezuzOfzntlrZvY978+TTz6Z7TKff/45Tz75 JPXr12ffvn28/fbbfPDBB+bqsaNGjWLevHls27bN/PlwvwEDBjBp0iQ6d+7M448/zpdffonRaKRl y5YPzRsQEEDFihWZPn06lStXxsvLi2+++QaDwWBOEhw7diwLFiwwJ9OfOHGCWrVqcfz4cWrWrAlA tWrVeOmllxg7dmyRtpcQQhSWJAxZhslkIiYmhi+++IItW7bQtGlTBg8eTNeuXQkOLvpF9Nde62GB KPNv2LBhbNiwgSNHjuQ636VLl5gzZw5z5sxBp9NRv3592rVrR/v27albt272lZKEVezatYvo6Gib 9SfDkQlrk4QhIRxMUFCwJAoJIfJl3rx5nDx5klGjRmX747EorHEAKMo4q/c0Z84c+vfvb77t6uoK wOXLl82l4OfPn0+pUqXo3LnzQ8v37duXIUOGcOLECQICAujcuXOuP5S89dZbJCQk0L17d27fvk14 eDhLly41H4z36NGDIUOGcPz4cXx8fHjqqadYs2aNOa5hw4YRHx9Phw4dSElJoWXLlsycOdNi20Pk 3y+//MLmzZu1DsMO3Huf2uI9u3z5ciZMmGC+3bBhQwBWrVqFr69vgdvr2bMniYmJDB06lNTUVOrW rcvo0aOBjCGvWrduzZdffskff/yBp6cnNWvW5LPPPsPZ2TnbZJWxY8cSHR3Nm2++SXp6OiEhIfz7 3/82X2UuLEev10vCkLBblSpVYsCAAbz11lucPXvWnDy0du1a3N3dadGiBe3bt+fpp582f8cLa7Lt d9UPP/zA4MGDzbczhyw+d+4cpUuXZujQoSQkJNC5c2dSUlJo0aIFM2bMADKugv7ss88AsiQZuLq6 cvPmzWz7W7RoEaNGjSIiIgKDwUDVqlWZN29elmSjzP3ZTp06ZVk2MTGRTz75BMhI+rm/v7i4uKJs BmEjzz33HJGRkfTv359ly5aZk5IF2Pq9X1Ddu3fnrbfeYsuWLYSEhPDee+/x9ttvAxnvzcx93vur 1Lq6unL37l0gI8k887MkISGBJ598klWrVuW437lixQqGDx9O9erVSUtLo1q1aixatCjbREEhhLBX Bw8e5PTp0xw8eJA6depoHU6xtHHjRt577z3Onz9P//79+eabbyyaSFHQYb+8vb1JS0tj69atNGjQ wHz/+PHjs5xj9fPzY9u2beYk1uzcuHGDDRs2sH79etavX8+lS5dynNdkMrFnzx727NnD2LFjCQgI oF27dnTo0IF27drh5+dXoPUQ+XfkyBE6duxo02PhqKgorly5wp07d3K80FeIolDKRbRXB3zyK6/V TMh2hg0b1tGzZ28bhyVEybN6dQylvAv2Jf5048bZJgdlJg3llTx06NAB2rfvxI8//iDvcyFKmLS0 NB5//HESEhI4f/68+YeA4qgo4zfbYllLz6dVLPbeh6WXtUV7Wt0XExPDvn37GDduXK7zZXefKZtx 1osSS37bK0q/2S1blH61ai+7+7JLONFq2fy2l99lHd3QoUN5+eWXqVevntah2I0HhyrLbuiy7K6Y zG6+/C6b3/ZssWx+71MURZP2FEXh1KlTrF69mtWrV3P58mW8vLxo0aIFHTp04KmnnsLZ2blA7RV2 vvzeZ+n2iuN92dGqPVssa0995FdxjMXSy2ZatmwZgwYNYubMmXTs2LHI7QkhhCOT8/nFU4UKFfjr r78IDw83Vz8U+ZOWlsa7775LdHQ0Q4cOZcSIEYW68MqSjh49Sr169UhPT2fZsmVZLtb8/fffefrp p7MMHfbII4+wc+dOKlasmGfbqqpy+vRp1q9fz7p169i8eTNJSUn5ikuv19OoUSM6d+5Mx44dCQsL s8i+msjQp08fevfunW1VRGs4cuSIORnt22+/pUcP21bAys7hw4cZM2YMK1as0DqUXC1dupRu3box YsQIJk2apHU4BVbYvIHMZSMi6uY5/zcnfIh6vztSn0wIByRDkgkh8jJv3jz+/PNPhg0bVqyThYQQ Bbdz507atWundRhClGhOTk6kp6drHYYQ+aYoCtWrV2fo0KGsW7eOn3/+meeff559+/bRv39/Gjdu zKhRo9i+fbu8toUQhdKlSxcuXrzI8uXLGTZsmNbhCCGEEBa3atUqXF1d+fDDD7UOpVgxmUz06NGD VatWsW/fPiZOnKh5shDAE088QcWKFXnssccequxevXp11q9fbx6qE+Dvv/+mbdu2OVbevJ+iKFSr Vo23336bFStWEBsby5YtWxg5ciS1a9fOdVmj0ciOHTsYMWIENWvWpFKlSgwaNIjVq1ebK/2Jwjl1 6hSXL1+2WbIQZFRuDQwMpFq1anaRLCQcU4GHJBswIPfHZ8wYiapOLGw8QogikiHJhBB5MZlMfPLJ J/j4+DBo0CCtwxFC2Nj+/fsZPny41mEIYZZdVRZHlzksXElc9/yS7WO/FEWhVq1ahIeHM2zYMI4e PWoesmzx4sX4+PjQunVr2rdvT4MGDXBxcdE6ZCFEMaEoCrNmzWLBggW0aNGCFStW4OnpqXVYQggh hEUrtHTv3t1ibUHRqpYXB1988QWbN2/m4MGD+arOY0txcXFZhtK9X0REBDExMbRp08acqHPmzBki IyPZuHEj7u7u+e7HxcWFZ555hmeeeYYJEyZw7do11q5dy+rVq1m7dm2uw/FeuHCB6dOnM336dDw8 PGjVqhWdO3emU6dOBAcHF2yFS7ivv/7aPARrQVji8+Py5ctFasfRPydE0RQ4YQhgxozshy8TQmjv /qHIJHlICJGdNWvWcPr0aUaMGJHlKgchhOO7du0aLi4uMpa5EBqTCkPCUeh0OmrXrk3t2rUZMWIE R44cMZ+0/uWXX/D19aVNmza0b9+ehg0bShKYECJfXnrpJSIiIoiIiCA6OpomTZpoHZIQQghBm59r ah3CQ9a9eELrEKzq6tWrjBkzhujoaLtLFlJVlbi4uFzPsTVp0oSff/6Zbt26mYdt3717N6+88gqL Fi3Kdhjl/AgKCqJ379707t0bo9HInj17WLlyJStXruTYsWM5LpecnMzy5ctZvnw5AA0aNCAyMpLI yEhq1KghQ5fl4vLlyxw4cIDp06cXavmfh7awcET59+LnmzTrWxQPMiSZEA5IhiQTQuRm2rRp6PV6 Bg4cqHUoQggb++2336hRo4bWYQhR4jk7O2MwGLQOQwiL0ul01KlTh//85z9s2bKFuXPn0rFjRzZv 3kzfvn156qmnGD16NLt27cJoNGodrhDCzlWtWpXTp08TFRXF1KlTtQ5HCCGEwGRU7W5ydF9//TXV q1fnxRdf1DqUhyQmJmI0GvO8KC8yMpJZs2ZluW/x4sWMHDnSInHo9XoaN27MhAkTOHr0KBcvXmTW rFlERkbi4eGR67J79+5l1KhR1KpViypVqjB06FC2bNkiFzhlo7DVhTIZTSaNJsf/nBBFJwlDQjiY oCApISiEyNmFCxdYs2YNnTp1onz58lqHI4SwsRMnTkjCkBB2wMXFhbS0NK3DEMJq9Ho99erVY/To 0Wzbto158+bRoUMHNm7cyKuvvkqjRo0YPXo0e/fuNV9pK4QQ2fnpp58wmUy88sorWocihBBCoOgU u5kcnaqq/PDDDwwaNMguK99kDgOWnyrer7/+OqNHj85y3yeffMK3335r8bjKly/Pm2++ybJly7h1 6xarV69m4MCBVKhQIdflzp07x9SpU2nevDnBwcG8+uqrLFu2jOTkZIvHWNwkJiayefPmIu+PKijo FNtNCvb3vhH2SRKGhHAwmUORgSQPCSEeNnfuXFRV5fXXX9c6FCGEBqTCkBD2QRKGREmi1+upX78+ H374Idu3b2fu3Lm0a9eOtWvX8sorr9C0aVMmTpzI8ePHUVW5+lEI8bD33nuP119/nbCwMP744w+t wxFCCFHC6ZwV9K46zSadc8lIAjhx4gR///03kZGRWoeSrYIkDAGMGzfuoYSTf/3rX+zcudPisWVy c3OjXbt2TJs2jT///JNjx44xfvx4GjRokGsS1q1bt/j+++/p2rUrAQEBdOvWjR9++IHY2FirxWrP hgwZwkcffWSRtvQ6BVdnvdUnnR0m2Qn75aR1AEIIy5MhyYQQ2VFVlfnz5xMQEEDbtm21DkcIoQFJ GBJa0+v1WodgF1xdXTEYDLI9CshkMqHTyXVPxZler6dBgwY0bNiQMWPGsGvXLmJiYvj555+ZM2cO FStWpFOnTnTu3JkqVapoHa4Qwo40a9aMPXv20LlzZwYOHMgLL7ygdUhCCCFKMEWrQzkV1BJSoHPP nj3UrFkz3wk5thYfHw+Ar69vvuZXFIXo6GjOnz9vThIyGAx0796dAwcOEBISYrVYM/uvVasWtWrV 4oMPPuDq1avExMSwfPly1q9fz927d7NdLiUlhaVLl7J06VL0ej3PPPMM3bp1o1u3bpQrV86qMduD H374gaCgIIv+nqJTsGrVLJMMQyYKSM60CeFgpKqQECInJ06c4Pfff+f555/H2dlZ63CEEDZ248YN ypUrh7u7u9ahCFHiSYUhIcDJyYmmTZvyySefsGfPHqZPn061atWYPXs2bdu2pWPHjkRFRXHx4kWt QxVC2Alvb2+2bt3Knj17GDFihNbhCCGEKOFkGDLrOn36NGFhYVqHkaOCVhiCjIuHFi9enGV4sGvX rvHcc8+Rmppq8RhzExwczOuvv87y5cu5efMmS5YsoW/fvgQEBOS4jNFoZNOmTbz99tuEhITQoEED Jk2axJkzZ2wYue1cuHCBWbNmMWHCBIu3rVOw0jBkQhSchROGJlm2OSFEgcmQZEKInCxZsgSA7t27 axyJEEILSUlJGI1GrcMQQpBRFtzWJwOFsGeZpfKnT5/O/v37+eyzzwgODmbq1Kk0a9aMrl27Eh0d zZUrV7QOVQhhBz7//HPCw8Pp37+/1qEIIYQoyVQNphLk0qVLlC9fXuswcpQ5PJe/v3+BlitTpgzL ly/PckHf3r17effddy0aX0F4enrStWtX5syZw9WrV9m2bRtDhw6lcuXKuS63b98+Ro4cyeOPP07N mjUZM2YMR44ccZihpnv06MH8+fOt0raqZowIYcmpxH1ICIuxeIUhVZ1o6SaFEAUkQ5IJIbKzcuVK vL29adq0qdahCCE0cPv2bUqVKqV1GEIIMq4qzKnctxAlnZeXF926deObb75h3759TJgwAU9PTyZN mkTjxo15/vnn+eGHH7hx44bWoQohNNSzZ0+GDh1K9erVuX37ttbhCCGEKGlMoBpVm08lKR/gzp07 dn0eqzAVhjI98cQTfPvtt1numzFjhtWSUwpCr9fTpEkTpkyZwtmzZzl69Chjx47liSeeyHW53377 jY8//pjatWtTpUoVhg8fzp49ezCZiucYeh988AH/+te/CA0NtXjbqgpGk2rxKd2Y8VeIgipkwtCk HCYhhNakqpAQIjuxsbHs37+fVq1ayXBkQpRQiYmJdn2iRYiSxM3NTRKGhMgHPz8/XnrpJX788Ud2 797N2LFjAfjwww9p2LCh+YrPzKt7hRAlS9WqVdm3bx8NGzbkt99+0zocIYQQJYRqVDGmmTSbVGPJ SAhQVRVFsd8BljIThnx9fQu1/IsvvsjQoUOz3Pfmm29y+vTpIsdmKYqiEB4ezocffsiRI0c4d+4c U6ZMoXHjxrk+N+fOneOzzz6jUaNGVKhQgbfffpstW7YUm8rnW7ZswWAw0Lt3b4u3raqQlm6y+iRE QTgVdIGoKIiKkipCQtirzCHJ7v8rhBBbt25FVVVatmypdShCCI3cuXMHT09PrcMQJYhOZ/GCtg7D 3d2d1NRU2UYWYDQa0ev1WochbCAwMJDevXvTp08frl69ysqVK4mJiWHUqFGMGTOGp556io4dO9K2 bdtCXeUrhCieSpUqxcmTJ2nbti1Dhw6lbdu2WockhBDCkakqavHIeSj23N3dSU5O1jqMHMXHxwOF qzCUadKkSezfv5/t27cDkJSUxAsvvMDevXtxc3OzSJyWVKlSJYYOHcrQoUO5du0ay5cvZ/HixWzc uBGDwZDtMpcvX2batGlMmzaNwMBAunbtyrPPPkuLFi1wcXGx8Rrk7fjx40yePJnVq1dbpX2pACTs kZydFMIByZBkQojZs2dz8OBB8+0dO3YA8Mwzz2gVkhBCY3fu3MHb21vrMIQQZJz4TElJ0ToMIYqt 4OBgXnvtNZYsWcL27dsZMWIECQkJ/Pvf/6ZevXr06dOHn3/+2XwSXwjh+NauXcvChQuJjo7WOhQh hBAOSoGMIcHsZLLf2juWUbp0absehjizymlREoacnZ1ZsGABAQEB5vuOHTvGiBEjihyftQUFBfHG G2+wevVqrl+/zrx583j22Wdxd3fPcZkbN27wf//3f7Rv354yZcrQu3dvli1bZjfnRy5cuED//v2t lCykaPJRIUR+FLjCkBDCvklVISHE3Llzeeedd3BxcSEhIYEqVaqQkJCAm5ubXV+VIYSwrClTpmS5 feTIEVJTU/n888+z3P9g+WMhhPV5eHjId7IQFhISEsKbb77Jm2++ycWLF1m5ciUrV65k+PDhjBw5 kqeffloqDwlRQnzzzTeMHTuWDz/8kHHjxmkdjhBCCAezvocMf2lLISEh5otg7VF8fDx6vZ5SpUoV qZ1HHnmEuXPn0r59e/N9X331FR06dCg2lRN9fX3p2bMnPXv2JCkpiTVr1vDrr78SExPDnTt3sl0m ISGBuXPnMnfuXDw9PenQoQPPPfccHTp0wMvLy8ZrkDHEXMeOHTlx4oRV2u/xxWartCuEJUiFISEc TOZQZID5rxCiZGnTpg2QsdMNcPbsWW7cuIHBYKB169YoisJjjz1Gr169tAxTCGFFu3fvZtq0aUyZ MsU8bdy4kR07dvD555+bp+nTp7N7926twxWixJEKQ0JYR4UKFXjrrbeIiYlh+/btDBs2jJs3bzJ8 +HAiIiLo2bMnP/30k/lqYCGE4xk7diwVKlSgX79+Dz2mKApNmzbVICohhBDFnaqqVpnatWvHsWPH itSGo7p79y47duxg7NixWoeSrbi4OHx9fVGUotd6ateu3UMX9PXr169YHrd4enrSvXt35s+fz40b N4iJiaFv3774+/vnuExSUhKLFi3ixRdfJDAwkMjISObOnWv+fcOaTp8+jclk4oknnrBaslBR3t8m k4mQkJAif9YIkRtJGBLCAcmQZEKUbEFBQZQpU+ah+41GY5YkokWLFnHp0iVbhyeEsIFGjRpRpUqV POd79NFHadSokQ0iEkLcz8PDg6SkJK3DEMKhhYaGMmDAAFatWsX27dsZPnw48fHxvP/++0RERNCj Rw/mzp1r18McCCEK57XXXuOll14yX0wDmH/MO3jwIFeuXNEqNCGEECKLF154gYULF2odhl2aM2cO KSkpVkviKKr4+Hh8fX0t1t6ECRMIDw833/77778ZMmSIxdrXgqurKx07dmTOnDlcvXqV9evX079/ f4KCgnJc5u7du6xYsYLevXtTpkwZLl++bNUY27Vrh5eXF6dOnbJqP4WVnp6Ok5MMGCWsSxKGhHAw UlVICAEQGRmJTpfz17yfnx9z5swhJCTEhlEJIWzpo48+wtvbO8fHvb29ZagGYTF6vV6mAkze3t4Y DAaMRqPmsTjC9CCj0ajBu0DYs9DQUN566y1WrlzJ7t27+eCDD0hMTOSDDz4gIiKC7t2788033/D3 339rHaoQwkLatGnDF198QfXq1bNc+Z+ens60adM0jEwIIYS4RxKGcnbq1Ck8PT3p06eP1qFkKy4u zqJDHru6ujJv3jxcXFzM982bN4/ly5dbrA8tOTs706pVK2bMmMHly5fZtm0bQ4YMoXz58jku4+bm Rrly5awW08qVK7l69Srp6el4eHhYrZ+iMBqNuf7OI4QlyCtMCAcjQ5IJIQA6d+6c4/jJHh4ePPvs s/To0cPGUQkhbKlRo0a5HnSHhIRIdSEhNOLp6QlAcnKyxpEIUfKEhITw5ptvsnz5cvbu3WtOnh07 diz169enU6dOREVF8eeff2obqBCiyMLCwh66WjwtLY3p06drFJEQQgiRlaenJ02bNmX16tVah2J1 iqIUaPLz8yMpKYnIyMgCL5vdZEmqqlo8YQigVq1aD13c99Zbb9lkaC5b0uv1NGnShC+++IILFy6w d+9ehg8fTuXKlbPMd/v2bYs89zlNnTp14u7duxgMBs1eS3kxGo1SYUhYnbzChHBAMiSZEKJ169bZ HkjodDoqVKhAdHS0BlEJIWxt3Lhx9OvXj9u3b2e5X6oLCaGtzIShxMREi5YwF0IUzCOPPEK/fv3o 168fN27cYO3ataxatYrJkyczfvx4qlWrRvv27enQoQNhYWE2PzkshCia3N6zMTExdOrUyYbRCCGE ENl7/vnn+emnn2jfvr3WoVjd+z9N0aTfT15+z6LtJScnk5aWZvGEIYBhw4bx66+/cuDAASBjaLIP PvjAYROeFUWhfv361K9fn8mTJ3P06FFq165NvT0jtQ4tW3ZPDWoAACAASURBVPsbTrRpf4qiUK1a NZv2KUoeqTAkhIORqkJCiEz16tV76D6TycTvv/+uQTRCCC3kVGVIqgsJoS0nJyfc3NxITEzUOhQh xD8CAwN55ZVXmD9/PkePHuXLL7+kQoUKREVF0bp1axo1asRHH33E/v37izTs3Z07dywYtRAiJ7kl CyUkJPDJJ5/YMBohhBAiZ23atGHfvn0OV0UmO6qqajJZWlxcHIBVEoacnJz45ptvslSVmTFjBvv2 7bN4X/ZGURSefPLJLLftadLC5cuXH7oQVAhLK3DC0IABuU+KYp8Zf0KUFDIkmRAi03PPPYerq6v5 tq+vL7t27dIwIiGEFsaNG4e3t7f5tlQXEsI+lCpVShIHhLBTvr6+PPfcc3z77bccP36c2bNnU6dO HX788Ue6dOlC7dq1GTZsGBs3biQ1NTXf7Q4cOJBq1apx+vRpK0YvhABo0qQJHh4euLi4ZPv4wYMH uXLlio2jEkIIIbL3wgsvsHDhQq3DsAlFUdDp9TaZFJ11kjzi4+MB6yQMAYSHh/Pee/eqIqmqysCB AzGZTFbpz54ZVZNdTFg+7yxfLly4QGhoqDadixKjUEOSzZjh+FmuQhRnMiSZEAKgXbt2jB8/ntTU VLy9vRk2bJhUFBGiBMqsMvTbb78BUl1IFJ1er9c6BIfg7e1NUlKSbE8bMZlM6HRSZFkUnKenJx07 dqRTp06kpaWxa9cuVq9ezdq1a5k/fz6enp40b96cdu3a0apVq1yHGTx48CDp6el07NiRmTNn0rp1 axuuiRAly7Zt27hy5QrTpk0zD+Fxf+WG9PR0pk2bxvjx47UKUQghhDB7/vnneeedd3jjjTe0DsUm dDoFnXOhfqLON9VoIt1gnQQba1YYyjRmzBgWLFjAhQsXADhw4ADffvstr732mtX6tFd3jQZN+3fV OYFGo1NfvHiRChUqaNO5KDHkbJkQDkaqCgkhMoWHhwPg7OxM/fr1GTVqlMYRCSG0klllSKoLCWE/ pMKQEMWPi4sLzZo1Y/LkyRw6dIgVK1bQt29fTp48yaBBg6hRowbdu3dn9uzZXLx48aHlz58/D2QM SzZw4ECio6NtvQpClChly5Zl/PjxxMfHM2/evCxVh9LS0syJREIIIYTWwsLCcHV15dSpU1qHYjOK oqDX660y6RTr/vydmTDk7+9vtT48PDz44osvstz3wQcflNjzCOmqUZNJ1aq00D+kwpCwBUkYEsLB yJBkQoj7NWrUCBcXF9avX691KEIIDTVq1IjSpUvj5+cn1YWEsBM+Pj5ZKh0IIYoXnU5H3bp1GTVq FDt37mT79u38+9//JjU1lQ8//JD69evTrFkzJkyYwMGDBzly5EiWIULj4+P55JNPGDNmjIZrIUTJ 0alTJ7Zt28bZs2cZNmwYPj4+pKWlERMTo3VoQgghBAABAQH89ddfWodhW0pG4pClJ2uzRYUhgC5d utCqVSvz7evXr/Ppp59atU97ptr4P3sgFYaELUjCkBAOSIYkE0JkWrNmDYmJiVqHIYSwAzt27GDX rl1ahyGE+IckDAnhWKpUqcKgQYOIiYnh2LFjTJ06ldDQUGbPnk2HDh3o3r07ycnJWZaJj4/nxx9/ pG/fvhpFLUTJc3/VoYULF9KpUyetQxJCCCEAqFevHvv27dM6DNtSQVVVi0/WZquEIUVRmDJlSpYk qClTpnDt2jWr9muvFBv+p9kYZA+QCkPCFiRhSAgHI1WFhBBCCCGEsH/e3t6SMCSEgwoMDOTll1/m +++/59SpU8ybN4/AwEDS09MfmvfOnTts2rSJtm3bahCpECWbJAsJIYSwJ/Xr12f//v1ah2Ezqqpi NBqtMplUk1Vjj4+PB6yfMAQQHh5Onz59zLeTk5OZNGmS1fu1N06K3qaT8z9/FQ0Th5KTk4mPj6dq 1aqaxSBKBietAxBCWFbmkGT3/xUljy3Kbgohire7d+9apV1PT0+rtCuEyJ+NGzdatD2dTq4xsRZf X19u374t21hDJpNJtr+wOjc3N1q3bs3o0aNznCclJYXjx4/zxBNPcPToUSAj6UgIazMajRZvU85H iIKyRSUIIYQoDurWrcvBgwdRVdXhv09NJhVTqkHrMArNVhWGMo0dO5b58+eTlpYGwMyZM3n//fcp W7asTfrXmpveWesQNLF8+XKaN2+udRiiBLBwwlDJy2gUwh7JkGQCQL0crXUIQgg71HfwV3z36zGr 9pGu7rBq+0KIh/XrO5IfvtuudRiiAPz9/c0nGYUQju/8+fO5Pp6ens6VK1coW7YsV65cAUDdVc0W oYkSqO+4M3y31npX3l9Sh1mtbeE4hvRdxK/fXdA6DCGEsCv169dn3759NGjQQOtQrEZVVVQrJC3b UmxsLJBxXG8LoaGhvP7660RFRQEZF4J+9tlnTJkyxSb924qqquYLKDLpFTu6yMfGOc4xMTG8/vrr tu1UlEgWrzCkqhMt3aQQogCkqpC436bNm7UOQQhRQm3ctFLrEIQQwq75+fkRFxdXIq4eFaKkO3r0 KN7e3ty+fTvL/Xq9Hg8PD0wmEwaDgUqVKlGjRo0s82za9YctQxXCYrZs2qt1CEIIIUSx07JlS44f P+6wCUOOcuwbFxeHXq+nVKlSNuvz3//+N//3f/+HwZBRmWnWrFn85z//sVmVI2tJS0tj69atLFu2 jOXLl/PXX3+ZHyvJVQiTk5PZt28f8+bN0zoUUQIUMmFIKgkJYa9kSDLxoOSU4lvaUwhhWR7uti3f mpycZtP+hCipPDxctA5BFIK/vz+pqamkpKTg4eGhdThCCCs6duwYqamp+Pj4kJycjI+PD9WrV6de vXqEh4dTo0YNQkNDc/wBJdk6I8mKEsrDzXZ9pSQX7+oBwnrcPfRahyCEEHbJ19eXI0eOaB2G1Xzy 8ntah2ARcXFx+Pn52TQBqnz58vTq1Ys5c+YAkJSUxOzZsxkxYoTNYrCUxMREVq9ezZIlS1i1ahUJ CQkPzbO/YckuULJixQo6d+6sdRiihChwwlBUFERFlew3qRD2ToYkEw9KM8hJOiFKOhdnbU7IpqWl a9KvECWFi4vFi8YKG/H19QUySplLwpAQjq1Xr16YTCbCwsKoUaMGHh4eBf5xQXaphCVosdtgSLPe 0GeieHJ2saOhRYQQws4EBARw48YNrcOwiqJUi/nuu++YNGkSp06dsmBEhZeZMGRr7733njlhCCAq Kophw4ah19t/Iu7169dZtmwZS5cuZcOGDaSl5X6hqZeXF23atKFbt2688sorVokpPT2dKVOmMGbM mCzxdOjQgdmzZ1OuXDmr9JsfMTEx9OvXT7P+RckiZ5eFcDBSVUjkJN0oJ+lKsvcnbaJzy8doUq+8 1qEUSvztu/xr1GqiJ3aklJdU0igoJ722J2SN6cX/82fk+z/RsXMETzd5XOtQcpRXjGNGLaJ5yzCa t6iR7ePFjaOtT2HonSz73tbp5McbW3J1dcXb25vY2FgqVKigdTjiH0ajsVicbBXFT58+fYrcRnoJ vg7k/dnpdG6ko0kt+a4qLCcNP9qM6Y4xnMSk94/TsnNZ6jUJsEr7t+MNjPrXISZG18GrlGOettc7 OcZQNEIIYS2BgYHcvHlT6zDsTpkyZbh+/brWYZjFxcVpchwfFhZGmzZtWLduHQAXL15k9erVdOrU yeax5Meff/7JkiVLWLJkCTt27MgzaSwkJITIyEgiIyNp1qwZrq6uVo3PycmJESNG0LlzZ1599VX2 798PwKpVq6hZsyZffvklvXr1svlQegkJCaSkpNC8eXOb9itKLsc88hCiBJMhyURuTCbHOEknCkdV 1WL7GsiM25SPdRj9+VZaNKpI80ahtgjN7ul09nFCtri+9jKp2P97KK8YVVRUtfg/F5kcbX0Kyl7e 26JoAgICuHXrltZhCCGKkRL6tQeQ8b1vh+s/+tt0Wjypo3lt+01msofdBlPxv4YA+Od1mMO6fD76 Nxq1CKRR8zKFajuzXdXkONvrfpKbLoQQeQsMDHTYCkNFERwcTFxcHKmpqVZPIsmPuLg4ateurUnf AwYMMCcMAcyZM8duEoZUVeXkyZMsWbKExYsXc/jw4TyXCQ8Pp0uXLnTp0oWIiAibJ+dARiLWrl27 mDx5MuPGjcNgMBAfH0+fPn1YvHgxs2bNIigoyGbxDBs2jNdee81m/QkhCUNCOCAZkkzkpgiVP4ul UVO20LZJZZrWt17Gvy36sARVLb7Pf2bc+VmHj959JssyJZkGx1e5KkrpYXugqqrN1mHMqIW0bhtO k6bVCrRcXjFaah0KG5+lFWR97CVmS9Di5ImwjtKlS8vVo0KIAivmu1SFlpEcrXUUD/vo1YzTq5mx jZqTTtu6OpqG20d2hD3tNhT34wHIPCbNfj3e/Sjsn3kKt56Zy+VnH3fKqN9o0jaI+k2tU+3I0mT/ VQgh8seRhyQriuDgYACuXbumeYXelJQUUlNT8ff316T/jh074u7uTkpKCgBr167VNJHKZDKxf/9+ lixZwq+//srZs2dznV+n09G4cWO6du1K165dqVy5so0izZ2TkxOjRo0yVxvKTHZatmwZO3bsYPr0 6bzwwgtW36fZuXMnt2/fpn379lbtR4j7ScKQEA5GqgqJ/Cn+J+kKRsX662yLPoqqOMSYF0dYB1ux 1xOyxf35s2X8hX2957aMJd9D9vB+LGgM9hBzUdnre1sUhpSbF0IIIYQQQgiRyc3NjTp16pCYmIiX l5fW4diNwMBAAK5fv655wlBsbCwAfn5+mvTv5OREz549iY6OBiA5OZkDBw7QuHFjm8VgMBjYunUr S5cuZenSpVy+fDnX+V1dXWnVqhXdunUjMjLS/Hzao/DwcPbu3cv48eMZP3486enp3Lp1i5deeolf fvmF6dOnU6ZM4apJ5seIESNYs2aN1doXIjuSMCSEg5EhyYSjuZuazsKVv3Pg+BWSU9J5vLI/fZ8L J8Dfg7iEu4z8dAuvdK3B03XLAzD7p8Ncv5XMBwOeYvrcg5z/K56Z8w8zc/5hqoT68dG7TRn56Rae DAvizPlYzv8VzxsvPsmOA39x+OQ1FAUC/Dxo1jCUrq2rmq/GTLmbzqJVv3PwxFWSUgw0rF2OXl1r Mvunw9n2kZuRn24hokYQp8/Hcu5iPH7ebvTpXovwahk7moM+XEv/nhHUrJqx4xwbn8KgseuIntgB D3dnRn66hRqPBfDHxXj+vBRPgJ8H/+pRm9PnbrF6yx+kpKbTqHY5XnvhiSwZ75ev3mHcVzu4cDmB 4EBPXu0eTtVK/nlu58yYH9xmjSLK5biOn87ek+v2zGsbxN++y/8tOMLvf9yitK87rZtUyvdrZszU bTRvFErzhqH56iun59bVRV/g9Rb5ZZ8JDykpafyyaC+HDp4nOSmNBg2r0LNXY1xdnQG4ciWeif9d xrlz1/H186R3n6bUCs/47JnyaQxHDl9AUaB0QCmaNQsjsmtd82t+1MifefLJUM6cucKf52/w2hvN adjosWzjmP71Os6fv8HsmZuYPXMTj1YJYuxHz+XZB8Dly3F8PG4JFy/cJCjYl96vNqFq1bL3ta6Q uf3v3jWwaOEeDh44T0pyKlUfL0ufvs8QEFAq1+2UU3zZrePOHafz3C61Iyryv9NXst2u69YcY/Xq I9y+nULFioH06t2EipXuP6lwb31y2z45xVzYbaCd4p7sJB4UGBjI6dOntQ5DCCEKZGR0OjUqKvzx t8qfV1UCfBT+1UnP6Usqq/eaSElTaRSm47X2evN3/qc/p3P4rIoCBPgoNHtSR9endSjAhkMm1h8w MfnNe6cpr8aqDJuZzhcDnQjwyWjk8g2VcT+kc+GaSrC/wqtt9VQN+We/Jg0WbjFy4LRKcqrK4+UV +rbTm5fNTXwi/N/KdH6/qFLaW6F1HR3frTUy611nSnnAoK/S6d9ZT81KGW3F3lYZ9HU60e854+EG Y75Lp/mTOpo/qePrJUbOX1GZucLIzBVGqpRTzBWIhPY+HHSEnv0rU7WmNwDxsWmMHXSEidF1cPfQ 8+nIE9SI8OX86UQunkvC28+Z7n1CqRbuY27j6uUUvhr3O5cvJBMY7Er3VytSqWrGD7pTx5ykUfNA GjbP2F/Nq73b8QYW/N95/vj9Dr6lXWjSOn8/Pn3/9Vn+Op/E/JnnmD/zHKFVvHj3ozASbxtY/MNF zpxIABSqP+FDt14V8PCS16AQQhQnJ06cwOSIY1MWgbOzM6VLl+batWtah0JcXBygXcIQQLNmzcwJ QwD79u2zesJQcnIy69evZ8mSJSxfvty8HXLi5eVFx44defbZZ2nfvj2lStnrubaHOTs7M3bsWCIj I+nTpw8nTpwA4JdffmHLli1MmzbNKtWGWrVqRXR0tCQLCpuTowUhHJAMSSbyzz5/tL/fjB8PYTCY GD2oCV6eLixee4rP5+xj/HvN8PNxZ1Dvunz+zV4qlffj3MV4Dp+8xsThzdHpdLzdpx5XbyZlO1zY 1r0XeadvfaqE+qHTKTSKCAHAZFK5+PdtvvxuH2VKe9K4Tsb9UfMOkphs4P03G+Hn48aew5c5+b+b ufaRm+37/2JI3/qEBHuzeutZouYdYsbH7e/74f/ej+BZ/2b8e/+xK7zTtz5ly3jx/eJjTIjaxVMR IUwa0YLEpDQ++noHtY5eocGT95JbNuz6k3f7NaBSiC8bdp5n8qzdTP1Pa7y9XHPdzpk7vg9us9wM f7NRrtszr23w1XcH8C7lyhejW5NyN52vv9+fzXbJTdb5cusrp+e2do3gAq+3fZCEgsKaGbWBxMS7 DHu/E35+nuzdc5aTJy9Tu3ZFAHZsP83bQ9pSPqQ0q1cfYWbUeqbN6IeiwHvDM8YKN5lU/rp4k6+/ XEtgGW+ealzV3P7Wrb8z5J32PFolKNfX0sC323DtavxDw2flp49NG04w5N32VKwUyMYNJ/hscgxT pr5CKW/3h/qZNWMDBoORUaO74uXlxtLF+/ni89V8PP75XA94c4ovu3XMTIrKLeactuu1q/HM/3En H4zuSqVKZbhw4Sa7d//vgYShe3LbPjnFXNht4Aj0er3WIQgyyqpv375dng87ZzKZ0OnsY2ghIezF /lMq73TXU7a0wvfrjEyYn85TNXRMesOJxBSVj+amU6uSQoPqGe+d4S9mnII0qXDxmsqXi42U8YPG NXQ8XVPHT5uMnLmkmhOANh4yUauykiXhZ8MhE+8+50SlYIUNh0xMXpDO1AHOeHvAjOVGDOkqo3vp 8XJXWLzdyOe/GBnfzynPIbm+WpyOt6fCFwOcSElT+XqJsdDb5e1ueq7GqXY1JJkomP3bb9J3yGME h7izdfVV5kWd4+MZtc2vo10brtPv3SqEVPJk54brzJp8mv9MfQIv7+xPs+fW3ndfnaWUtzOjvwjn boqJ77/OfQiPTH3ersLNqw8PSfbdl2dxcdUzfGJNVBP8OOMc86LO8eb7VXNpTQghhCgegoKCuH79 utZhcOvWLSBjiHGt1KlTJ8vtzIQWS4uPjycmJoYlS5awZs0akpOTc50/ICCALl260K1bN1q2bImb m5tV4rKViIgIDhw4wMcff8ykSZMwGo3cvHmTl156iYULFzJ9+nTzcHlFcfHiRQYPHkxUVBRVq8p+ m7A9OXIVwsEEBRX9y0kIexEbn8L+Y1d446XaBJb2wN3NiR6RNbh2M4lLV+8AULNqIB2bV2FK9F6+ /eUog3rXxdc77x3RNk0qUbWS/0M/2ut0ChVDfGjbtDKHTlwB4GZcCgdPXKV/jwjKBZfCw92ZFk9V NCeUFEa7Zx7l0Qp+uLroad24MrcTU4m7fTffy7dt+iiVyvvi5upEk3oVSE1Lp1e3Wnh5uBAc6EWN xwI5fykhyzKtnqpEWJUA3N2c6NzyMfx93Dlw7Eq+tnNu2yw32W3PvLbBtZtJnDp3i37PP4G3lytB AZ681LlGvvvMTk595ee5Lcx6i+Ln1s07HDp4njf7t6RcOX88PFxp3qKGOVkIoG27cB59NAgXVyda ta7F7dspxMclZWlHp1MIrRhIm7bhHD70Z5bHWrepxWNVg4v8WsqtjxatalI9rBzu7i506hyBn78n Bw6ce6iN2NhEDuw/x2tvNCcw0Bt3dxde6vEU168lcOlSbKFjy2kdc4s5p+2qd9Lh5KTH3d0FZ2c9 VaoE8XKPp/KMIbe+7metbSBEQdjLCU8hhCiotvV0VCqr4OYCTWrpSE2DXq31eLlDsL9CjYo6zl99 OJFdp0DFYIW29XQcOpPxeGYbGw5mXElvMMLWYyZaPJn1tGWrCB1hoQrurtC5kQ7/UgoHTpuIva2y /7SJNzrqCfTNeLxHSz3X4lQu3cg9mf5anMqpv1T6tdPj7QlBfgovtZAkzpLsmXbBVHjUExdXHY1b lyHxtoHbcWnmx59qVYYqYd64uetp2bksPv4uHDuQ875jTu3dvJbKuVN3eL5fKF7ezgQEudL5pfKF jvvW9VTO/n6H5/qG4uPngm9pF57tE8rJI/HcjjcUul0hhBDCHphMJjw9Pfnf//6ndSjmIcm0TBh6 9NFHs1x4dO7cw+f+Cuuvv/5i+vTptGrVisDAQHr16sXixYtzTBaqUKECQ4YMYevWrVy9epXo6Gg6 duxY7JOFMrm6uvLf//6XvXv3UrNmTfP9ixcvJiwsjO+//x5VLdwFvGvXrmXAgAG88sorfPrpp5Is JDQjFYaEcDAyJJkoDHstonAjNmMndOCHD4/ZejM2mQqPZJQRb9W4IsvWn+Gxin7mYbwe9OA6Bvh5 ZLlvz5HLLFt/hivXE0lNy7ii9PHKpVEUuBmXjE6nEBTgmeu2Ksh29Cnlap7f1SXjRLgh3Ziljcx/ 3/83898+pVzM/3Zx1uHirMfN9d5BgouzDoMha3sPxl8mwJPYhJR8b+cHt1luctueeW2DuIQUXF30 +JRyNc8bHOj50DbIjQL57Otuns9tQdZbS4U8LtGcvWzbmzfvZLwWgnxyjMnHx/3e68g1YzfaYEhH UWDvnrOsWHaIK1fiSU3NOCFf9fGyWdoKCChV4PW9f/789BEU5J31fV7Gm9jYxIc+R27euA3A4IHf PdTnzZt3qFAhfyc9HvpsfWAd8xNzTts1KNiHgYPbsODHXdy5k0L50ADatQunQui9q6jv/0zIT1/3 x2ypbWBtxfW9LfKnTJkyJCYmkpSUhKenp9bhCCGKMVvvUvl43uvTxQlcnMHN+d7jLk5gSL83z57f TSzbZeLKLZV/vqZ5PEQxP966jo4PvkmnTxs9R/4woddBnaq6LOsV5KdkuV3GN2N4sBsJGfcO/Cr9 oThvJqhUKJPz1om7A67OGeuTKfif0SUerG2ac/3X7OugarGbWxx3G7So6pjZ5/1/M/9dysfZ/G+X f46x0w2q+b6AINcsMQeUcSUh1nDvPiXrOuXUXkJcGi6uOkr5uJjnDQx2eyie/K5LfGwaOr1C6TL3 fpwLLOtmfszHzyXb5a2hsD+aCSGEEDmZP38+hw4d4vjx43Tu3JlGjRppFktmwpC/v79mMTg7O1O2 bFkuXboEwJUrV/JYInc3b95k5syZzJ07lzNnzuQ5f1hYGM8++yzdunWjdu3aDl+lGzKqOh04cID/ /ve/TJo0ifT0dOLi4nj11Vf54osvWLp0KaGhodku+7///Y8zZ85w5swZ87+9vLwoXbo0kZGRREVF 2XhthMiqwAlDAwbk/viMGSNR1YmFjUcIYQEyJJlwFAH+HiiKwuzx7fHyzP7klqqqzPjxEBE1gzlz PpYtey7QrOG9HTNdDjur99+dcCeVr78/wLv96lOjaiBuLk6s2foHuw5l7HAH+ntgMqlcu5VEcMDD P+bl1EdhuTjrMRjulcFPSEy1SLvXb2WthHL9ZhJ1agbnaztD/hM78tqeefH3dSc1zcjtO6l4/5M0 dP1mUh5LFU5ezy3YT0KLsK7AwFKYTCrXryUQFOxToGUTEpKZ/vU6hrzbjho1yuPq5szaNUfZvSvr VU8FeS0pD1ToyW8f16/ffuh2RJ1KD7WfkdijMGN2P7y8Cn7Fz4Pxme+//7M1nzHnJiKiIhERFVFV lV07z/DxuCVMn9EXF9eshzH56evBmIu6DYSwhICAAPR6PVevXuXRRx/VOhwhRHFn6/3W7DJospkn IQm+XmLk3ef01Kikw80F1uwzses3k3mZkECFKuUUth4zsf+0iWee0PHgaI3X49UsfVyPhzpVFQJ8 MvZBZg91xuvhUVhz5e8NqQa4nQzenvfaNa+PkpEMZTCq5h2dhJSsjz+4PXS5bQ9rkhyNPDm76DAY TObbiQkFr7xz63rW4/Ob11OpWcevwO34+ruQlmrizm0DpbydzW3ll/LAuAF+pV0xGVXibqbhF5Bx XH/zaqr5MSGEEKI4e+WVVxg0aBApKSmaJguBfSQMZfafmTAUHx+fx9y5M5lMjBkzJtek3wYNGtCt Wze6detW4irh7N69m/fee48lS5YwcuRImjRpwjvvvMPvv/8OwJEjR5g1axZ6vZ64uDji4uKIjY0l Li4OPz8/7t69S9WqValatSrt2rVj8ODBPP744yUi0UoUD4WqMDRjRkLeMwkhNCFVhURR2NvuSaCf O3VrBjPjx0P06loTf193Ll29zdJ1Zxj8aj2cnXQsXnuaW3EpTBjWjD8uxvHp7D1UCfWjfNmMqji+ 3q5c/DsBk0lF/8CPxZm3DAYjqqri4eaMs17H2QuxrNpyFl9vN5R/4oioEcys+Yd448Un8fN2Y/eR y/h5uxFRIzjXPnKT0xWqoSE+bNl7gWqPliYlxcBPy397aJmcls+pD4ANO/8kvFoZKpX3ZePOP4mN T6F+eFm8vVzz3M7ZtZeTvLZnXtsgOMCTxyuX5ttfjtHv+XDupqazIOZklm2UH/npK6/nNqe27Imj /C6g9QFSQKA3tSMqMnvWJl57ozl+fp7s3f0/fP08lti2qgAAIABJREFUqR1R8Z+5lGyvRja/5j1c cXLW88fZa6xedRQ/X48H1iv/Vwr7+nry18VbGZ8rel2++9i04TfCwytQqVIgGzf+RmxsEvXqP5px lfJ9MQQEelOnbiVmzdhIz15PU9rfi0uXYlm29ACDBrfF2Tn3oTgejC+7dSzMdrn/74kTlzj52yWa NQvDv7QXqgnS0tJR/3n8/vXJT18PxlzUbWBtcmV2yaDX6ylTpgxXrlyRhCEhhEXYco8qv8cjBoOK qoKHq4KzHs5eUlm114SvV9Zl2tTR8e1aI3eS4K3O+ofa23DIRHjljKHQNh7KGIqsfjUd3h5Qt6qO GcvT6dVaj38phUs3VJbuNDH4WT25faUH+yk8Xl7h2zVG+rXXczdVZcEmozl2BQgNUthyRKVaeUhJ Vflp472LO7I7PvP1Urh4XcVkAv0DSR3W4hB7DTZ48YaEerB3yw0ereZNSko6y3/6K/v+cykntXPD daqF+1C+kic7N14nPjaN8Pp+2S+fS3sBwW5UfrwUv3z7J8/3q0jqXRMxC/56qL+cePu68PfFZEwm NaOyUJArj1YvxaJvz/PSm5UxGVV+/f5Pwp70xdvPOffGLMUhXohCCCHs1bJlyzh58qTWYXDr1i1A +4QhV9d7CcF3794tUluenp4oipLlXJSzszPNmzenS5cudO3alUceeaRIfRRX0dHRDB48GIPBQO3a tfHy8sLPz48KFSqg1+v57bffcHNz49atWzRs2BA/Pz/8/Pzw9/fHz8+PRx55BJ3ORgcFQhSSDEkm hIORIclEkdlZVvOA3nX5dfUpJs7cTcKdu5Qv603XNo/j7Kznt//dIGbTWT4e+gyurk6EPRZI51ZV mfrtfiYOb46ri57IVlWZ9dNh1m5bTqXyvvz3vWb/tHxvHJvA0p707FKTr77fT1KygUrlfan/RDnO nL9lnmdQ77osiDnJhBm7SE010rB2OZ7uVgEUJZc+cnOv/3vbPOO+nl1qEjXvIAPGrKFMaU/aNKnM 8dM3HhiPK5vls4xnljndu69l44r8vPJ3LlxOIDjAkxH9n8K7lFue2znbmHORn+2Z1zYY0rces386 zJCP1uPv607bppU5eyHugW2QiwfWPbe+cntuC7LempCEAosaMKgNCxfsZvKEZaSmptOgYRV6Pp33 FTOBgd683LMx075aR1JSKhUrBVKvfmXOnin8d3DnyAj+b9Ym1q09RqVKgYz77/P56qNFyxos/HkP Fy/cJCjYh/dHdMLbO/tL7d8a0IrFv+7nk4nLSUhIoXx5fyK71s1Xokx28T2oqNulevVHuHD+BpMn LScuNongsr4Mfqcdbm4P/+CRn76yi7ko26A4kRMT9q1s2bJcu3ZNnqdixmQyyXMm7Jctdl3vT2jI LmPovvsC/RR6ttLz1ZJ0ku5CpWCF+tUUzlzKWjGofnUd368zElZRIbj0wyvRMkLHz1uMXLimEuyv MOJlJ3NVoAFd9fy6zcjEn4wkJKqUL6PQtbEO53yc+RzSXc/sGCNDphnw91ZoW0/H2b+N5nXs2VJH 1HIjA740UMZPoU1dHcfPGx/eBv/8O/IpHbNijKzdb6BSWYX/9rPy6VcHOiSw9ku3S88KzIv6gzED DlG6jCtN2gRx+nhCnsPP3f/vxi3LsPLnS1y+kExAsCv9RzxurhCUOV9e+UKZ/+47pAo/zT7PR0OO 4uvvQtO2QVw4m5ivC2VaRZblp1nn2bZ2P+UrefLef2vQd8hjLP7hApOGH0NRFKo/4cOzvUNt8pHg QC9DIYQQFmSNCwQH5DUUTiEU5KKtzIShgICAQvVljW2SkJBg0Xbnz59P+/bt8fX1RVEUBg4caLG2 i6P+/fuzbt06Nm3aRMWKFR96PCUlhdmzZzN79myrxSAXFgprUspFtFcHfPIrr9XMvmrQhg3r6Nmz t/n2gAF5VRiaJEOSCVEIq1fHUMq7YCWMn27cuEgJQYcOHaB9+078+OMPWd7novhTFAX1cjSbNm8m OcVAmsFIutGEyaT+k1+QuXORWcnhvluKYre5EUKIe1Q143/q/bcz/vXP34z3sk6n4KTX4eKsx8Pd mblLjvPdr8dyvfIkuwOQ/B6UeHh4kK7uYOOmlSQnp5GWlo4xPfPzR/0nvnsfMvfyuLJWmBGipMp8 r937m+VRMqsq6XQKeicdLi5OeHi48OPcHfzw3XY2btxo85hF0UydOhVFUXjnnXe0DkUU0IMJQ/oH x0/KZp6i3pfd96RW7WW3bH7bK8p8lu7XXu8LDAxE3VWNTbv+IPkupKVDuhFMavY548o//8vyt5gx GKH/VAOvtdfzVA3tEvLiE+FfUw1Ev+dMKQ/NwsiXzMP7LH8foCgZw6Q56cHFCTzcYO56I9+tNWE0 3lctqQj74fcvqygKl9RhbNm0l5RkI4Y0E8b0jIpL2R1TKPedkHjoug9RLKj3vQYzbmf/POt0oHdS cHbR4e6hZ8nci/z63QX5AUyIQpDz+Y4tLCyMPXv24O3trXUoRaYoCmF739I6jFydbDCjQN9Fzz77 LEuXLiU9Pb1QF5EoisLbk+YXeDlbUBSFr0a8nGV7KIpCwz2jcHpwPNQSYkeDjx/aHnvCK6M42aaC o2oy0fDI/+xqf+nw4cOMGTOGFStWaB1KrpYuXUq3bt0YMWIEkyZN0jqcAits3kDmshERdfOc/5sT PkS9310qDAnhaKSqkLAUpVieYhaiZFAd/PpN+ZFAlFR2dOwvbKhcuXLs379f6zCEEA6oOO1TqcC6 AyZcnBQahuk0jf3+wqT2vA0der/Bnje8yMqhX4hCCCEsxWSn3xe6QuxzxMbG4u/vX/SKs/a2v5OP 58hen0dryf31oaKarLs95MJaYSsWThgqftlZQjgaGZJMWJLsjxTcjVvJDPhwTbaPNWsQysBedWwc keVpuY4lYfvmpaQclznyAdGNG7d5e8B32T72TLPqvDWwtW0DeoC9x+eo7OlKIWFbISEhLFmyROsw hBAOqrjsUvUcb8DTDQZ0ccLJgiOD3ohXGfBleraPNXtCx8CuD3dWHBKGSsJug71ue1u4dSOVDwcc zvaxBs0C6TXwURtHlL2S8DoUQghhGSqQrma/T6YVZ6VwP5HHxsZSunRpi8Sg19tHXQ/VZMKkGvOc z4SKUTXZICLtOSv5OChRVdR067yuFb0esqliLIQ1WPyTSIYjE0J7mUlCkiwkLEGnK8Fn6QohKNCT X6O6ax2GVWm5jiVh++bGZOWrFuyNo37+BAX5sPDXIVqHkSN7j88RlbT3tsgqJCSE69evk5qaiqur q9bhCCEcUHHYpVrwH+uU9A/yU/h1bMHa9i9FgZexpZK021DUC/eLq8AgV6J+bah1GLkylYzfCoUQ QliQSVUx2EnSkKuu8Pt6t27dIjQ01GKxODm7WKytwlBVlfS01HzPbzAZHb76vbOiz/cYz2q6AdVo 4R0jnYJe727ZNoXIhX2kLgohLEaqCglrKExpTiGEZZW0kq+ZHDVpSIhMlk4WKnJJbGFz5cqVQ6fT ceXKFSpXrqx1OKIIjEYjerkCUNgp2aVyDCUpWSiTIi9eu2Pt4TeEEEI4LpWMc5wmjRJOFMBJKfx5 E1VVuXXrFnXr1rVcUICi6DSptq6qKmo+Kgs9yKRmPIOOmDikL8zrQzVl7B9ZovqSToeik/QNS5Bq 7vknrzghHIwMSSasRXKGhNBOid+3lQ8g4ahK/JtbADg7O/PII49w4cIFSRgSQliV7FIVbyV5t0Fe u/ajJL8OhRBCWE5hv9qVIi1ddElJSaSmphIYGKhZDA/SMilCscFzUax2A/PaaZWdWpu6e/cuAG5u bhpHYv8KmTA0ybJRCCEsSoYkE1Yj+zNC2J6ckAXk40c4Hnlri/uFhoZy4cIFrcNwGM2bN7d6H5s3 b7Z6H0IIIe6R4wHtyf6rEEKIolIAvaJQXL/Zb926BUBAQIBF21VVU7FKytUVoUqTQ1J0KFJs2O78 /fffAAQHB2scif0rcMJQVBRERU20RixCCAuQqkLC2myRNS6EyOCIZV2LRD5+hKOQt7Z4gCQMWcOH qOpYq7T8YKn4L7/8kqVLlwIZwwJu2bIly+OXLl0iOjqa/fv3A1C3bl0GDx5svio18/F9+/YBUKdO Hd555x2CgoKy7f/mzZtMnTqVffv2YTAYaNasGSNGjMDT0xOAyZMns3DhQnM8Bw8ezLL8xIkTWbBg gfnxI0eOFHZTiGJKLmwtXorTj0dWJy9e7cgLUQghRBHpFAVXxVnrMIrk5s2bgGUThtINaRZryxac dZIZcz/FyRlFxnOyS8eOHQOgevXqGkdi/yQFUAgHkzkUGWD+K4TFKTLJJJPVJ5EtRf6T/4r5f0Jk JzQ0lD///FPrMEQhDRkyhM2bNzNhwoRsH1+6dCktWrTg559/Zs6cOSQnJzNmzBjz40uWLKFFixYs WrSI7777jpSUFP7zn//k2N+IESNISkpiwYIFLFq0iOvXrzN27Ngsjx8+fJgvv/wy2+VHjhzJ0aNH +frrrwu3wkIIoSGtD9NK4iSEEEIUlQI4K052NRVGZsKQpYYkMxrT7WIyqaZ8xatDwVnRl4gpXxQF xdnZKhO6rCkcYWFhjBo1igMHDmg6DF1xoaoqmzdvxsXFhbp162odjt2TnDchHJAMSSZsQU4aCWE9 ssufO7mwWBRXtjie1+v/n737Do+i7Bo4/NvddEglISSSQm8JKDVK6BB6CUU6UgR5IwgK4qcooCgg ICq8VAVRIYAUidINIiXSpEjoPYSeQKghdef7Iy8LIT3ZkmzOfV2r2Z3Z55xZJpvZ2TPPkSu9iqKK FSsSHR2NVqvF0rJoX3FZXGT2u6ZWZ7wmS6vVMmLECN39kiVL0qlTJyZOnKh7bOTIkbrn2tvb06lT p3QFRc+LiYnh2LFjLFu2jFKlSgEQEhLC4MGDiYmJ0duJa1E8yDFV4SbfA2RD9l3jkf1QCCGEHqjN 5MBTrwVDRfBgz1z+HfPj7t27bNu27blHVKjURng9/refnDp1ilOnTjFlyhS8vLwIDg6ma9euNGzY EAsLKfd40f79+4mOjqZt27a62ZhF1mQPEsLMSEsyYUwvtmMQQhScXCGQS/L+I4oa+d0W2fD19UVR FKKioqhYsaKp0xEGFBsby6ZNm2jcuHGWyzdu3Jjl8qdePA5XFIWzZ89KwZDIMzmiKpzkqCFn8nHA 8OTwVQghhD6cbDDf1CnoTUxMDFDwgqE5/9dHH+kYzb6AL0ydgkm1bNkSJycnfHx8AAg4dtGk+URH RzN79mxmz56Nq6srnTt3pmvXrrRo0QJra2uT5lZYzJ07F4A33njDxJkUDdKSTAgzIy3JhBBCFBem nppfbnLL7U2InFhaWuLt7c3Fi6Y96SQMZ9OmTQQGBtKlSxdu3LjByJEj0y3fuHEjAQEBdOjQgRs3 bjBq1KhMx3Fzc6NatWosWLCAO3fuEBMTw4IFC1CpVDx69MgYmyKEEEIIIYQQuaIoit5u//zzDwCJ iYl6HTcvF2/evn0bAHd390Lxmhjqlpt8b9++zcyZM6lVqxZDhgxh586dJs+7ILeEhAT+/PNPJk+e TJs2bahSpQqDBg1i8eLF/Pe//2XNmjV89dVXBYpRv359bG1tOXHiRJ6ed/PmTRYuXEibNm0yzEod GxvL4sWLad++PaVLl6Zv376sWbOmWJ8fOHfuHCtWrMDLy4uuXbuaOp0iQQqGhDBD0pJMGJupv4iV m9zM4SbyydT/cHKTW043IXKpQoUKnD9/3tRpmImJOa9iZO3atWP37t2EhYVRs2ZN3nrrLRISEnTL 27dvz969e9mwYQO1atVi6NCh6ZY/78svvwSge/fu9OvXj0aNGqFSqXBycjLKtgjzpFLJrTDcRD6Y 6hjPnG9CCCFEIfR0dpeoqCiT5XDr1i2gYAVDRd3OnTsZMmQIQUFBqFQqwsPD+f7773OcJbcw2rNn D19++SWdO3emevXqLFmyBFdXV6ZPn87p06dZsmQJgwcPpmrVqnqJd/z4cZ48ecLHH3+cp+e5u7sz bNgwNm/eTExMDMuXL6dbt27Y2dmlW+/BgweEhobSo0cP3Nzc6NKlCz///DNxcXF6yb8oUBSF9957 j9TUVD755JMMBVYic9KSTAgzIy3JhMnISSUh8k+mei8QefsRhZX8aou8qFSpEgcPHjR1GmZj4sRJ pk4hA5VKRalSpXjjjTdYt24dV69eTdeCTqVS4erqysCBA1m7dm2G5U95eHgwa9Ys3f09e/ZgZWWF n5+fUbZDCCEKG/k8oD9y/CqEEKKwKlWqFG5ubhw/fpxKlSqZJIfbt2/j7Oxc7No+JScn89133/HT Tz9RoUIFBgwYwOLFi02dVp4dOHCAiIgIIiIi2LdvH4GBgTRs2JAJEyZQp04dg8dfvnw5wcHBfPrp p/kew9HRkT59+tCnTx+ePHnCtm3bWLt2Lb///jv37t3TrZeQkEBYWBhhYWFYWFjQvHlzunXrRpcu XShdurQ+NqdQWrFiBRs2bOCVV15h8ODBpk6nyJCCISHMzNOWZM//XwijkLNKQggTkbcfIZ5Rq2US 2aKqatWqLF++HJVKhUqmmSiwTz+dxKefgqJMMsj4mf2uPX3s+WVarZZPPvmEAQMG4OPjw927d1m6 dCmlSpXCx8cHrVbLhAkTGDhwIL6+vty9e5clS5ZQqlQpvL29M429fPlyKleuTI0aNThx4gTTp09n 8ODBlChRQi/bNm/ePDZt2sSGDRuAtOm8g4ODCQsL052Yb9++Pe3atWPEiBF6iSmEEAUhnweEEEII 86dSqQgICCAiIoLg4GCT5HDjxg08PT1NEttUYmNj+fDDD/H19WXNmjWULVvW1CnlSlJSEocOHeLM mTNs3bqVv//+mzp16tCwYUPGjh1LQECA0XPq0KEDlpaWnDt3Dn9//wKPZ2trS+fOnencuTNJSUn8 9ddfrFu3jvXr1+tmwwJISUlh27ZtbNu2jf/85z80atSI4OBggoODszzvUBSdPXuW4cOHY2lpyZIl S9BoNKZOqciQgiEhzJC0JBPGJifnhBAmI29AQggzUalSJR4+fMitW7coU6aMqdMp4p5dradS5f/K vdz6/fffdW3CAAIDAwHYuHEjjo6OtGnThpkzZ3L+/HlKlixJzZo1+e9//6ubGrtNmzZMnz6dc+fO YW9vT61atZg3bx5WVlaZxmvevDnTpk3j0KFDlC5dmn79+tGrVy/d8vXr1zN58mTd/VdeeQVImzre ycmJdevWpbuisWbNmgDs2rVL2poVY4ocU4miSvZdIYQQotho27YtX331FTNmzDDJhTbXrl2jVq1a Ro9rKgsXLmT+/PmEhYXpWsIVVpcvX+bQoUO627lz56hTpw7NmzcnJCSEZcuWmbyAxMLCAm9vby5e vKj3sa2srAgKCiIoKIi5c+eyd+9e1q5dy7p167hy5YpuPa1Wy86dO9m5cyejR4+mbt26dOvWjW7d upls5i59iIuLo3Pnzjx8+JBvvvmGl19+2dQpFSl5LhgKCcl++fz5H6IoU/ObjxCigGRWISGEEMWF fDcghDAnjo6OuLu7c/r0aSkYKqA9e/YYNV7Hjh3p2LFjlssbNmxIw4YN0z32/CxEgYGBNG7cONfx PDw8+PbbbzMdC6BLly507do1w/Oerte1a1fd8sxOsoeEhBDy3MmfSpUqcfLkyXTrbNy4UWbCEkII IYQQQhhVz549GTNmDJs3b6Zdu3ZGjZ2QkMCtW7fMakaWrJw5c4aRI0fSqFEjjh49aup0Mng6e9DT 2z///IOjoyN16tShTp069OnTp9C27Pb29iY6OtqgMTQaDYGBgQQGBjJr1iwOHz7M2rVrWbt2LWfP nk237j///MM///zDhx9+iL+/v+58gb+/f5H5zP/48WM6duzI6dOn6d+/P++8846pUypy8jXD0Pz5 9/WdhxBCT6QlmTAmRS5DFUKYirz/CCHMUPXq1Tl16hRNmzY1dSpCiGJCjqhEUSUfB4QQQojix8XF hREjRjBmzBiaN2+OjY2N0WIfPnwYRVGK9CwsuTFlyhS2b9/OnDlzqF69uqnTAdJmDzp8+LCuOOjp 7EFPi4NmzZqFs7OzqdPMFU9PT27cuGG0eCqVSvdaffHFF5w4cYJff/2VdevWZSgGi4yMJDIykk8/ /ZSKFSvStWtXunXrRr169Qpt8dCjR4/o2LEjERERNG/enO+++67Q5lqYSUsyIcyQtCQTxiDn5oQQ piJfDgghzFW1atXYt2+fqdMQQhQTckwliizZd4UQQohia8KECaxcuZJx48Yxe/Zso8TUarWMHz8e gGbNmhklprHt3buXkSNHMnjwYLZv327SXE6cOMHJkyfZtGmTbvag2rVrU6dOHXr37l1oZw/KjdKl S3PkyBGTxFapVPj5+eHn58cnn3zCxYsXWbduHWvXrs1wLur8+fNMnz6d6dOn4+XlRXBwMMHBwboW 7IVBbGwsHTp0YP/+/TRs2JD169djbW1t6rSKJCkYEsLMyKxCwijk5JwQwkQUeQMSIlsvtiYSRYuf nx9Lly4F5N+yuNFqtfJvLoQQuSCfBoQQQojirWTJkqxbt47GjRvj4+NDs2bNqF27tkFjfv311/z1 11+88cYb1K1b16CxTGHs2LFERUWxYcMGo7ZIT0xMJDIykuPHj3P8+HHdz35+frRo0aLIzR6UGy4u LsTFxZk6DQDKly/P2LFjGTt2LFevXmX9+vWsW7eOnTt3otVqdetFR0cze/ZsZs+ejaurK4GBgdy+ fZvExESTFeicPn2aDh06cOHCBZo3b05YWBglS5Y0SS7mQAqGhDAz0pJMGJp8WS+EMBl5+xFCmLkq VaqQkJDApUuXqFChgqnTEUKYKZlZSBRZsvMKIYQQAqhbty5r166lQ4cOqNVqkpOTDRZr1apVvP/+ +1SsWJFvv/3WYHGMrXr16ly/fh1nZ2emTp3KzJkzDRrv3r176YqCjh8/ztWrV/H398fPz4+6desy cODAIj17UG6ULFmSx48fmzqNDMqWLcuIESMYMWIEMTExhIWFsXbtWrZv357u9ys2Npb169cD4Obm Rvv27enatStBQUE4OjoaJddRo0bpZhfr1asXS5culZmFCkjPBUPT9DucECJfpCWZMBg5NyeEMBF5 +xFCFAe2trZUqlSJY8eOScGQEEII8Rz5PCCEEEKI57Vt2xZXV1cePnzId999x9ChQ/Ue47vvvmP4 8OG4urqyceNGoxVEGFp4eDiXL18mNTWVcePG0atXL72Of/PmzQwzB8XHx+Pn54e/vz9BQUG89957 xfK8h7W1NYmJiaZOI1tubm68+eabvPnmm9y/f58NGzawbt06tmzZQnx8vG69hw8fsnLlSlauXIlG o6Fhw4YsXLiQqlWrGjS/uXPnYmFhgYeHB6GhoahUKoPGKw70PsOQokzV95BCiDyQWYWEociFfEII k5E3ICFEMVKzZk0iIyMJDg42dSpCCDMjh1SiqJJ9VwghhBCZuXXrFuHh4bRq1Yphw4YZLE5MTAxV qlQBQDHBgYkhCyLGjx/P+PHjMzye2+28dOlShpmDrKysdDMHvf7660yePBlPT099p14kaTQaUlNT TZ1Grjk6OtK3b1/69u1LfHw827Zt47vvvuOPP/5IN/NQamoqu3bt4sSJE1SrVs0ouUVHR+tau5vi 99KcSEsyIcyMtCQThqCVP7ZCCBPRauX9RwhRvPj7+7NgwQJTpyGEMDNySCWKKkV2XiGEEEJko2XL lgC8vO8Hg8c6GjDI4DGy0mqF8Vp1/dH7OIqisH//fgICAnSPnzp1KsPMQWXKlNHNHDR8+HD8/Pxw cXExWq5FjVarRaPRmDqNfLGzs6NLly74+PigUql45513+PXXX1m7di0xMTFYWlqyZ88eAFosWmG0 vLYP6220WOZKCoaEMEPSkkzok3xZL4QwFXn/ESLvnl5ZI4quV155hevXrxMbG0vp0qVNnY4wIa1W K7/TQi/kkEoUVVqtqTMQQgghRFGhVqlQDNjEVIVp2x4pimKUDJ6+gm5ubjx48IBRo0bpCoSqVq2q mzmoQ4cO+Pv7Y2tra4SszEdCQoJZvGYqlYqgoCCCgoKYO3cuO3fuBKBZs2Z88803RttfkXZkepHP gqFp+s1CCKE3MquQ0CeZWEgIYSoyjagQorhyc3PDy8uLI0eO0Lp1a1OnI4Qo4uSQShRVsu8KIYQQ Iq8UBbQGKBpSoyocdQlqw+ahaNEdhCUkJADg5eXFgAED8PPzM2hrtOLi4cOH2NvbmzoNvVKr1TRr 1iyzBQbdZ5Qi1NqtsMtzwdC8eTBv3lRD5CKE0ANpSSb0xZDV+IVBz5G/GjzGqjnBBo8hhDkqKl8O 9Ok5x+AxQleNNHgMIUThU7t2bQ4dOiQFQ0KIAnn9s2SDx1j1iaXBY4jiZ+Tr+wweY86qBgaPIYQQ QgjjS1W0JOtxmkJLtRq1qvC0kFJbqTHE1C1KspKuFeyxY8c4deoU7du313+wYiw2NhZXV1dTp2E0 Ko0FKgO0YNMmJep9zOJMWpIJYYakJZkoqKLyZX3BTURRJhlkZJVKle51/H7VUcIjLqVbZ0BXf9o1 rZjp8wd/sIH4JxlP8M/7rA0uTrbce5DAT+siiTxzm5RULXX9PRncoxa2Nhb5ivfgYSI/rjvGsdO3 SUnR4lvWif7BfpT3dgbg5PlYwv44y9lLd7CxtqCuvwd9Ovnp4uW0/EVLVv/Ltt0XAVCrVYR+0yXT 9RQFPpu9m1MXYpn2QXN8X3LMVzxRdBStmYUmMnHiJCZNMszoae8jz16PWzfvs2b1fiKPXQGghl9Z +vVvhLNLCQCWfP8X28OPpxuj/4BGtGlXK1fLX7R0yU7+2BYJpP2e/hz6drrlQwcvIj4+KcPz5swb iItLSbRahZWhf7Nr5ykSk1KoWdObwW82xdGfTeqZAAAgAElEQVTRLtvtVhT4/LN1nD51nSnTeuHj m/Yh+sGDJ/z8424ij10hOUWLr68rffsHUr586Vy9PkIUJbVr12bRokWmTkMIUYQ9O4Iw8GeeLGJ/ 9mMKp64oTBtqgW+ZzL/R+H5jKuGH03+ZMyBIQ7sGaa34TkYphEWkcvaqgo2VirqVVfRpocHWOm3d wdOTic/kPPG8URa4OGSM+eAx/LgtlWMXtaSkgG8ZFf2DNJT3UOVq+b1H8NO2VCIvaUlJhbpV1Axu 8ywffW8fwKkrCiv/TOXSDYUyLireaK2hhq95X9mddvhrjOPsZ/cf3Etm3U9RnIm8T2qKgn9dZ3oM 9sXGNv2XG4oCsz87yYVTD/lgmj8v+aYd1676/hIR4bfTrdt1gA9N25XJNH5O8XI7Xlb5vEirVfgt NJr9O2NITtJStaYjPd8sh72jZa7Ge/ggmXU/RnH62H1SUhTK+toR3N8H7/JynC2EEKJw0qKg1cM5 RnUhnVFHpUavM7co2oyXj5cvX57y5cvrLYZIc/36dcqUyfwY0VypVCpUemy3rpWZhfROvlUTwszI rEKiwIrUl/WFXLrXUiGoUXkGd6+ZzTrPLJmWvnJ/yep/ib7xABdHG1AUZi3eTwlbS2b8X3O0Csxd doj5yw/x3uD6+Yu3+l/iHiQw9f1mlLC1ZNXGk0xbuJcFn7VBrVbx69bTdGpRiYoD63Hn3hO++eEA P6w+Ski/OgA5Ln/R4O41Gdy9JodP3GTm9/uzzGvzXxewslQ/y/1/6+U1nhDmIPyPSBoEVGTQ4CY8 eZLEksV/MWf2FiZM6qZbp1WQPwMHN8lyjJyWP2/g4CYMHNyEI4cvM2vmxgzLv1syLN39pUt2Eh19 BxeXkgD8tv4f9u09x0cfd8HB0ZZFC/5kzrdb+XhC9rOvbdl8FCurjB9Tli7ZSVzcY76Y2hO7Etas XrWPGdN+Z+6CwajVqly9PkIUFXXq1OHatWvcuHEDDw8PU6cjhChqjPmRLpNYm/drsbLMfp2nguqm Fd1kNuavu1Pp9KqGil1V3Hmg8M26VH7YkkpIp7T1l7yfvthhyZZUom8ruNirMo25ZHMqcY8Upg6x oISNilV/pTJtRQoLRluiVuW8fNbqFErYwIxhlmgVhblhqcz/LZX3umd9xWxBtu/sVYVpoSn0b6Vh XE81j54obNyvpYZP4bnCXd9MtesunnUO2xIa/m9GTRStwrK5F1g+/yKD36uU7jl/bb6JpZVa9/zn x2gU5E73wb5ZxnhebuLlZrzs8nnetvXXObz3Dm9/XA17R0tWLLjID9+eZ+SEarkab/WSyzyIS+b9 qf7YltCwcdVVFk47w2cLXkGtLpxfpAohhBDZ/W3MDVP+hfv777+ZOHEiw4cPp0WLFpmvZOAEV65c SalSpXB1ddXdbG1tDRu0GLhw4QJdumR+8XRRER8fj5eXVx6fpdLPPivfXxqEFAwJYWakJZkoCPlT q19KJj/n5zVOTEpl9z/RDHn9ZRQg7n4CZy/dZer7zXB0sAGgZ/tqTPxmF3fvJ+DsaJPneFeu36d1 4/KUck476G8VWI4tuy4S9yABFydbPgppqFv3pTL2NH/Nly07L+jGz2l5VrLL8/rtR2zZdYFxb73K v1O2p1svv/FE4VW0ZhYynudflz79nu33tnZWNG1WnblztunWSfu/KsvXMqflOeWQ3fMSE5PZs/sM g4Y00a0XHn6cjp1q4+VdCoC+/Roybmwo16/F4eHplOk4N67fY+uWY7w/rgPj/g1FQdGNd+VKLEGt a+JSKq0gqUUrP7ZuOUZc3CNcXErm+PoUF2o9XrEjTKd06dJUrFiRgwcPFvkTSUK/FEXR65WkwvwY +6/ei/Gu31HYclDLuF4a/r2Qkm1OOX1m+ajvs9OWL7mpaP6Kmi0HtJmun5gMuyO1DGmryXK8K7cV WtdTU8ox7XeoVV01Ww5qiXuo4OKgyna5SpVWwDP1TQscSwKo6NlUw8SlKdx9qMbZPuPvZUG3b+WO VJq+rKZF7bS/7XY2Kga1yXr7ijwT7bz345K4dPYh70/1w+F/M+607+nFNxNPcP9uEo7OVgDcvp7A ri03eWtcFab8eyx9znn4AJ6reLkYL9t8XhARfpuWnTx4yTttxqAu/byZMvYYt68lUNrTJsfxrl+J p3HrMjiXSnstAluVZteWmzyIS8bJxSrnjRZCCCFMQIVpi37y4+7du4SGhjJhwgTi4uIIDw+nRo0a ma9s4GOnf/75hzt37hAbG6u7KYqSroDo+YIid3d3SpYsiZeXF15eXtjY2Bg2wSIoNTWVM2fOULVq VVOnUiBHjhzB29s7j89S9LDPFrXf6KJDCoaEMEPSkkyIwmn3gSvs2HsZh5LW1PH3oGf7atjZWub4 vIhD0Vho1NSv5Qk8O6568bsiRYGoa/dxdrTJc7z6tTzZe+Qadf09sLWxJDziMpXLueDsmPlVA6fO x+Lzv/Zg+VmeE61WYf6yQ/QP9qdELl6jgsYToqiJi3vMrp2nqVM3/dTAu3ef5q8dJ3FwsKV2nXL0 6BmAnZ1Vrpfn198R57CwUFOvfgUAHj1KIO7uY8qXd9et4/mSM1bWFly5EptpwZBWq7Bgfjj9+jek RImMvT3q1a/Avr3nqVO3HLa2VmwPP0GlymVwdi6ZYd2sXh8hipIGDRqwf/9+KRgSQuSeKSpJnoup VWD+b6n0b6mmhLXq2fJs8tp9TMuOI1ocSqioUzmtCMcuixZfp6IUfNwznz0oIlKLhQbqV1VnGa9+ VRV7T2ipW0mFrbWK8ENaKpdVpRX7KNkvj3uYNqjqhW1WgKibkMnhSIG2L1ULZ6IVqvuoeX9hCjH3 FMq6qejbQkM1bzlRrlf/+/d8sRhTUeBaVDyOzlZotQrL5l8guL8PtiUyP51+YHcse3fEUNLBAv86 zrTv6YWtXSazQeUiXk7j5Safpx4/SuH+3SS8yz/bSd1fssXKWs21K48p7WmT43i16rtwZO8d/Os6 Y2OrISL8NuUq2+tyFUIIIQobNapC207sef/++y8rVqxg/fr1XL58maSkpAzrlCiRsQWoooWMTcT0 a+bMmRkeS0hISFdAFBsby507d7h+/TpRUVFcuXKF6OhooqOjsbOz0xUPlS1blrJly+rue3l5FcvZ is6ePUt8fDyvvPKKqVMpkNjYWF577bVcr68oCoq0ESvUpGBICDMjswqJ/Chmky8YzfOv65AeLzOk x8ukahWuXLvPopVHmLfsEGPeDMhxnPCIyzRp4IOFRo2igLODDeW8nFi18RRDe76MosAvG0+hUkH8 k2QUJe/xOrWszPnF+3l74lYAXF3s+GDYqxm2A2DrroucOn+Hye81yXTfyWl5+hcp42sFEBZ+FjcX O+r4eXDvQYJunQLHE4WO/Jtl78XXZ/eu0yxakDbjlpd3Kd4f11G3zqAhTRk0pCmpqVquXLnD4kV/ smBeOO+OaZer5VnmkEUuz/sz/DiNm1TDwkKDokB8fNoJDltbq3TPK2FnTXx8UqZj/RZ2CDc3B2rX Kc/9e/G6mE/X7dipDhfOb+Kdt38EwNXVnrEfdEiXW3avjxBFTYMGDRg/fjxarVZmjhJC5MhUf+6e jxv2txY3RxV1qqi59+jZ8qxyG9JWw5C2GlK1cOWWwqKNqcz7LZUxPTIWWWw9qOXUFS2TB1lkOl74 ES1Naqqx0GQdr9NrGs5fS+HtOWkzH7k6qvigl0aXZ3bLne1VlPNQsWpnKkPbWaAoCr/sTEUFxCcp KJlc7VqQ7XuckFY09OdRLWO6a/AopWLLQS3TV6Uw8y0LXBwK/xdguWWq2SCfxnVwtsSrXAk2roqm 59ByKIrCxl+iUangSXwKiqIQHnYdFzcr/Oo48eBesu75T8foMcSXHkN80aYqXLsSz8pFl1g27wJv jqmUIW5u4uU0Xk75PO9JfNr+bGOrTrfc1s6ChPjUXG1fy04eLD7/iIlvHwHAxdWaYR9UBhQ51hZC CFHoaFRqNJrC8xlaq9Vy5coVzp07R2RkJH/++ScHDx4kNjYWrVYLpBUS29jYUK5cOapUqYKbmxtr 1qzhiy++YOTIkVhYPPs6X5ukNUrezZs3p3PnzgQHB+tmk7GxsdEV/+Tk7t27uuKhq1evcv78eXbs 2KF7zNraWlc85O/vj7e3N/7+/pQvb74X/0VERODi4kLFihVNnUq+7d27lxMnTjBp0qRcra+kpqCk phg2KVFgUjAkhJmRlmRCFG4atYpyXk4MCPbn87l7SEhMwcY66z/HF6PvcfnqPd55o166x0cPqs+P a48xdsp2LCzUdGlVmRPnYrEvmf5y1dzGmzIvgtKlSjDvszbYWFvw594oJn67ixn/10I3YxGkFef8 uu0MH4U0xN0149UNOS3PjWs3HxK+5xJT3m+W47r6iCdEUdKocVUCG1Xl/v14wn49yGeT1vLljD5Y Pfd7rdGoKVfOjX4DGjHl819JSEjGxsYy18vz6tLF21y+HMPb77TWPWZrm3a1cfyT9FdGPY5P1C17 3rVrd9kefpwvpvTMMs60KWGULu3AnHmDsLGx5K8/T/LZxHVMm9EbZ+e03//cvD5CFBWvvPIKSUlJ REZGUqtWLVOnI4QQ2boWqxB+SMuUN/P+N1ejhnIeKgYEafj85xQSkjTYPHe4sPWgll/3pPJRHwvc nTMWyly8oXD5hsI7wZnM5vKcKaEplHZSMW+UBTZW8OcRLRN/TGHGMAuc7VU5Lh/dTcOPW7WMXZCM hQV0eU3Dicup2NtmX7yTn+2ztkqbzahZrbRCJYAuDdVsPpDKiSiFRv7mUzBUGAwaXZG1P0YxZewx LCzUtOriwbkTDyhpb8nNa0/YE36b96f45TiOWqPCq1wJggf4MPfzUyQmpGJtk3G/zC5eTuPF3UnK dT4ANrZp8Z88SX9V95P4FKxtNbnavnlTzlCqtDWfzXsFaxs1e/+M4duJJ/m/Gf4yy5AQQohCRaUC jQnaFl28eJGjR49y/Phxzp07x5UrV7hx4wZ3797l4cOHKIqCVqvVFeSq1Wp8fX15/fXX+c9//pNp e6evv/4aFxeX9A9qDT2v0DMVK1Zk6tSpjB49mldffZW+ffvSu3fvjDllwcXFBRcXlyzPZ8TFxXH1 6lWio6O5e/cuW7du5auvvuLmzZv4+/unu1WuXFmfm2Yyf/zxB82aNSvSbcYnT57M4sWLc7eyNvN2 0qLwkTPnQpghaUkmck/+XBtWdq+v8tz/s14vfM9FalRyw93VLt16bi62jB3aQHf/8ImbWFmqqeDt lMV4Wcd7+DiJ81Fx9A/2w8khreCoXdPyrN50knOX7+haoYWFn2Prrgt8PKIhZcvYZxgnp+WZU174 P1y6Gsfd+wkM/3hzujU/nLGD9s0q0rdzjQLEE6LoU6nAycmOTp3rEv7HcW7duo+XdymT5bM9/DjV a3jh7v6sLWDJkjY4u5Tg4oVbVKyY1pbs+rU4khJT8PZxzTDG5UsxxN19TMjwJeke//jDVbRr/zId OtXhwvlb9OsfiJOTHQBt2tVi9ep9nD93U9cKDQrf6yNEfllbW1OvXj0iIiKkYEgIUehduqlw96HC 8K+T0z3+4fcptG+gpm/L7It5shL2t5atB1P5uJ8FZd0yP7EefkhLjXKqTIuJnnoYD+evKfRvpcHp f52Z2jVQs3pnKueuKVTzVmW7vH5VFW6OKsa+rgHStuXwOS1WFlDBM/8n/LPaPisL8Cj1Qssq0mZV LMLfLxRaLm7WDB377IuoE4fvYWmlxrtCCY4fusf9u0l8PPxwuufM+PA4zdqXoXPfjF/wFSReTq5e is9TPiVKWuDoYsWVC4/xrZi2c9+69oSkRC0v+dhx5cLjbMdr2cmTqPOPCO7vjYNTWkFT03Zl2LT6 KpfPPaJW/dx9aSiEEEIUVEJCAgkJCSQmJqa7paSkzV6iNfC0d09LdZo2bYqNjQ2nT5/m3r17xMfH o1arsbe3x8XFBQ8PD+zs7ChTpgxubm5cunQJjUaDnZ0ddnZ2zJgxg5YtW+YY78XCHGMVmTyNsmjR IubPn8+ePXtYuXIln3zyCe+99x7dunUjJCSEhg0bFignZ2dnnJ2d8ff3B6Bfv34AxMfHExkZSWRk JLt27WLu3LlcvnxZVzzk5+dHzZo1qV69ekE31agSEhLYsmULX3/9talTybdu3bqxaNEiPDw8cly3 KBdFFVZarZYz585z7fp1AF56yZMqFSvqZVZyKRgSwszIrEJC5I1KNQlFmWTwOLMWHyC4dRU8S5fk xu1HLFt/nJeruWc7u1B8QjJ7j1zjP31rZ1i26a8L+LzkSAVvJy5cucfStZF0blUZWxuLPMezL2GF m4sd23ZfonSpEthYW7BjXxQpqQo+L6UVAKzaeIqIf6KZMLIRZdwynsTMaXleBNb1IrCul+7+vQeJ hEzYwtT3m+Y6H1HYmU9x16efTuLTTzHg+0jaa6XVKsyds41OXerg6enM/fvxrF/3D45Odnh4OAIK 38zaTJfgunh6OnPjxj2WL9tDrZd9sLGxyNXynHLIbJ34+CT27j3H8P+0yLC8RYsabNpwhKpVPXB0 tCN0+R6qVvPU5fu8hoGVaRj47EuT+/fiGRGylM+nvo7P/wqMXN3s+WNbJG6l7bGxsWTnjlOkpmjx 9imFVqvN8fUpLuQDuXlp1KgRq1ev5u233zZ1KqIQk7Z1ImsTAeN85gn0UxPo92w/vPcIQr5NZuqb Fvi4Z/63adaaVIID1XiWUnHjjsKyP1J5uaJKN/vOqr9SiYhUmNDfgjIumY8Rnwh7T2r5T6fsC5Ls 7cDNUcW2f7SUdkqb4WfHUS0pqeDjrspxOcCm/Vp83FVU8FRx4brC0q1aOjfUYGudecyCbl+rOmp+ 26uldiVF15JMq4Cfb/H4fTf8cfYzf226yUs+dnhXKMGVC49ZuzSKVp09sbHVUDewFHUDnxWfP7iX zISQI7w/1Y+XfNIK2RfPOkfrYE9Ke9py+0YC65ddodrLTpnOLpRTvJzGy00+L2rYojR/brhBhar2 2Dtasn75FSpWs6e0hw2lPWxyHM/FzZrd225RqrQ11jYa9u2IITVFyTKeEEII8/K0UOf5gp0X7z95 8iTb5QkJCcTGxhIXF8ejR4+Ij49Ho9Fw584dkpKSSEpKIjk5meTkZLRaLSkpKWi1Wt1NUZR05ztU KhUWFhbpHj8aMMgor4ePjw+lS5emXbt2+Pn5UadOHRwdHdm9ezcbNmxgw4YN+Pn50blzZ2bNmkVA QACxsbGMGTOGzp075zvuH72P63Erckej0dCkSROaNGnCN998w/r161m4cCGNGjWidu3ajBkzhtdf fz1dy7SCsrOzo0GDBjRo8Oxi6aezL0dGRnLw4EGWLFmCra0tnp6etGnThtatW2NjY5PNqKa3YcMG njx5UqB9wFQeP37M+PHjGTduXK7a0QFsH9bbwFkVP2fOnefipUu6+xcvXkKlQNUqBZ+BK8+/wSEh 2S+fP/9DFGVqfvMRQhSQtCQTuSNfJqb5FACV6lMDjf/sdW72qg8/rDlG9PX72Je0pq6fB93aVCW7 f4s9B69ia2NJHX/PDOvVr+nJktX/cvJ8LC5OtrRvWpHWjZ/1981rvLFDAwj97QRjp24nJUWLp7s9 owfWw921JAmJKYT9cRaA974I1z3H0kLNjzM75bg8Mzv2RfHdyiO6+31GhwGw8It22JfIakpzFaDK VzxRmJjT+8+z9w5Dv4+o1SoCG1Vl6eKdXLlyBzs7KypX8eSjj7tgYZl2SN+0WQ1+/GEXV6Lv4GBv S+265ejarb5ujJyWv+ivHSdZ/N0O3f3+feYBMG/hEOzt0z6ER+w5i62tFbXrlM8wTsfOdYmPT2Lq F7+RlJSCn78XI95pkWW8zLb76e89wJixHVgRGsEHY1ekvU95OvHO6Da4uzsB5Pj6CFEUBQYGMnXq VG7cuJGrK7iEECI9Yxyr5F+zl9X8sCWV6NsK9nYq6lZW0a1xWsFEQhKERWgBeG9+iu45lhr48f+e tW3aE6nF1hrqVM65iGZsTw2h21MZuyCZlFTwdE1rM/Z0ZqKcltevqmLJ5lRORim4OKho30BN63pZ xy3o9rWupyY+EWb8ksKTxLTCpQ96WehmQDJvxt13a9Z3ZvWSy5w/+RAnFyuati9D49buuX7+q83c WPNDFNej4ylpb4lfXSfadHsp3/HyOl5OWnb24El8CvO+OE1Skpaq/o70ead8zk/8n6FjK/Nb6BWm jo0kJUWLu6ctA0dXxNW9cH8xJ4QQIq3Y586dO8TGxupuz9+3srLiwoULWRYEJSUlYW1tja2tLTY2 NtjY2GBtba37+fn7T9eJi4vj4cOHPHjwgLi4OO7evUtMTAyOjo54enpiZ2eHu7s7zs7OODg44ODg gLOzM05OTjg5OeHo6IitrS12dnbp/q/RaNBoNFhYWBSai6UOHDjA559/zoYNG6hVqxYdO3bko48+ QlEUGjRoQHJyMkOHDqVt27YFiqPkYfak77//nhEjRpCSksLDhw+xtbUtUOynrK2t6dmzJz179uTk yZN8/fXXDBo0iAkTJvDxxx/Tr18/vRYOPc/Kyoo6depQp04d3WNarZaNGzeyZcsW3nvvPRo0aEBw cDA9evQwSA4FNW/ePLp06UKpUkVrFvTVq1fz8ccfs3z5curWrZur5+S0vyYlJeHj48PNm2nfX7dt 25ZNmzYVOFdzd+3atQyPXb12TS8FQ6qXardVQqavZYjf/UxXCA/fRt++A3T3Q0Jg/vzM100zTQqG hMiHzZs3YO/gnKfnBDZsWKCCoMOH/6Ft2w4sX/5Tut9zUfSpVCqUa9/z544dxD9JJik5lZRULVpt 8ZlhQQiRRq1WYaFRY2Wpwc7Wkp9/jWTp2mMkJCRk+ZzMDupz+8HUzs6OFGUP2//cSHx8EklJKaSm yPuPEPqmVqvQWKixsrLAzs6K5T/v4aeluzl48KCpUxN6NmDAANq2bUvv3nJ1lsjaizMMZTbjUGaP ZXaivSDPze14BVlP33EL62Nubm4of1flz78vEJ8ASSmQkgpySCXyQ60CC01aqzM7G/j5j1SWbtWS mpqqW6cgX7y9eMX/VWUsf/25nyfxqSQnaUlNUdBqC7QJwgyo1aCxUGFppcbWTsOvP19h7dKoPH0J KoRII+fzzVv16tXZt28fDg4OuX7OtWvXiIiI4PTp05w+fZq4uDguXLhAamoqrq6u6W6lSpXS/ezh 4YGFhUWmBUA2NjZYWWV1YWd6hw4d4ocffmDLli00adIEe3t7ypcvT4UKFXT/z+1YRcGyZcv44Ycf qFSpEk2aNKFDhw7Y29vrltesWRN3d3c2bNiAtXUW01EayNGjR+nXrx/u7u6sW7cOR0dHg8W6fv06 M2bMYMGCBfj6+jJz5kzatWtnkoKuXbt2ceDAAZYuXcqoUaMYOnSo0XPIyr59+3j11VeJiIjgtdde M3U6ubJv3z7Wr19PYmKi3tuohYaG0rdvX939TZs2Fbiozhy9WDewccvWTNdr36a17ufAhg11z61d O+cCr8XHHZk3rpu+W5JN0+9wQog8k1mFRHbU6sJReS+EKH7k/UcIIfKnWbNm7NixQwqGhBBAWuGH EEWRdE4UQgghDGPSpEkcOHCAqlWrUrVqVZo2bUr58uVxcXHBzs7w7SNXr15NWFgY3bt3Z+bMmYW+ NVR+RUVF8cMPP/DDDz/Qu3dv5s2bR5UqVTKsN3ToUO7du8exY8dMkCW8/PLLjBw5ktu3bxu0WAjA 09OTr7/+mrFjxzJhwgQ6duxIu3bt+O6774w+S3Ljxo1p3LgxQ4YMYfbs2VSoUIEZM2bQtWtXo+bx IkVReP/992nVqlWRKBbasmULc+fOxdramlGjRtGoUSO9x5gzZ47u54oVK9K6dets1hbGoPe5wWR2 ISFMS1qSiaxYaOTsnBDCNDQW8v4jhBD51axZM+bPn8/du3dxcXExdTpCCBOy0Jg6AyHyR2MhlW5C CCGEIYSEhFClShWTtfP5+eef2blzJ8uWLTNJfGP466+/WLx4MRcvXmTQoEFcvHgRjSbzA/MuXbrQ sWNHIiMjjZxleh4eHly6dMlo8V566SUWL17M8OHDGTx4MDVr1iQ0NJRWrVoZLYennJ2dmThxIh98 8AEzZszg5s2bhISEGD2Pp5YsWcLevXs5cuSIyXLIjZUrVzJv3jwqV67MZ599xiuvvGKQOAcPHmTf vn26+yNGjMh0dmBhXIZpJiiEMKmnRUJSLCSesrKUM8tCCNOwspLDTSGMST5km5/y5cvj6+vLX3/9 Rffu3U2djigitFqtvB+YGTmkEkWVpZW8FwkhhBCGsHr1asqWLcuoUaNMEv/x48f8/vvv/PLLLyaJ b2j79u3j008/pUyZMgwePJhmzZplu/67775L37596dGjB8uXLycqKgofHx8jZZtezZo1mT59utHj 1qtXj4MHD/Luu+/Spk0bZs2axTvvvGOSFmU2NjZ88sknfPHFF3z22WdMmDDB6DmcPHmSUaNGMX78 ePz9/Y0ePyc3b94kPDycL7/8kqCgIJYuXUr58uUNGnP27Nm6n0uUKMEbb7xh0Hgid+R0gxBmRmYV Ei+ys7U0dQpCiGLKzs58epMLIYQptW7dmm3btknBkBDFlJ15dnUQxYCtnVy8JIQQQhjK+vXrGTZs mMnih4eH4+bmZrL4hnLp0iU+++wzHj58yPTp03NV6DF79mw8PDzo0aMHAFOmTGH06NH8+uuvhk43 U76+vtjb2xMZGWn0QhUbGxvmz5/PK6+8QkhICFFRUcycOdNkF7SMHz+eCRMmEBYWRufOnY0W98aN G3To0IH69evzySefGC1uTi5cuMDmzZvZvHkzt27dol+/fuzatQtnZ2eDx7558yarVq3S3R84cCBO Tk4GjytyJgVDQpgZaUkmnhr0zuycV7cCYRsAACAASURBVBJCCAMYPOhDU6cghBBmJSgoiIULF3L7 9m1Kly5t6nSEEEYy6NOzpk5BiHwZNWi1qVMQQgghzJ6iKCadteTEiRO0bdvWZPH1LSEhgUmTJhER EcGECRNy3U7r8OHDHDhwIF1btoCAAHr16sXbb7/N3LlzDZVytvr27cvOnTtNto8MGzaMsmXL0r17 d+7fv8+iRYuybOVmaJ999hmvv/46Li4uNGrUyODx/v33X7p3746dnR1r1qzBwsK05RjHjh1j06ZN bN68GYC2bdsyZcoUatWqZdQ8FixYQHJysu7+iBEjjBpfZE0KhoQwQ9KSTAAsXXvM1CkIIYqpn5bu NnUKQghhVnx8fKhSpQrbtm2jX79+pk5HCGEkS7dqTZ2CEPmydmmUqVMQQgghzF6FChXYvHkzffv2 NUn8O3fu8PjxY5PE1rdvvvmG//73v0yaNIlp06bl6blTpkxh7NixGR7v2bMn8fHxBAUF0a9fP4KC gihTpoy+Us5Rv379CAwMpEOHDvj6+hot7vPatWvH5s2badeuHQDTpk0z2axU33//PQEBAZw8edIg 4yuKwuHDh5k7dy4//fQTzZs3JzQ0FBcXF4PEy87du3c5cOAAx44dY/Xq1bi5udGuXTuWLFlChQoV jJ4PQGJiIgsWLNDdb926NVWrVjVJLiIjKRgSwszIrEIC0g5OhHhqypQpKIrC+PHjTZ2KQRRkfzfG c/W9nqli5FZuTxRklktBtkPfzzXGeEXxMa024xeXxhivIHEze25B4mb2mBDGEBQURHh4uBQMCVFM xMTEAKBSqdI9fvz4cZYtW8bu3bvp27cvb775JtbW1hnWy0pm6+X2sYKMZ4znFqYYuVWYctEXOR+R 0axZs1AUhTFjxpg6FSGEEGZk8uTJlC9fnm7dumFjY5oetkX97/7x48eZPHky9erV4/z583l+/o4d O7C1tSUgICDT5YMGDaJFixYsWLCA2bNnU7ZsWSpWrIiHhwdlypRJ939DtISaPn068+bNY/r06Xof O7eaNGnCxo0badOmDWvWrOHgwYNUrlzZ6Hk4ODhQs2ZN1Go1ixYt4s0338z3WIqiEBMTw/nz54mM jOTAgQNs376dqKgoGjRowKpVq+jatavRjs0vXLjAwYMHOXjwIAcOHOD+/fvUr1+fZs2a8dtvv+Hh 4WGUPLKzatUqbt26pbs/evRoE2YjXpTPgqG8VVcKIYxHWpIJIYQQQhiOqXquC9GmTRvmzJnDzZs3 8fT0NHU6ogjSarXyHlaEbdy4keXLl6MoCv379+fLL780dUpCCCGEEMLETp06Rfv27encuTMjR440 auzCUKhcEPPmzSMsLIzVq1fj4OCQ7zGmTp2a7Tre3t5MmTKFKVOmcOLECSIjI7lx4wbHjh1j69at 3Lx5kxs3bvD48WNeffVVbt26hbW1NVZWVlhbW+t+trKywtnZGSsrK9zc3HQ3V1dX3NzcuHfvHu+9 9x5z5szB19cXlUrFa6+9xrVr13j33Xf5+uuv87WN+tC0aVPc3Ny4desWH330EWvWrNHLuA8ePGDf vn1ERkZy+fJlbt26xb1794iPjycxMZHU1FQgbV9Vq9VERUWhUqkYP348q1evxtLSUnezsLBAo9Gg 0WhQFAVFUUhNTSUpKYmEhAQePXrEvXv3uHv3Lrdu3SIxMREALy8v6taty6hRo+jQoQOVKlXSy7Zl JSUlhePHj7Nv3z4OHDjAwYMHcXZ2pl69etSvX58RI0ZQrlw5g+aQV4qipNv/qlSpQlBQkAkzEi/K c8HQvHkwb172b35CCNOSlmRCCCGEEEKYFw8PD2rWrMmWLVsYPHiwqdMRQhjBgwcPWL58OaGhoQQG BvLhhx/i7+9f5L+cEUIIIYQQ+mFtbU14eDhffvklNWrU4JNPPqFXr15GiW1jY4NGozFKLH3r1asX /v7+bN26Nd9jHDlyhISEBCpWrJjr59SoUYMaNWpkuiwpKYnbt2/z6NEjEhMTSUpKIjExUfdzUlIS Wq2WmJgYYmJiOHPmDDExMcTGxhITE8Pt27e5efMm1apV48aNG7oZi3r06EF8fDxTpkzho48+yvf2 FlR0dDTff/89UVEFb127d+9eJk6cyI4dO0hJSaFcuXKUK1eOMmXKUKlSJUqWLImVlZVu/3xa/JOS ksKOHTuwsrKiQoUKJCcnk5KSQkpKiq44KDU1FZVKhUajwdLSEgcHB9zd3SlZsiROTk64urri7u6O l5cX5cqVw9HRscDbk5Xr169z8uRJTp06xalTpzhx4gRRUVEEBATg5+dHr169+OqrrwwyO5U+7dy5 k6NHj+rujxo1Si5mKmSkJZkQZkZmFRJCCCGEEMI8tW/fnhUrVjBo0CApGBDCjB0/fpzly5fr2o5t 3LjRoCeihRBCCCFE0fbBBx8wfPhwJk+ezPbt2/H19SUoKIh69erp1rl//77umLKwf540VKuzXbt2 0adPH1asWEGjRo0KNNbmzZtp27atnjIDKysrypYtm+/nb9iwgd69e/PFF1/g4uKS6Trjx4/P9/jZ ef7fKzf71ueff66XuL/88gstWrTAxcUlz/v0nj178h1X3/tnSkoKFy9e5J9//tEVCJ08eRJ7e3uq V69OtWrVaNOmDWPGjKFChQp6jW0Mz88u5OLiwhtvvGHCbERmpGBICDMjLcmEEEIIIYQwT0FBQcyY MYOTJ09meVWiEKLo2rhxI6GhoSiKQt++fZk6dWqh/zJHCCGEEEIUDo6OjsycOZNLly6xefNmpkyZ wunTp2nVqhWtWrVizpw5tG3blnfffReA0K/fN3HGGalUKnqPnm6QsSdPnsypU6e4evWqXsbbsmUL S5cu1ctY+tChQwcePnwIpM3gsmRVMKmpWoPG1GjUDO75a4bHq3ffb9C4CnBqTQN69OiR7vEVn1hj oFoznT6fJ+bredevXyc6OporV66ku0VHRxMbG0ubNm1wcHCgWrVqdOzYkerVq2Nvb6/n7I3v7Nmz /P7777r7w4cPx87OzoQZicxIwZAQZkhakgkhhBBCCGF+HB0dadKkCWFhYVIwJISZeL7tWKNGjfi/ //s//P39TZ2WEEIIIYQoosqVK0dISAghISE8fPiQP/74g7Vr17J9+3YiIiK4d++ebl2VSkVhKU/X GrDSY9asWajVakJDQ/Uy3oULF7CxsaF8+fJ6Gc9wVBiq85M2h1okraIYpHhHrQJyuKhCbaCdWvvc 9nz55Ze89dZbODk5ARAXF0d0dDRRUVHpCoOePubu7o63tzfe3t54eXnRuHFj3c9lypQxTMKFwLff fqubkcnS0pK3337bxBmJzEjBkBBmRmYVEkIIIYTQD+mnLQqj4OBgxo0bx9ixY7GxsTF1OqKIUxRF ZrAxkadtx/bs2UPv3r3ZsGGD7mSzEEIIIYQQ+mBvb0/Xrl2pXbs2R48epV69ejRu3DjdOhqNBrWh KixyKSU1FVINUzDUp08fhgwZQosWLfQ25t69e6ldu7bexjMsFRaW+j2/lZKsJW2enxzWS1H0Wgim Vqmwssx5X1WpwEKjt7AAJKei22RXV1ceP37Mhg0bsLGx4cqVK1haWuLt7Y2Pjw9eXl74+fnRrl07 vLy88PHxKZbnGO/evZtuFq5evXrh6elpuoRElnJVMNT+27OGzkOIYm9EZf2MIy3JhBBCCCGEMF+v vfYaDg4ObNu2jU6dOpk6HSFEHm3atEl3ZfPTtmNCCCGEEEIYkq+vL0ePHs1yuYVGneOsLYaiaLWk pBpm7H79+jFs2DCaNm2q13FPnz5NlSpV9DqmIanVKr0VhWm1eSsASk7Rz0xDKhVY56JY6Cl97tIv zqZUqlQpEhISaNmyJa+//jre3t6UKFFCP8HMyMKFC4mPj9fdf++990yYjciOzDAkhBmSlmRCCCGE EEKYJ7VaTdeuXfnll1+kYEiIIuLBgweEhoYSGhpKYGAgH3zwATVr1jR1WkIIIYQQQuioVSqjzz6q KAoGqhViwIABDB48WO/FQgBnzpyhffv2eh/XkFSq/7WgK8A/saLkvWAI0tqT5dTCLDtpMwblPXF1 AbcXMm+Vd+bMGS5cuECFChUKNrgZS0xMZPbs2br7zZs35+WXXzZhRiI7UjAkhJmRWYWEEEIIIYQw b127dmXBggWcOnWKatWqmTodIUQWjh8/TmhoKHv27KFPnz78/vvvODo6mjotIYQQQgghMpfNVDCG aRhmGAMHDmTAgAE0b97cIOOfPn2aqlWrGmRsQ1OyvGNYLxbuqHT/Ma6nu7iSi41XZZOgFAtlb9my Zdy8+ey76rFjx5owG5ETKRgSwsxISzIhhBBCCCHMm6urKy1btmTlypV8+umnpk5HCPGCTZs2sWLF ChRFoU+fPtJ2TAghhBBCFHragkwBU4gMGjSIPn360LJlS4OM/+DBA3x9fXF2djbI+IaiKGkzOpmC Rk/t0PJKqygFKorKTVGRyEir1TJr1izd/Ro1atCmTRsTZiRykueCodLXXspy2aZNP/L772/w6W/X CpSUEKJgpCWZEEIIIUTeGHvabSEKqk+fPgwdOpR33323yJ2oFIWbVqtFrVabOo0i58GDB6xYsYIV K1bQsGFDxo0bh7+/v6nTEkIIIYQQIkdJyYZqDGZcEydOpFevXgQFBRksxoMHD4iJiTHY+IaQmqI1 WOu3nFhbmuazpZns0kXSpk2bOHnypO7+mDFj5LxrIZevGYY2bXqs7zyEEHoiswoJIYQQQghh/l5+ +WUqV67ML7/8wltvvWXqdIQotk6cOKFrO9a7d29+++03aTsmhBBCCCGKjJRU86is2Lp1K1evXqV1 69YGjXPv3r0idbyvKAopKaaZKcfS0lQzC4HWPHbrImnGjBm6nz08POjTp48JsxG5IS3JhDAz0pJM CCGEEEII86dSqRgwYADTpk1j4MCBWFtbmzolIYqVzZs3s3LlSl3bsS+++AKQGeuEEEIIIUTRYaoW VYYwbNgwLl68aPA49+/fx8nJyeBx9EPBsP/EWX/2URvwc9Hzm3Ty5EnWr1+ffrn57NZFzv79+9m1 a5fu/ujRo+V8VREgBUNCmCFpSSaEEEIIIYT5a9WqFV9//TUbNmygW7dupk5HCLP3tO3YypUree21 1xg3bhx+fn6mTksIIYQQQog86/PujJxXKiLefvttZs+ejUajMXis+Ph4qlSpYvA4BTW4568mi31y TQOjxKlWrRoNGzakdu3aAPSenGiUuCJr06dP1/1sb28vM2IXEVIwJISZkVmFhBBCCCGEKB40Gg0D Bgzghx9+IDg4GLVabeqUhDBLJ06cYMWKFURERNCrVy/CwsJwcHCQ2YSEEEIIIUSRZE4zC23ZsoXE xEQ6d+5slHiKohAdHW2UWPllyn9ffcc+ePAg+/fvZ+/evezbt48qVarw6quv0qBBA1599VXs7e0B CAkJydO4165do2vXruzfv1+v+RZnZ86c4ddfnxWqvfXWW0WqfV9xJgVDQpgZaUkmhBBCCJE9KaoQ 5qR79+4sWrSI8PBw2rRpY+p0hJnSarXF8r0zq7ZjQgghhBBCiMJh2LBhXL582WjxrKysSE5ONlq8 4kSr1bJv3750t9q1axMQEMCwYcNYvHgxNjY2pk5TZGH69Om6gjErKyveffddE2ckcksKhoQwQ9KS TAghhBBCiOLB1taWAQMGsHDhQoKCgoplUYcQ+vTgwQNWrVqlazv2/vvv4+fnJ7MJCSGEEEIIUciE hIQwZ84co34OtrS0lIIhPUlISEg3e9Dhw4cJCAigQYMGjB49moCAADnHUURcvXqVn3/+WXd/wIAB eHp6mjAjkRdSMCSEmZFZhYQQQgghhCheevfuzZIlS9ixYwctWrQwdTpCFEknTpxg5cqVurZj69ev x8HBwdRpCSGEEEIIITKxc+dO7O3tjdaK7Clra2vc3NyMGtNcxMXF6VqM7du3j9OnTxMQEMCrr77K +PHjqVevnqlTFPk0a9YsXSGdWq1m3LhxJs5I5IUUDAlhZqQlmRBCCCGEEMVLyZIlGTBgAHPnzqVZ s2ZyBZ4QebBlyxZd27HevXszefJkmU1ICCGEEEKIQm7RokUMGzbM6HFdXV05evSo0eMWNXFxcRw7 dkx3+/fffwGoUaMGAQEBTJkyhVq1apk4S6EPsbGxLFy4UHe/W7duVKpUyYQZibzKZ8HQGv1mIYTQ K2lJJoQQQgghRPHSv39/fv75Z8LDwwkKCjJ1OkIUas+3HWvYsCFjx47Fz8/P1GkJIYQQQgghcuHC hQtcvXqVJk2aGD22p6cn169fN3rcwuze/7N35/ExXe8fwD93kkz2TUIsiS0hEYTaainaqqJqqX1X qq1SXShFvySopa2tVVFLVe0S1K8tWlQXRexLiNgiCUGILBOZrDP390eakWWyz8ydzHzeXvOKu53z 3DPJzJm5zz0nOblIclBaWhpatGiBgIAADBgwAPPmzeMUVSbq66+/hlKp1CzPnj1bwmioIsqdMPSo ThzavP1Ksdvn/RxXqYCIqHI4qhARERHRMxxphcyFk5MTxo8fj2+//Rbdu3eHhYWF1CGRiRNFscqN xJM37diJEycwdOhQ/PTTT3B2dpY6LCIiIiIiKocNGzZgwoQJktQtl8vh6OiIJ0+ewM3NTZIYpJSS klIkOejp06cICAhAQEAA+vfvj8DAQNSpU0fqUMkAFAoFVq1apVnu1asXWrZsKWFEVBGckozIxHBK MiKiijPExdW8uXyJiIh0bdSoUdi8eTN+/vlnvPHGG1KHQ2Q0fvvtN+zatQsAMGzYMCxYsEDiiKoG QyRTPX36VO91EJFhGSKZVBRFvddBRETGKywsDAsXLpSs/rxRhkw9YSgtLQ3nz59HeHg4Ll26hMuX L0OhUGiSg/r27Ys5c+bA09NT6lBJIqtXr0ZKSopm+bPPPpMwGqoo3m5LZII4JRkRUWUEQhRFvTwK ++CDD2BlZQUrKyvY2toW2V69enXI5fIij7i43BEdJ0+eDLlcDmtra80jf0a/Nv/++y9eeukluLq6 ok2bNvjrr780227fvo2xY8fC09MTnp6eGDVqVIEhdlUqFWbPng0vLy+4u7tj6NChePToUQXbmYiI dM3Ozg7vvfceVq1ahczMTKnDIZKUQqHA+vXr8corr+DEiRP45JNPsGnTJvTs2VPq0KoYw/WNp06d Cnt7e9jb28PJyanI9ry+aN26dbX2RT/++GPY2dnBzs4Ojo6OZTq7kvrGKpUKM2fORJ06deDq6orB gwcXqO/27dsYM2YMateujdq1a2PEiBGcnoIIABCIwED9vG5oe+24desWRowYgerVq6N69eoYOnSo 5jNzSURRRNeuXSEIAi5evKhZ7+LiAkEQijzu3btXofoqGh8REWl38uRJuLu7SzqidJ06dUzqtTwj IwOXLl1CSEgIFixYgJEjR6Jt27YYPXo0Vq9ejeTkZPTt2xchISG4evUqduzYgVmzZqF3795VMlko JSUF77//PsLDwzl9ViWkpaVh+fLlmuWuXbuiU6dOEkZEFcWEISIT4+FRU+oQiIiojL755htkZ2dj 3759Wrc/fvwYWVlZmsfEiRPRuXPnAkO6vvfee8jMzNQ8pkyZUmx9YWFh6NevH0aOHImoqCiEhIQU qHvdunUYMGAArly5gpMnTyItLQ2jR4/WbP/qq6+we/duHDhwAFeuXEFmZibGjBmjg5YgIiJdGTJk CKysrLB161apQyGSREREBAIDAzFgwACIooi9e/di/vz5aNq0qdShUSmWL1+OtLQ07N69W+v2pUuX Ys+ePdi/f7/WvuiKFSugVCqxZ8+eMtVXWt/4yy+/RGhoKA4ePIhr164hMzMTI0eO1Gxfu3YtBg4c iIiICJw6dQppaWkFthORYaxZswaDBw/GzZs3ce7cOTx9+hTDhg0r9biVK1dqvXEnOTm5QILSpEmT 0KVLF80F0fLWV9H4iIhIu3/++QddunSRNIa8EYaqGrVajYiICOzbtw9LlizBuHHj0LFjRzRt2hSz Z89GWFgYatSogXfeeQc///wz9u7di507d2L27Nno3bs3vLy8pD4FnXB2dsadO3eQnZ2NrKwsqcOp stauXYuEhATN8v/+9z8Jo6HK4JRkRCaGU5IREZmmtLQ0bN++Hd9++22Fy5g7dy7Gjh2rmePb1dUV K1eu1Gz/4osvAOTeaeni4oJx48Zh7Nixmu0bNmzAtGnT0Lx5cwDAkiVL0KpVK9y4cQONGzeucFxE RKQ7VlZWmDp1KubOnYsBAwbA1dVV6pCIDOL3339HSEgIRFHE0KFDOe2YCdqwYQOmTp2K5s2bQxCE SvdFS+sbr1u3DtOnT0dAQACA3ASiFi1aaOr78ssvAeROv+Ti4oLx48cXSLYnIsNYtmyZ5v8uLi6Y MGECRowYUeIx169fx6pVq7B//374+/sXu19aWhq2bt2KNWvWVLi+isRHRETF++eff7Bo0SJJY6gK IwzdunUL169fR2RkJK5fv47r16/jzp078PPzQ+PGjeHn54cRI0bA19cXdevWlTpcg9u2bRt69OiB pUuXSh1KlZSenq75PAQA7du3R7du3SSMiCqjTAlD+z/kBSAifTt48IbOyuKUZEREpmfnzp2Qy+V4 4403CqzfunUrNm7ciOrVq+P111/H/Pnz4ezsXOT47OxsnDhxAl27dkWrVq0QHR0Nf39/LF68GJ07 dy6y/4MHD7Blyxa8/vrrAIDExETcv38frVu31uzj5+cHOzs7hIeHM2GIjIIgCFKHQGQUevTogR9/ /BGrV6/GnDlzpA6HzIgoigZ9LVYoFAgJCUFoaCg6dOiAqVOnciQhnQqUOgANXfdFS+sbl1Tf5cuX i9T34MED/Pjjj+jTp0/lTpSIKuX+/fvYtGkT+vXrV+w+KpUKY8eOxfLly0tNrN6+fTvkcjkGDhxY 4foqsz8RERWUkZEBS0tLtGjRotJl6eJzy9y5cytdRh5t026WJjY2FlFRUbh9+zaioqIQHx+PmJgY REZGwtvbG76+vvD19UX//v3h6+sLb29vncVrbCr6fFb0uIo8X6Zk3bp1iI+P1yzPmTOH38tWYRxh iMjEcFQhIiLTtH79eowdOxbW1taadatXr8bq1auRnZ2Ny5cvY+LEiRg/frzWaRhSUlKQk5ODjRs3 IjQ0FI0aNcLq1avxxhtv4NKlS5ppzrZs2YK3334bANC8eXPNtAwKhQIA4OTkVKBcZ2dnpKam6uWc iYioYgRBwKxZszBixAgMHz4cPj4+UodEpFMRERHYtWsXwsLCMGjQIOzevbtIH4V0IzAwSOoQADzr ixZOjK9oX1ShUJTYN87Ozi62vrxYAGDz5s0F+s6//PJLuWMhosrbtGkTxo0bBwAICAjAgQMHit13 yZIlqF+/Pvr374+HD0v+DnXt2rUYN25cgc/h5a2vIvsTEZF2UVFRSE9P11l527+ZrLOyKkoQBAyf kjuifFJSUpFk1oSEBERFRWkSg/KSg6KiouDp6YmGDRvC29sbjRs3Rq9eveDm5gY/Pz+zTN547pT+ RwtSiWpcbj9D7/UYs4yMDM1MBQDQunVr9OrVS8KIqLJkUgdARLqVNxUZAM1PIiIqK+O5izq/c+fO 4cKFC5rpEgqztLREq1atsHTpUuzfv1/rRRN7e3sIgoBx48ahVatWcHR0xMyZM2FtbY2//vpLs9/o 0aOhVCpx584ddOzYES+99BKUSqXmIlz+CyRAbiKSo6Oj7k6WiIh0IiAgAL1798bChQvN/s43Mh2/ //473nrrLSxbtgwdO3bE77//jrfffpvJQmYg7zlOSUkpsL6ifVE7O7sS+8Yl1Zf/923MmDHIzMxE TEwMOnXqhC5dukCpVJY7HiKqnDfffBNqtRr379/HCy+8gE6dOmn9W4yIiMCaNWuwatWqUss8e/Ys zp8/j3feeafC9VV0fyIi0u7OnTto0KCBDksUIQiQ7JGfh4cHxo4dixUrVmDKlCno3bs3/Pz88Mor r2DJkiU4e/YsXF1dMWzYMGzYsAHR0dE4ceIEtm7dinnz5mHs2LF44YUX0KRJE7NMFtIQ9fcw41Yt YP369Xjw4IFmee7cueb9O2cCmDBEZII4JRkRUcUZy13U+a1duxYvv/xypYaNtbW1LTJ1giiKEEUR MlnBLqEgCKhZsyZmzJiB2NhY3L59G9WqVUPt2rVx7tw5zX6RkZFQKpVo3rx5heMiIiL9mTZtGi5f vowjR45IHQpRhSkUCnz//ffo0aMHTp48ialTp2qWyXzoui9aWt+4pPoCAgIKHCcIAmrVqoWZM2dq +s5EZHh5f4uzZ89GTEwMbt26VWSf8+fPIy4uDjVq1NDsDwDPPfccPvnkkwL7rlmzBt26dSt2pMay 1FeZ/YmIqCjdJwzlsrCQGfxR+PvYhIQEXLp0CWq1Gi+//DIWLVqEs2fP4uLFi9i7dy+WLl2KSZMm 4dVXX4WPj0+R4+mZbFGl84cKaqlPyygUHl3oueee47TMJqDcryaTJhX/EIRZ+oiRiMqBowoREVXO vHlBEIQgqcPQSElJQUhIiNa7GgcNGoQLFy5AqVTi4sWLmDFjBnr27FnsXdbvvvsuvv/+e5w/fx5P nz7FF198AbVajZdeegkqlQojR47EpUuXkJGRgdjYWCxYsAAeHh6aiykTJkzAihUrEB4ejvj4eMyc OROdO3fWbF+4cCFatmypqS8iIgL29vaIiIjQrGvZsiUWLlyoyyYiIqJi1KhRA5MmTcLixYt1Omw7 kSFEREQgKCgIgwcPhiiKCA0NRVBQEJo2bSp1aGbFmPrGEyZMwMqVK4vti5ZXSX1jAHjnnXewbNky XL58GfHx8ZgxYwa6dOmCxo0bQ6VSYcSIEQX6zvPmzUPNmjU18SxYsADNmjXT1Hf16lXI5XJcvXpV s65p06aYP39+JVqFyDgZ6rVD+5BomwAAIABJREFUpVJhyJAhuHjxIjIyMhATE4PAwEDUrFkTvr6+ RfYfNWqUJjlQFEXN3fEXLlzA0qXPpjFJSUnBzp07MXHixErVV5b9g4KC4OfnpznmypUrEAQBV65c 0azz8/NDUFBQpdqKiMgUpKamwt/fX+flCoIAuZWl4R6WlkVimDx5Mr7++mtMmzYNb7zxBlq0aAEH Bwedn6u5yFTn6OyRpVZJfTpGY926dYiLi9Msc3Qh01D0FakM1qxJKX0nIpJE3pRk+X8SEVFZzdP8 TxDmlbCfbmzcuBHvvvuuZlkulwMA7t+/D3d3dwDAtm3b4OTkpDVTf/z48fjggw8QHh4Od3d39OnT B3PmzCm2vkmTJiElJQUDBgyAQqFAQEAA/u///g81a+Ymm44YMQJTpkxBeHg4nJ2dNVN9WFtbQxRF TJ8+HSkpKejVqxfS09PRrVs3rFu3TpdNQlRm/DBKVDZjx47Fvn378N1332Hq1KlSh0NmSK1Wl+vu 10OHDiE0NBSiKGLIkCG8QCopw/aNN23ahPfff1+zbG9vDwCIjY2Fm5sbPvnkEyQnJ+O1117T2hfd tGkTJk2apFm2s7MDANy7dw9ubm5F6iutbzxjxgwkJyejZ8+eUCqVeOWVV7BhwwYAgIWFBUaOHIkp U6bg8uXLcHFxQceOHXH48GFYW1vrvnGIqhTDvXZYWFhg9OjReO+993Dp0iW4uLjghRdewJ9//lmp v8UtW7bAyckJ/fr1q1R9+oqPiMhcRUdHFxntUVcEAYYZtUcEVKqio9V88803+q/bzOSIlR8VSABg KVhUPhgToFQqsXjxYs3yc889h759+0oYEemKUKdVL3HSl3vwVjPtSUBHjhzCyJFjNMuTJhWXMLQE ACCKi7VsI6LSHDz4KxydXMt1zAudOlUqIej8+bPo1et1bNu2ucDfORGZlkWLFkEURXz22WdSh6IX oiga9bG63k+qWIy9Dl0fa4jyquI6tbroB21DlKdtPyIquzNnzmDcuHHYt29fsdNqEOmTtulP81Mo FNizZw9CQ0PRoUMHDB48GP7+/lqTQ8u6TtuX/ZUpryqu00aq8gxxrDHVUVZVMRZdH2sOli9fDlEU MW3aNKlDISITwe/zTZu/vz/CwsLg5OQkdShGZ/To0Rg/frxmRMjKEAQB27+ZBEEQYGlpAbmVBSwM kDAk/pcwlJmdA5VKDUEQMHzKt5X6bphyn8/nTi0FxNwpyTLVOcgR1RBRuXaVQYClYAEbC0tYCjLk iGpcbj/DLJ+vpUuXYvr06ZrlX375Ba+//rqEEZm2wnkD+3/7Xet+vXs+m679hU6dNMe2atWm1Dq+ v+KM4BkDKzbCUHGYLEQkPY4qRERERERE+bVt21YzCt22bdsMc9ckURlcu3YNoaGhCAsLw6BBgxAS EsILI0REREREpJVSqdSMIqkPaj0ngcgEodIJLFR2MkFA7hhBFaMWRSbG/yc1NRVffPGFZrldu3bo 3bu3hBGRLuk0YYiIpMcpyYiIiIiIqLBPP/0UvXr1wq5duzB8+HCpwyEzd+jQIezevRuiKGLw4MGY O3cuE9mIiIiIiKhETk5OcHZ21kvZarUI6DmZR6XX0ik/mSBAVolkIQCVyTUyOStXrkRCQoJmecGC BUymMiFMGCIyQXlJQkwWIiIiIiIiAHBxccFnn32GwMBAvPjii6hVq5bUIZGZyZt2bPfu3Wjfvj0+ +ugj+Pv7Sx0WERERERFVEcnJyUhNTdV5uSqVGiqVWuflkjQsBBksBN6QoitPnjzB0qVLNctdunRB 9+7dJYyIdI0JQ0QmhqMKERERkanhqBNEutGnTx/8+uuvCAwMxPr163k3GBlE3rRjp06dwsCBA7Fj xw44OTnx94+IiIiIiMrF2dkZKSkpOi1TFAFRz1ORkeEIAmBhgKGBjh07hs6dO+u9HmPw5ZdfQqFQ aJYXLlzIz/MmhglDRCaGU5IREREREZE2giBg/vz56N27N/bu3YuBAwdKHRKZsMOHDyM0NBQANNOO ERERERERVZSTk1OBxIXKsrCw0FlZJD2VaLhRooKDgzFlyhQMHDgQAwcONNnRc+Pi4rBq1SrNcs+e PfHCCy9IGBHpAxOGiEwQpyQjIiIiIiJtatasidmzZ2PhwoXo2LEjpyYjnco/7djzzz+Pjz/+GE2a NJE6LCIiIiIiMgFOTk46HWFo6ORVpe9EVcbl9jMMVteOHTuQkJCAPXv24KOPPoJKpdIkD3l4eBgs Dn2bN28e0tPTNcsLFy6UMBrSlwqO7b9Ey4OIjIGHR02pQyAiIiIiIiM2YMAAtG3bFjNnzoRabbg7 8Mh0Xbt2DfPnz8fw4cMhiiJ27NiBuXPnMlmIiIiIiIh0xtnZWWcjDImiqPWxYcMGdO7cGdHR0cXu o48HVU552/vevXto165dpZ4vd3d3vPvuuzh06BCCg4ORlJSE1157DUOGDMGuXbuQk5MjcatUTmRk JDZu3KhZHjp0KFq1aiVhRKQv5U4YCg4GRHGx1gcRSS9vKjKAyUNERERERFSUIAj4/PPPce3aNWzZ skXqcKgKO3z4MN555x2sWLECHTp0wP79+zF+/Hg4OTlJHRoREREREZkYXU9Jlp9arcaIESMQGxuL f/75B/Xq1dNLPWSafH198dlnn+HcuXP46KOPcPr0afj4+GDSpEk4cuSI1OFVyOzZs6FSqQAAlpaW +PzzzyWOiPSFU5IRmSBOSUZERERVlSAIUodAZBZq1KiBhQsX4uOPP0bHjh3RuHFjqUOiKkKhUGD3 7t3YvXs32rdvj6lTp+pkJCG1Wg2ZrIIDYRMRERERkclzdnbGzZs3dV7u4cOH8dZbb2Hr1q3o0qWL zssn89KxY0d07NgRy5Ytw88//4ytW7figw8+wIABAzBo0CC0bNlS6hBLdfz4cfz000+a5XfeeQc+ Pj4SRkT6xIQhIhPj4VGTiUJERERERFSqV199Ff369cPUqVOxZ88eWFtbSx0SGbFr164hNDQUYWFh GDhwIHbu3MmRhIiIiIiIyGCqVaum88+ts2bNwsOHDxEbG6vTcokAoG/fvujbty8UCgX27NmD//3v f0hJScHAgQMxcOBAeHl5SR1iEaIoYtq0aZplBwcHzJ07V8KISN946xaRieGUZEREREREVFZz5sxB VlYWvvjiC6lDISN16NAhvP3221i+fDnat2+PAwcO4K233mKyEBERERERGZSXlxdOnz6tk7Ju3LiB du3awd/fHz/88INOyiQqjpOTE8aNG4dff/0VmzdvRk5ODoYMGYL+/ftjy5YtSE9PlzpEjV27duHU qVOa5U8//RQeHh4SRkT6xhGGiEwQpyQjIiIiIqKysLW1xcqVKzF48GB06NAB3bt3lzokMgL6mnaM iIiIiIioonx9fXH9+vVKl/Pdd98hJCQE+/btQ+3atXUQGVHZNWjQAJ988gk++eQTnDlzBnv37kVA QAC6dOmCQYMGoVevXpLFlpGRgVmzZmmWa9eujalTp0oWDxkGRxgiMjEcVYiIiIiIiMrD398fM2fO xMyZMxEXF1dku7Z1ZJquXbuG+fPnY9iwYRBFETt37sTcuXOZLERERERERJKTyWSoX78+oqKiKnR8 ZmYmhgwZgoSEBBw9epTJQiS5tm3bYvHixbh58yaGDBmCvXv3wtvbG59++qnORtMqj+XLlyM6Olqz vHDhQtjZ2Rk8DjIsjjBEZGLypiTL/5OIzMu8efMKLB87dgyiKCInJ6fA+sDAQEOGRURUhEzG+xeI jMWYMWNw+vRpfPDBB9i1axfkcjkAYOfOnZg3bx5ef/11fPXVVxJHSfpy6NAhhISEAACGDBmCoKAg aQP6jyiKEARB6jCIiMql8GfykydPQhRFPH36tMB6fiYnIiIqv8aNG+PGjRto2LBhuY47ePAg3n// fWzZsgUdO3bUU3REFdejRw/06NEDGRkZ2LNnD5YsWYK4uDgMHDgQAwcOhLe3t17rP3/+fIH+qb+/ P0aPHq3XOsk4MGGIyARxSjIi8/X3339jyZIlyMjIKLLt6NGjmv/b2Niga9euePHFFw0YHRERERkr QRCwZMkS9OvXD4sWLUJQUBAmTpyIsLAwZGVlITw8XOoQSccUCgVCQ0MRGhqKDh06YOrUqfD395c6 LCKiKq2kz+SHDh3S/J+fyYmIiComb1qynj17lrrvzJkzERsbi9q1ayMlJQW3b982QIRElWNjY4OR I0di5MiRiIuLw549ezBu3Dg4ODhg0KBB6N+/P+Lj43U6EnBaWhr69OmjuelcJpNhw4YNsLCw0Fkd ZLx4Sy+RieGUZETmrWvXrvDz8yt1P19fX34xSURERAU4OjoiODgYISEhCAgIwN9//43U1FQAKDAk NVVtERERmDdvHoYMGQJRFBESEoLAwEAmCxER6QA/kxMREelX48aNcf369VL3y8zMxNKlSxESEoL7 9+9j/fr1BoiOSLfq1KmDDz74AP/88w+WLFmC6OhoNGrUCK1atcLvv/+us3rs7OzQvn17zfJnn32G Dh066Kx8Mm7lHmFo0qTit61ZMwuiuLgy8RBRJXFKMiJauXIl+vfvj+TkZK3bXVxcsHLlSgNHRURE RFXBxYsXAeTeXZafXC7H3bt34eXlJUVYpAOFpx3jVDhERPrBz+RERET607x5c+zdu7fU/SIjI+Hn 54eAgAC+75JJCAgIQEBAAG7evInQ0FBMnz4dPXr00EnZgiBg0aJF8PHxwYMHDzB37lydlEtVQ4Wm JFuzJkXXcRCRDnFKMiLz1rVrV9SvX19zwa+wevXq8U5GIiIiKiJvCrLMzMwi22QyGa5du8aEISPT pEkT1K9fHwcPHtS6ndOOEREZHj+TExGRqRMEQeoQsHnz5jLtd/XqVezYsUOvsYiiqNPyjKF9S6Lr 86WyKfx7ER4errfflS1btlTqeP6OVC0VShjSbonuiiKiCuOoQkQEFH9HI+9kJCKpGPuXHUTmrkWL FsjMzERWVpbW7WlpaYiIiNDZ3WtUeV26dEFOTg4ePnyIU6dOFRg+PCIiAiEhITh58iQGDx6M0NBQ ODk5SRit7oiiyPcUIjJ6/ExORESm7t1vw9gvF4DvJj2vl6K3j+usl3Ira8QPx6QOway9M2271CGU at2yEVKHQOWkw4QhcDoyIiPAKcmICCj+jkbeyUhERETaeHh44NGjR8UmDKnVapw7d87AUVFxhg0b hvj4eKjVaigUCixYsAD79+/H77//XmDasaCgIGkDJSIyU/xMTkRE5kJtpiOJCAIgQL8JUzIjS8gy 1+fa2AiCTOoQtModVYi/I1WRThOGiMg4cEoyIgKK3tHIOxmJiIioOIcOHUJYWBgWLFiAuLg4KBSK Ivtcv35dgsiosBkzZuDKlSvIzs7WrIuNjUWXLl3w8ssvY9q0aZx2jIjICPAzORERmQNRBFRqtdRh GJQgCLC0MEwyj5WFcSSHZKvM6zk2dhYWVlKHUIBarYIoqqQOgyqICUNEJoajChFRnsJ3NPJORiIi IipJ+/btsX///mITh1JSUqBUKmFnZydhlOYtODgYv//+O5RKZYH1aWlp8PT05IhCRERGhJ/JiYjI XKjUIsxp8BkrS8OO/GMpkzZpKMfMEsKqCpmFkaR5iCLUaiYLVWXGkZZIRDqTNxUZAM1PIjJfK1eu hIuLC+9kJCIiojLLSxz67rvv0KRJEzg5OQEA7OzsEBkZKXF05uvAgQNYv349UlNTtW5/8OABwsLC DBwVERGVhJ/JiYjIXKhFEWpRhMrEH1KRCYCFTDD4g4ybIMggk1lI9jDW6dGofIwk9YyIdIlTkhFR nq5du8Ld3R2iKPJORiIyGMHI5lgnoorp0KEDDhw4gLCwMMyfPx937txBZGQkWrduLXVoZufq1auY NWtWsclCAKBQKLBgwQIcOHDAgJEZB1EU+d5DREaJn8mJiMjcsFeuP6I5DeNEZcbfC6osJgwRmRhO SUZEhd28eVPqEIiIiKgKa9++vSZxqH379lKHY3ZSU1PRr18/qFSlD/EdFRXF54mIyMjwMzkREZkD jkajPyJEqJgTQoWJIkSRU4FR5VUwYWiJbqMgIp3Jm5Is/08iIiIiIqLKYhKKNBwdHfH++++XeX8+ T0REREREZEhWlpyWSF9UahEqNbOFqCC1WgW1mslCpBvlThgKDgaCgxfrIxYi0hFOSUbGjFMFkDnJ ycmROgQiIsqnQYMGUodApHdff/21weu8c+eOweskIt2wsLCQOgQineK0HEREhiWTAZyITD9EEVDx fY0KETmyEOkYpyQjMjEcVYiqgm8/ZyeXTNvaH8ch/OYmqcMgIiItFk1kP4RIVzb/PA6R9zdJHQYR VdLn4japQyCqtB/HrcTNTWekDoOIyOwI5pwspNevFwT9Fl8hZvxcGxXj+82gqo0JQ0QmhlOSUVUR duofqUMgIiId4MhxVBWdu8h+CJEuGeN7gVqthkzGqRGIyur40X+lDoGIiIiqkLXvcypkfRrxA7+3 oNzRhE6cOIHt27cDANYtGyFxRGSKmDBEZII4JRlVFba2HPqcTE96OocDJSKqCuzs2Q8hqgxlGvs8 RKYmR5kldQhEFWJpJ5c6BCIis8LpH/VLV+2blJSEzp0748qVKzopjwzn6tWr2L59O7Zv347o6Ohi 96tZsyaGDBmC+fPnw9nZ2XABkklhwhCRieGoQlTVWMl51y+ZjuwstdQhEBFRObAfQlQx7PMQmS51 Vo7UIRCVi0zOSxxERERU9d2/fx87d+7Eli1bcPHixWL3c3Nzw6BBgzBs2DB07twZFha8IY4qh71p IhPDKcmoKrKw4MU6U/bpguY4evABzpxIkDoUvVKpeOGMiKgqsrA07n7I3K+b49BPDxD2l27eR2ct bYpjhx7j30OPdFKesdUnlco+T1WpnVQ57PMQmTqxCvydZyWn4993d6PzhiGwcrSWOhzJnJ7xK+r2 8UfNzg31Ur6xt7Ng5P04IiIiopKkpqbip59+wpYtW/DHH38UO7qUvb09+vfvjxEjRqB79+6wsrIy cKRkypgwRGSCOCUZVUUyfsdj0gTBtJ9jtfF/n05ERCWQCVJHUDJBqHiMn37VFMcPPca/h58loshQ cnnajqmM/PXpumxjUpnnCSj9eTEGas48QGQ2RCP/g8+LT1SLRh+r3onFP1/n5vyG2i/7oNZLPhUr 2ojbWTD2N00iIiIiLXJycnD48GFs3boV+/btg1Kp1LqfpaUlevTogZEjR6Jv376wt7c3cKRkLpgw RGRiOKoQVWWCYFpf9kyd2xT//hGP08f1N7KOIeqoLAG5F9BM7fnNwzm7yZzITDnzj8ye0V50EnIf FY3vy08jcovJf7zs2fKspU3x14F4nDyaUPIxlZGvPp2XbSwq+TwBKNBOxqikC8VV5f1BFEWT7ZMS 6YUxf9QR8/005jgNoYQ2aD2/57N9Klp2KXVIgi/lREREVIWIoojz589j69at2L59Ox49Kv4mqg4d OmDUqFEYMmQI3N3dDRglmSsmDBGZGE5JRkREREREREREuiAaVZbIM3lxif/9M2f6bANjbGeB2UJE RERURcTGxmLr1q3YsmULIiMji92vUaNGGDVqFEaNGoWGDfUz1SxRccqdMDRpkvb1a9bMgigurmw8 RKQDnJKMSDesrS3w2gBPNG/lCltbC0TdTMXurTFIepIJZxc5Pglsiv8LicXZk08AAMPGNYBbdWus WXodo972hlc9ewwf3xDDxzdETNRTrFwYgelBzRBxORkNfBzhWd8OuzZFo00HN/gHuEAUgaQnmTh1 7DEO77+PvIFrbGwt0Ku/J5q1dIGtnSUunnmCfbtiMezNhlrrKMn0oGa4cikZDX0c4FXfHoqUbOzZ FoPrV1MAAEFLW2L7xijciFAAAFxc5Qhc2hKzp5xDulKF6UHNcPOaAl4N7OFZ1x5JiZnYsfEOGjRy wIvda8LaxgIXziQidPMd5B94x6OWLabMbII6XnZIeJSJPduicefW01LbOS/mwm124fQTXT7VRERE Rq2Wly2mLWoCz/p2ePwgE7vWR+N2ZO776OINLfHjqihEXsp973Z1k2PRhpaYOuoc0tNUmPGFP44f eYzjhx8XKfetaT6o622PMVMaYsyUhrhz4ym+/DSiyDGfrWiG8DPJ8PZzQF0fe6QkZWPX+hhcu5hS 7nMpXPZLvT3QrW9NODpbITYqDaEbYhEblaap98q5ZPj4O2o995IUV26XHjXQ9TUPLPgwXLNvjVo2 CPy2OeZMvIzEx5n4bEUzXL+sQL1G9vBqYI+khExsXnUH3k0c0K1PTdjYWuDs8URsX1Owv1PS8+To bIXBb9VFkxbOEEURV8+nYPfGWKQ9zSl3GxIRGZ70CRpZyem4vj4MydcewdrNDnW6N/5vS+4Qb1mK DNzafBZJVx5CAFCtRW14j24DKwd56WWXcuzZWfvh1soTKdcfITUqEdautvAZ2xbVAmoBAFQZObgT chEJZ+8iR5kFZ98aaDSuHWzcS5824uT7e+E3sQNcm+WWlZmoxMn39+KFDUNgaScvtW4ASItT4MK8 w3gakwTbmo5o9GZbODeuDgA4P/c31Hrp2ZRkpZVXWjtLzziSloiIiIiKk5ycjD179mDLli34+++/ i93P3d0dw4YNw8iRI/H8889zNFySTIVGGFqzpvxfChKRYXBUISLdGTmhISytZFj9xTWkpeWgR586 eOv9Rlg2/wpSkrOwZf1tjJ/cCHejlajbwB7+AS74KugK1GoRm9fegruH9unCnn+hOn4IvomYqDSo 1aIm+UUmE1DL0xZvvueDhMeZOH/qiSYOO3tLrP/6BlKSs9CyrRsa+TmVWEdJ2nZ0x6bgm3gYl46u r9bEqAkNMXfqBZR1Zq3mrVyxKfgWHj3MwIARdfHeNF+cP52ILwOvwN7BElM+bYIbravh4tlEzTEd X6qBH769hXuxaej0Yg2885EvFs66hKepOSW2c15MhduMiIjInHTpUQNrv7iVm/DSswben+OLOe9d wlNF5ZJNvl92CzVqFZ2STJvnX3TH+q9u4n5sOrr1qYlxHzXEp+PK3n/QxqO2DQaOq4sV/7uG2NtK eDawQ5vO1TQJQ0DFzr2kck/9/QRvjPGCt5+DJpmnc48auHZJgcTHmZoyWrZ3xbovbyE+LgNDJ9TF B0G+OPtvIj7/6ArsHS0xbVETXLtYDedPPOvvlBTr29N9kJmhwucfX4FMBrz5QUO8+VFDrP78RsUb kIjIjFz95hjkTjZ4fmU/qNKzEbHq3wLbI74+BgtrS7RZ3BtQi7i25jgig4+j+YyXSi27LMfGH4uC /4ddYO/pjHsHIxEZfBwd1wwCBODamuNQZ6vQck53WDpYI2bvZVxZ/jdaL+ylkws/JdUNAPeP3ECz j7vCoUE13D9yA+FfHMXzK/rBysmm3OWV1s5EZDyCeGHZZA0BsNzZWeowyEQMAl8vitML+m2bF/97 FCshAfj2W/z27bf4TU8xBFXmSxsyG1VjknkiKrO8qcgAaH4SUfm5uMrRvJUrdm26gycJmchIV+Hn 0Fi4VbdGzTp2AIAbEQr8degh3prSCANH1sOWdbeRmpJdatnHjsbjzq2nRRJf1GoRcbFKHPsjHs1a ugIAXKvJ0aylK3ZsvIOH99ORrlTh5N+PcPVScoXP7Z/DDxF7Jw1ZWWocP/oIDk5WcHIp/a5LzfF/ xONuTBoyM1U4c+IJ5NYW2LczBsq0HDyOz8CNawp41it4J+WJPx/h1nUFMtJV+OPgA6QkZ6F5q2pl aueS2oyIiEhvRCN5APjnt0e4Ea5ARpoKh/Y8QHJiFlo+X+3ZTfZajtH6/7IsF7PPn78+RPSNNGRl qPH3wUdwdLaCs6u8TPEXt6zKEZGTLSJDqUZ2lhp3rj/F3k13y37uxTxKKjczXYVTfyWgSw8PQAQs LQV0eNkdxw89KnS+8Yi9lYbMdBXC/nwCaxsL7P4+BmmpOXh0PwORlxSo29C+TLG617BGo6aO2Lk2 BilPspD0OAu71segWWsXOLtYFf88SP0gIipEkOiREZ+KlMhHaDy+HaydbGDn4QjvYc9pYsp49BTJ 1+LReFxb2LjawsbNDo3HtsWTi3HITk4vuewyHAsAnj394OztBktrS3h2b4wsRQaykpTISlQi4cxd +L3dAbbVHWBlawXvEa2QEZ+K9HsppZ6btnZFof8XV3fe9jqvNIarvwesbK1Qr09TyKvZIeHsXa3l l1Reae0s5YOIiIiIyo/JYlQWFRphiIiMG6ckI1MiSpQB7eqem0ATtKxl0W1ucty/m3vn+/E/4/HK a7URHfUUNyIKjcAnAqJY8BxE5E47ln9dy7bV8Erv2qjhYQu5dW4u752bqRBFEa5ucqjVIhIepWu/ g19LHSURAaQqsjX7Z2WpAOReLMtbl7+8/D9FUYQI4Gm+47OzVcjOUiMzQ6WpIztbDUurfOUBSHhc 8JyfPM6Es6tVmdpZW5tJhcOCkjnh7zsRIBpJ1kRCfGaBWB4/zISLu1WBdXn/f7ZO1Lpd27KoZXvh fRTJ2ZplTf9BLpS5jbTV/zg+A98vu4UBb3rBwckS96KVOPrLQ9yLVmr2K8u5F1ZauX8djMfsZc2w 63sLNGvlApVKxKXTSQXKTE3Jd77ZKmRlqpFRqL9jVej8i4vV1V0OtUpEwqMMzbZHD3P/7+IuR3JS VrHtJBWhnJdnq/J7hiiKVTp+IoOT4M8lM0kJC2tLyJ2fjZhjW9NBE09mYhoECwE2NRyeba/lCADI SFRC7mpbfNllPFbubKM5d5m1BQBAna1CZnI6AODE5D1Fyk5PeAr7ui5lO0lBy8///l9c3XnrbD0c CjwvtjUckJmo1J59VNK5lNLOkmXuGMdbI5HRmZ2aKnUIpCdt2rTBn3/+CUdHR6lDoSpu8ODBOHr0 KCZPnoz58+dLHY5R6dlJRm5hAAAgAElEQVSzJ86cOYOZM2di+vTpFSojKCgIy5YtK3Z7kyZNMHz4 cAwaNAheXl4VDbXCFvE1hMqICUNEJoZTkhHpRm6CCvC/D88h7an2KS8EARgxwRtXLyWhvo8jnu9c HaeOPdZsLy6/Jf96RycrjHnXBz8E38SNCAWyMlXo8kpNtHreDQCQ+CQTMpkAt+o2BS4ylVZHReVe /Ho2AKGDk5VOynVzty64XN0aVy4klamdAd2fJxERUVXi5lHwfbR6TWtcPp0EAMjOKvje7ehSvvdu tbry8VXG5TNJuHwmCYIAtOvijk8W+WPGuPPIyswNrKRzr2i5D+6m487Np+j4cnW0bO+Kk0cfQ6Wq fGejuFgTEzIhsxBQrbociY+zNNsAICkhs0g5RERUkHU1O6gyc5ClyID8v2m20h89fbbdzR6iSkRG Qhps3HNHu01/mHsh3cbNrmiB+cuuxLEAYONuD0EQ0GndIFg5WJe6f2EyuQVU2c8SUrNSin7uL03+ tshbdm/tWe5ySmtnIiIiqlpWr16NXr16MVlIi+DgYIwYMaLCyUIAkJNT9HpGrVq1MGjQIAwbNgzN mzfnzSlUJTBhiMjE5E1Jlv8nkUkwcMJIUkIWrlxIwoi3vLFvZwxSErNQs44tur9eBz+uuYWcHDVe 7VsHrq5yLJt/BXUbOODtDxsj9vZTPIjLvcNQkZyF2l52kAlCwam08k3zYGUlgyAIyFCqoMoWUa+h A158tRYUKVmAmBvH1UvJGDG+IXb9eAcpSVl4rp0bFMm564utoySFpwTJty4uVonnO1VH1HUFbG0t 0Xewl/ZjtB2P4td1eqkGrl9Jwd2YNHR6sQZcXOW4fC4JT1OzS23nInVKgf16IiLzJuV7kAh06VkD 1y6kIPZ2Gjr3rAEXNzkuhiUBInD3jhIdu1XHrasK2Nhb4o0xpbx3F1pWJGXBs74dZDIBapX2/kqJ P8vSNsXU36SlM3ybO+H4kcdISsiCTAZYWctyR7cRSz/34pRaLoC/DzzCsHfqwcHJCpu+jiq5L1OW /k4JsaamZOPm1VQMf6cBtq6OgsxCwNC36+PKuWSkJGYXLFPqJGn2eYiorAx48cO2phOcfWvg5g9n 0Hh8O+Rk5CBq50VNHLYejnBp4oEbP5yB3zvtIarUuPnjWbi1rAO5a8lJP+U6Nu+c8/20qe4Atzae uLbmJHxGt4Z1NTuk3UtBzL5wNP2gM2RWFiXW71CvGh7+FQUXPw/kpGfj9o4LeZUVbGMtdef9//6R m6gWUBuODaoh7o+byExUonq7uvmOF4o+X1rKs63pWGI7G/I5B8A7h4iIyOzoa1QpfZSbqudRzgw1 wpau63nw4AFWrVqFVatWFViv7/YiqgwmDBGZIE5JRqbK0F8VbVl/Gz371cHEqX5wdLLCgzglDv96 H9k5ajRq4oSXe9bC8s+vIjNTjZuRCvxx4AHenNwIS+ddQVamGn8cfIBh4xqgyyttcTc6DcsXXNWc R965PEnIxM8hsRgz0Qd2dpa4G5OGS+cS0cDHQbPPlrW38PogL7w3zQ9yaxkunEnEvp0JEIFi6yhJ CflC+L+QWIyc4I15K1rhyeNM/PtHPBr7O5crXwha1p346xFeG+iJOnXtkBCfibUrriM1NbvUdtYW s6HxuhkREQHSXrM69tsj9BvlCc8Gdnh0PxPfzr8ORXLu++ieTbF480NvLPmhFRIeZuKvA/Fo0sL5 vylG/4u9UPz5l3/b8wBjpjTAS73bIuZ2GpZ8clX7MfnLy9cBKEu7FFf/jXAFvBrYYUqgL1zd5IiP y8C6L24iI/3ZSAslnXtxylLuhROJGDqhHq6HK/DovvZRHMVCHZ3C51r4vEqKdd2XNzFkQj3M+SYA oigi4kIKQjbEFPu8SIE3PhKRMWv6YWdcXxeGkx/ug3U1O3j28IXiVkKB7Tc3n8Xp6b8AgoBqLWqj 0Zg2ZS67oscCgP+kTojecxmXF/+BrJQM2Hu5oF7/ZqUmCwGA98hWiAw+jhOT9sCmhgPqvOqLpPAH Za4bAGp3a4SoXRfxNCYRtjWdEPDpy7Bysin9QC1Ka2ciIiLSrx8n9YGqrDcGS2T8d78apJ62Gzca pB59EgQBp8eNkzoMohIJdVr1Eid9uQdvNUvRusORI4cwcuQYzfKkScCaNYX3XQIAEMXF+oqTyOQd PPgrHJ1cy3XMC506FUkKKs+oQufPn0WvXq9j27bNBf7OifRJEAR8+7mIsFP/wNbWAlZyGSwsZJDJ oHV4RjHflS6pL6KQ+RGE/xKGNDddav8dVasBlUqN7Cw10tNVuBT5A8JvbkJOTs6z3+FSlHW/yhxb mf2MvQ5dH2uI8ox9HZEp8vLywqKJIs5d/Ad29v/1QyxlkAmAICv0Gi8CIvL1Q0TpB38xN3O/bo5D Pz1A2F+6v1BpaSXDV5uew/bvonHm2BOdl1/VCPgvYSivzwOhSNa0qBahFgFVTm6fR5mmwtXYHxB5 fxPu3r1r6JB1qnAfT1ufryqu00aq8gxxrDHVUVbGEIuFhQU+F7fh+NF/kaPMgjorB2KOGqJazPde mFtu/s9GeVmGTDYkXXuWsFvw+6C8hbz3KEEmQLCUQSa3hKWdHLe2nMXNTWf42YbMwrZtmzG43wCp wyA9adOmDf7880+DjbBCxsPR0VGTMGSsXSwRIsZ/t98gIwy13bixSk/pJYqiJmFIihGGFv33GhLE vlGVVDhvYP9vv2vdr3fPHpr/v9Cpk+bYVq1KvwHi+yvOCJ4xUHcjDDFZiMg4cEoyMgvs4JAhVOEP I0TlVZU/fBMZGi9CGU7uCIOizttcEIAXX6uB7Cw1zp14YvbPqS7eA0ztfSTvi10iKiP+vZCumPl7 MhERUR5BECAzsj6WWtT95/OyECxKH7XR2IiiCKhUpe9IZAQqmDC0RLdREJFOcUoyMgf8Dqmoau7W mLf8Oa3bTv37GFvX3TZwRFWXkX0WIyIiIyOqS9/HHLh7WGPJRu19jxN/PMbG5ZXve4jqou1d2XqD f2oHZZoKm1beRk6WeXcqBZnUERCRyTDSD1EZj5/ixKQ9WrfVetEbTSa/YJJ1V0n8ooeIiKgAK0uZ 0Yw0JALIzJYuAUYml0tWd0WoMjOlDoGozMqdMBQcDAQHczQhImPFUYXInKj5ZVIBCY8zMHn0SanD qPKM7c4NIiIyTuY+Kg0APH6Ygbde01/fI2jyJb3UO7H/qQofa0o4gg4R6ZoxJiHaejig256xZld3 VcNkbCIiIu1kgpA7HaeERIhQGcF3IFVlpCGRIwtRFaOzKcmIyDhwSjIyN/xSiXTJGL/gJiIi46Vm P4SqKBn7PESkJ4KMyYhUPqJa+guQRERExkzqez2MIFfoGakbozRG1VhEZcOEISITxCnJyNzwDn/S Bd5lT0REFcJ+CFU17PMQkb7xdYbKiv0oIiKiUnGmhVyiKLLvQKQHTBgiMjEcVYjMFbuJVBn8OpvM CZPjiHSP31dRVaGvtwBzeG8RRdEszpOIiIiIiIyHMUwFZgxEUQQ41ReRXjBhiMjEcEoyMmvsO1NF 8LoPERHpALshZOzY5SEig2OSHRWHFz+JiIhKlZnNBBkAENVqiJmZUodBZLKYMERkgjglGZkzfuVE 5cGvr4mISKfYESFjxU4PEUmELz9UGLtLREREpeM0ZLk4DRmR/jFhiMjEcFQhIvDbJyobfnNNRER6 wG4IGRt2eYhIcnwhojzsKBEREZXKQmbMnSfDxSZYWBisLiJzxoQhIhPDKcmIconMOqcSCBwan4iI 9In9EDIW7PMQkbHg6xGxf0RERFSqscG/SB2C0Tg9dqzUIRCZBSYMEZkgTklGREREAJPjiKTEa2Ik NUO+BZjr+40oimZ77kREREREpFupqak6LS85ORmvvvoqTp8+rdNyDUGXbbFhwwZ8/PHHmuUVK1Zg woQJOiufqKord8LQpEna169ZMwuiuLiy8RBRJXFUISIiIiIiIiIiMkrMsTM/TKImIiIiiWRkZOCr r77SLHt6emL06NESRkRkfCo0wtCaNSm6joOIdIRTkhEVxTv8CeAI+EREJBH2Q8jQ2OchIiPHlynz wW4QERERSemHH37A/fv3NcvTp0+HtbW1hBERGR9OSUZkgjglGVFBTBQhIiIiybAfQkREVACTSIiI iIhI39LS0gqMLlS3bl2MGjVKwoiIjBMThohMDEcVIiIiIiIiIiIio8RsISIiIiIygNWrV+Px48ea 5ZkzZ0Iul0sYEZFxYsIQkYnhlGRERETmSeBwakRGhX+SZE74HvSMKIpsDyIiIiIiIgklJiZi5cqV muVGjRph+PDhEkZEZLyYMERkgjglGREvWhAREZGE2A8hIiIqSOTQQkRERERkGF999RVSU1M1y3Pm zIGlJdMiiLThXwaRieGoQkQAeI2OiIiIJMJuCBERUSHMFSIiIiIyuFOnTiExMRFXrlxBs2bNpA7H YGJiYvDdd99pllu3bo3+/ftLGBGRcdNRwtAS3RRDRJXGKcnI3PEiHREREUmGHREiIqICmCtERERE JI3JkycjISEBU6ZMwZ9//il1OAYTFBSEnJwczfKCBQs4IwVRCXQ2wpAoLtZVUURUSZySjMwW+3xE REQkEXZDiIiICuE0ZERERESSWbhwId5//30sW7ZM6lAMasaMGdi9ezcA4JVXXkHnzp0ljojIuFUw YYgjChEZK44qROaKF+mIyJzwrhgi48I/STJ3fF8qmSiKbCMiIiIiIjPm6OgoWd1du3aVrO7U1NRi txmiTY4cOVLpeko6ByJTUO6EoeBgIDiYowkRGStOSUbmiF++ExERkWTYDyEiIiqIIwsRERERFfHh j95Sh2BQX4+9Xeo+P34nM0AkFTd2olrqEIj0TmdTkhGR8eCUZGROBOPuTxIREZEJk7EfQkREVICo ZrIQERERkTaiynz6SWW9t0qtNt5cc94fRuaCCUNEJoajCpE5kbHHRkRERBLhCIdEREQFibwBm4iI iKhkgul/n1CRBHJjuyFLzX4tmREmDBGZGE5JRubCxPvUREREZMQ4wiEREVEhxnprOBEREZGRESwA C0vTvMCRk1WxPqEgAHIjyVrIypE6AiLDMpI/PSLSJU5JRiZPB9lCq35sr4NASjZlbJje6yAi02fq dx0RVTVS/k2u/0X//Ze3+7D/QuXH96ryE0WR7UamQ8fJQkeHbtFpedq8vGu03usgIiIiKo4gM72b ois7Ko8gSD/SEEcWInPEhCEiE8NRhcjU6bYTHQhRDNJlgRqCIBSI1cfXCd1fr4363g7IzFQh/EIS fgm9i4x0ldbjHZ2s8MaIevBr6gxLSwH3YpTYtzMGsdFpAIBBo+qjczcPAIBaLeLjt04XOF4mE9Bn sBeef6E6rOQyXL+Sgl0/3kGqIltrfaXt7+RihTeG1YNvU2dYWAgIv5CE3VujNfEPGdsAnV6sUaDM n3bE4K9D2l+PStu/tPN/1s7AlE/94e3riC8DwxEXq9RaHxERkS4Yw3d5gYEi5s0L0ksfRhCEIufY qKkj3hjjhbre9nj0IAMh62MQeVmh9fjh79bHi72f9U/e61+wf9K4mRN6DqoNbz8HZGSocOlUEvb+ eBcZytz+RI1aNug70hNNWjoDACIvpyD0+1gkP8kqJW5g2iJ/NGrqiM8/CsfdqNz+gEwm4I2xXujY rTrk1jJEXEjBtuA7UCRnlyme8tbn6GyFoW/XQ5OWzrC0EnA3SonQ72MQcyu3/+LsaoXBE+qhSYvc /s3FU0nYsTa61PqIiIyZfgYWCkRgYBCCgvRRdu77nda4ReDC/ENIvhaPtkt6w6F+tdzVahFR28/j wd+3oc5SwTWgFnwntIfc2QYAkKXIwK0fzyDx8gOoc9RwrF8NPqNbw7Ghm9b6S9v/2PidyFEW/eze MXggrKvZlRpPYekPU3En9CISLz8AALg2qwmf0W1gXc0OAHB9wyncP3KjwDE+Y9rA67UmAIAbG08j 7tD13LaTCXhx+6iSmpeIiIjKqtA1hKost29V+Y6hIEiXSMUBM8lcMWGIyMRwSjIyZVWt75w/3h59 a+OPAw8QE/UULtXkePO9Rhg0sj62bbit9dhBo+rD2cUKS4PCka5U4bUBnnj3Y1/M/fgC1GoRe7ZG Y8/WaDRt4YK3PmhcpG26966NVu3cEPzlNaSmZmP4uIZ48z0ffPvFNa31lbb/+MmNkK5U4Yv/XYYg EzDqbW+MfKshNn57U3Ou//4Rj91bo4ttg8LrS9q/tPPP82L3msjOVmuOrWq/I0REVHWYypd4pcl/ nt5+jpgS6IfdG2Ow+vMbsHewRLd+NXE9XHvC0M510di5LhrN27rgvdmNi7TZa0Nr49DeB1j/1VNU c5djwvRGGP5ufWxamdsf6vpaDZw7/gQ7vrsDGzsLjHivAd6e7oOlsyJKjLlb35rIzsrXH/iv3l6D a6NtZzesnHsNqcnZGD2lId6e4YPln10rUzzlrW/4xPpwqWaFRVPDoUxTod9IT0wJ9MWnb+b2X96d 1QjpaSrM/+AyZDIB4z7yxpsfNsTaJTdLrI+IiAzj7sFrkMktiqyP2XcF8Sdj0PJ/3SF3tkHkdydx 9et/8NzcVwEANzeeRmZSOtos7g1Leznu7LqIy0uOouN3gyDIinYgStu/88ZhBfa/sfE00u4maxJ8 SounsLjDN1C9fT00Hv88ctKzceP7U7j6zTG0Cuqh2afOq75oPL6d1uMbj2+HxuPb4cn5ewhf+leZ 2pKIiIjKhkkqRbFNiAxL4oG9iEgfOCUZmSRBxw8Dxxy8NBLXI1KQkaHCw/vpOPnPIzT0dSw2vtpe djh36gmSErOQkaHC8T8fwcHJCk4uVtrPpdC6Ti/VwNHfHiDunhKKlGzs2xULHz8n1Khlo7W+kvZ3 dpWjgY8jDuy9B4UiGynJWdi/9y6at6oGZ1d5sTGU2v4lbC/L+deoZYPO3Wvipx0x5a/fGH9fiIjI eOnzPcbY3o/y1ddvtCdO/PEIxw49gjItB4/jM7BzXXTZ4yy0/uvASFy7lIKMdBXu303Hv4cfwcf/ WX9o9w+xuHgqCUqlCokJWfj38CPU87EvsS4PTxu89HpNhHxftD/QpWcNHPrpAe5FK5GSnI3dP8Si cTMneHjalCme8tbnWd8OZ449QWJCFjLSVfj7t0dwdLaCczUrOLvJ4e3niP/bdg+K5GwkJ2bh/7bd Rcv21eDsJpf+d4t9HiIqL1HU30OC+JVxKbj3WyQajW5dZJ/7R26gbh9/ONR1gdzZBj6jWiE5Ih7K uBRAFPE0NgkeHevBxs0OljaWqNO9MbIUGchKUmo9v/Lsr8rIRvyxKNTu1qjM8RR++IxqheptvGBp ZwUbNzvUeskHqbefFG3zUp8bAzz3hv49ICIikogoAmqVaFIPXVCppH0QmSOOMERkYjiqEFHV4O3r VOL0WZfOJqJVOzdcuZCEjAwVOr5YA3dupSIlueQpOQDA3sESzq5yxN55qlkX/yAdWVlq1PGyx6OH GeXaP+pWKgBALDSkqCAAderaaWJq29Ed7btUx1NFDq5cTMKve4qfcq20/Us7f5lMwMgJ3ti3Mwbp ypxS24SIiMhUzJsXZJB6LCwE+DRxxPVwBeZ+EwB3D2vcj03H3k2xuHFV+whD5dW4qRPu3dHeH3Ku JkfHl6vj0umkYo+XyQS8+aE3dm+MgTKtYH/A3tESLm5yRN961r95eC8dWZlqeNa3R3xcRuHiSoyn tPoA4PzJRLR5wQ2XTiUhPV2FLj1q4HZkKpITs+BcTZ67k1i0P+XVwA4piaX38YiISD9EtYhra06g 0ejWsLSXF9iW/TQTmYlKOOWbXsyujjMsrC3xNDYJdrWdUL1dXTw6GQP3Nl6wsLVC3JEbcG5cHdau dlrrK8/+8cejIVjKUL2dV5njKUlmUjoe/n0b7m08C6x/eCwKD/68BSsna7i39kLDoS1haWdVcsMR ERFRhYgikJPF5NjCsorOyEpEBlDuhKFJk7SvX7NmFkRxcWXjIaJK4pRkZGqEKjz/R3Gxd+7mAR9f R6z4/Gqx+/xx4AHqeTsgaNlzAICkJ5lYt/IGgILzGucdn78cW9vct/eMdHWB9enKHNjYWRSps7T9 FcnZuBuThtfe8MKuH+9AJgh47Q0viCJgY2sJQRDw/+zdeXwV9b3/8feckz1kYQlhDeDCooIL1KIE RVFU3K2tFquodaVXva6tVotaFZSq7dWC1rXeWuut1urPBRXUIoiK4oaiIAZB9gAJIUC2md8fkzln 5izJSXKSc3LyevZxOufMfGfmO5MQT5J3Pp9//u9q/fN/V8vnM9R/YI7OOn+IfnHx3nrsgcgtNpob 39z1H3NiP20rr9WyTyqUV5AeuAed+fMFkDr31zwgFRlJWnLFsm5tt2M715yTmyaf31DppN566K6V 2rx+j446qVi/umWobvvVF9q+NXrAxTlGU/fvqBOLte8Bebr7ui894w47upfOu3IvSdK61bv04O9X RD3O8T/pp62ba/XZBxXK7+78UtOQIUM5OY3vb6pNz/67q+uVneMPO2a0+cR6Pkl6/bkNGnJTN814 zH7/sm1LjR68fYVkGarcWqc1q6p1yjkD9bc/l8kwDJ0yxX4/lZ2TlrSfa7Hiv1/xYVkW9xLJL1V+ t+W6jjUvfqmsolz1Gj1QtRW7g9stqWGX/ZurtOx0zz5pOen2NksadMoB+uLbd/Ter/4lScrqlatR vz467DyOloxfP2+F+h65t3xp/pjnE8nGBau0/KHFkqRuJd016oajAmOH/fLHGvbLH8tqsKsfff2X xVo+e5FGXjuh2XsHAABazopTNZ5UYpqJngHQdbWqJdmcOZVhDwDJg5ZkQCymJ+Ss4ycWa9LJ/TX7 D1+rfHNN1HGXXzdMO3fUafo1n+g30z7Wf+Zt0pU37qeCwoyo+zj27LGr9GRl+z3rs3PSIlb8iWX8 k7O/lSTddOcoXTd9f335WYUkqXqnN/ZvmpbWfl+tF/7xvfY/sLsys7zHDBVtfFPX36dftsZN6K1/ /X11s/cCAIBWS3RrqES1i2o8V02NKcuS3pu3RWu+q9aePQ167bn1qqu1NOzA/NjmGmXbUScVa/JZ /fWn6V9ry6Yaz7bFb5dr2hkf6jcXfqJvl+/U9TNHKCPLF3aMviXZOuL43nr2kdXee9O4fXfje5js XL9nv+zcxvc3Mc4n1vPJkK66fZiqKuv0mws/0X///GO99fImXT9zv0DLsb/c860sS7r1z6P02/v3 1xcf2e+ndlbVJf5zK1GfbwA6FauDHh15LTvXVWrdvBXad+qPPOd3nvuy7YBo3e46zxzrd9XJl50u S9Knd81Ten6WDp/9E41//GwNOH64lk5/XXu27454fbGO3/HdVlWt3qa+E/dt0XwiPYqP2FsTnv6F Dp/9ExUMK9LSW19XfU299777DXUb0kP7nDdG5Ut/UP2eurDjKMrxU+FzAgCADpGI/5B2gv9wd1TH UzqjAuFoSQakGKoKAbGbPv3WDj3fMZP76YhjivXne5Zr4/rdUcfldkvToL266d//WKMdlXYg5z9v bNTk0wdo8N7d9NnH25o8T/XOelVur1XJkFx9/53dhqO4b7YyMnxavza8zUYs47eV1+jR/1kR2Gf/ AwtVV2dqTVl1y25CDJq7/vQMQwXdM/T7Px7i2e+66Qfondc36sX/WxP3OQEA0NXU1ZratN7btssw 7Idptv6nZ8f/pJ+OOqlY992yXBvWRH4/ZFlS5fY6zX1+vY48obeK+mZp3Wrve5iBe+WosGeGZv3V +37gt/cdoHkvbtTzT65RxdZaDd43V2Ur7Pc3fQZkKyPTpx9cx4plPrGc7/V/rdeQod303ONrVLnd fv8y/6WNOmXKAO01rJs+WbxNWzfXaM5dwfdTo35UqLpaU6tXxv/9FAAgNjvLtqlm2y4tuuw5z/qP bnxFA08cob3PGa3MHjmqWrVV+fv0kiTtWlephpp6dRvUXXVVNdrxbbn2OXe0MgqzJUkDJo9Q2T8/ 046VW1R0aInnuC0Zv37eCnXfv6+yi/MC69K7ZTY5nyYZUkZhtkpOPUDr3lyh3Zuq1K2kmX0AAEDc /M+F3yV6CknngmmUFgISjcAQkGJoSQbE7rbbbtVtt6ld23o4TjxjgEYf1ksP3L1cWzbtaXJs9c56 bSuvUenRxdq6pUY1NQ0aO75Ifr+hdRECP5G8985mHX18X61aUaWqHXU69awSrfqmSps3Rj53c+Mn TOqjdWt3ac131SrZK1c/OWeQ5r2yPlCB6ML/2ldv/L/12rxht4r6ZOm0s0q0/IsK1ewJr2jU3Pga qcnrL9+8Rx8t3ho4Vl5Bum6/72D94bZlWrcmtvsDAEBnZhi3dsj7lwWvbdJxZ/TV50sqtGndHh19 UrF8PkPffL6jVcc79ZwBOvTIXrr3puXavMH7nsTnM/TLa/fWa8+t16Yf9iivMF2Tf9ZPOyrqtGld eJDnw/9s1Yf/Cb4fyC9M191PHKw7r1mmH8rs9wMLXt+sY0/rq5VfVmlHRZ3OvKBEK7+s0qZ1e5qd T2vOt3VzjY6cXKzyTTWq2dOgwycWyZ9mBAJKx5zSR2vLdmn1ymoN3jdXZ108SHOfW689uyK/XwKA 5NHxf2bd/t+v29dUXDpYxaWDA2trK3brvWn/0pgZkxsDOJb6TdxXa17+UgXDi5RRkKVvn/5YhSN6 K6evHeTJKsrVuje+UVbvbvJnpWnD26tk1pvqNqhQofcuPS8jpvH1u+q0efH3Gn75YWHHaHo+3rGW aemrBxZq0GkHKKdfvmor9+j7f32hjMJs5fTNl2Rp2X0LNOh0e/vuDVVa9beP1fOg/vJnpYUczwpZ AgCAWFVVVXX4OSsqKjRp0iR9+OGHHX7uWES6J5Zl6aWXXtJNN92kNWu8fxicm5urm2++WZdddpnS 0og4APHCvyYgBUPXV5sAACAASURBVNGSDIjFbYFnhnFbE+PaLjPTr2NO7CdJuumuUYH19fWWrr90 ScR9Hv2fFTrlZyX6zZ0jleb3adPG3Xpyzrcq32z/MmvsEUU6a+qQwPj7HztUknTzVUtVvbNe817d oOycNE27brgyMnz65stK/fXx6H/B0Nz4zz7erp+eO1j7DMtTxfZavf36Rr07f1Ng+/sLtujMXwxS 3wE5qq6q0xefVOj1F9dFPV9z45u7fgAAui77fUt7v3+RpLdf2aSsHL+m/XaosnP8+qFslx78/TeB Cjqhxh1bpF9MC74/mfOC/f7k+qlLVVdr6fgz7fdDt812vR+qs3TFz5bINC198E65plw2WAMG52hX dYNWLa/S/TcvV31d634x+frzG5STm6b/vn24MjJ9+urTSj31gP3+JjPL3+R8WmP2nSt0xvklmv7A SPnTfNq0brceuedbbWkMIy1dvF1TLhusoQfkafvWWs17caPefmVTM0cFgMQyEtKjsP2/X492Xc56 o/F/kjTo1ANUv6tWn905Xw219eoxsp9GXHl4YPuo647St39fqg+v+3+y6k3l9MvXAf89XjnF+RHP Ecv4TQvL5M9OV9HokrC5Njcfz/X4DPUZv5dWPPahdq7ZrrScDBUO662Dbz5W/nS7JXi/o/bRyieW qHpthdLzMtVrzEAN+cmowPE2vP2tvn7k/cAx35nytCSp9OGfKj0vs/mbDQAAEINPPvlEN910kxYu XBi27fTTT9fMmTPVr1+/BMwMSG1G/0NOsKbd87x+eUBlxAHz5r2hc845L/B62jRpzpxIY2fKsma0 0zSB1Pfaay8rL79lZYBLx40LCwW1pKrQ0qUf6YQTTtLTTz/l+XcOtCfDMPTgHZbe/2CBsrP9Ss/w ye/3yedL9MyA1jNNqaHBVF2tqd27G/TZ10/oi5VPqr6+XlaMTY9jHdeWfdsyLtnPEe99E3U8AO2r qKhId11m6eNPFygnt/F9SJpPvkT8LhTohExLaqi33/Psqm7Ql2ue0Nfrn9SWLVsSPbWUZhhGk6+j rYvlWB11vI7YN5nOEatkmIvf79cd1tNa9NZC1e+qlVlbL6velNWG9pNARzB8how0n3wZaUrLydC3 //uRVj65hO+90CU8/fRT+umpZyR6GmgnY8aM0dtvv628vLzmBwNNSPYKQ45vv/1Wd9xxh55//vmw bfvuu69mzZqliRMnJmBmndtdjV9DbuW9UacUmht4Ze7rEcedePxxgeel48YF9j3kkDHNnuOxZQWa fcNPqDAEpBpakqGzMmlVCwAAEoTfiQIA4GWQpgUAAEA7Wrlype69914988wzMkN+QZSXl6df//rX uvzyy5WRkZGgGQJdQ5wCQzPjcxgAcUFLMnQ2DQ2khQAAQGI01PM+BAAANyONEsAAAACIP8uytHjx Yj344IN6+eWXwyoD+v1+TZ06VTfffLOKiooSNEuga4lbhSHakQHJgapC6GzqavklHQAASAzehwAA 4OXLoCA9AAAA4mvr1q165pln9NRTT2n58uURx5x22mm65ZZbNHTo0A6eHdC1tfI7QCoKAcmKlmTo THbvbkj0FAAAQBe1q5r3IQAAuKXl0O4BAAAA8VFbW6s333xTf//73/Xaa6+prq4ubIxhGDr55JP1 61//WqNGjUrALAG0ODA0e7Y0ezbVhIBkRksyJLuH/3pBoqcAAB3KMIxETwFAo6de4n0IEG/8d65j WZbFPUdc/fWCPyZ6CgAAAEgBdXV1Wrhwof71r3/pxRdf1Pbt2yOOy87O1llnnaUrrriCikJAglFj FkgxVBVCZ/DFyicTPQUAANBFfb3+yURPAQCApLLyySWJngIAAADiaM+ePTrhhBO0fPlynX766Xrh hRfa7VxVVVWBSkIffPCBKioqoo4dMWKEpk6dqilTpqh79+7tNicAsSMwBKQYWpIh2VmWlegpIMW0 5XMqUfsCABKjvLw80VNADGbPni1JmjZtWoJnAgCpr6HBbtHZlqpVVLwCAABILllZWTrwwAP17bff asKECe16rgULFmjq1KlRt+fn5+snP/mJzj33XI0ZM4b3jkCSITAEpCBakgEAAAAAAAAAAABd04wZ M1RWVqarrrqqXc/z1Vdfha3LysrScccdp5/+9KeaNGmSsrOz23UOAFqPwBCQYqgqBAAAAAAAAAAA ACSfvLy8lD7f3/72Nx177LHKycnp0PMCaB0CQ0CKoSUZAACJRVldAGgbwzBkWRZfT4EW4N8MAAAA 0HmMu+NxWYmeRJz5/H4tvHGqTj311ERPBUALEBgCUhAtyQAAAAAAAAAAAIDkZMiQUiTzb1mpFn8C ug4CQ0CKoaoQAAAAAAAAAAAAkNwMn1/q5JVCLbNBIjAEdFoEhoAUQ0syAAAAAAAAAAAAIPn50tI7 b2jINNVgNiR6FgDaoMWBoWnTIq+fM+dGWdaMts4HQBzQkgwAAAAAAAAAAABIfobh63yhIcsUdYWA zq9VFYbmzKmM9zwAxAlVhQAA6DhGZ/tGHgA6AedrK19jAQAAAABdRWf7DpiwEJAa4tSSbGZ8DgOg zWhJBgAAAAAAAAAAAHQSlimLBA6ABIhTYEi0IwOSCC3JAAAAAAAAAAAAgORmmQ1U6wGQMHELDAFI DlQVAgAAAAAAAAAAAJKbZZqyTDPR0wDQhREYAlIMLckAAAAAAAAAAACA5FJfXx94bskSfcgAJBqB ISAF0ZIMAAAAAACEsixLhmEkehoAAABAl1BTU6OlS5dq0aJFWrRokd5//31J0qKbL0zwzADARmAI SDFUFQIAAAAAAAAAAAA61u7du7VkyRItXLhQCxcu1JIlS7Rnz56Y9n366ad1yimntPMMAcCLwBCQ YmhJBgAAAAAAAAAAALSvnTt36v3339fChQu1aNEiLV26VLW1tTHtO3ToUI0bN06HHXaYxo0bp5KS knaeLQCEa2VgaGZ8ZwEgrmhJBgAAAAAAAAAAAMRPZWWlFi9eHKgg9Omnn6qhoaHZ/QzD0MiRIzVu 3DiNGzdOhx9+uIqKijpgxgDQtBYHhmbPlmbPntEecwEQB1QVAgAAAAAAAAAAANpm69ateu+997Ro 0SK9++67+uKLL2RZVrP7+f1+HXTQQSotLdX48eM1duxYFRQUdMCMAaBlaEkGpBhakgEA0HaGYSR6 CgDQ5fG1GOgYlmXx7w0AAACQtHnzZi1atEiLFi3SwoUL9eWXX8a0X0ZGhkaPHq3DDz9cpaWlOuyw w5Sbm9vOswWAtiMwBKQgWpIBAAAAAAAAAACkjqYq24RuayoQTlg8aMOGDXr33XcDLcZWrlwZ035Z WVk69NBDVVpaqnHjxulHP/qRsrOz23m2ABB/BIaAFENVIQAAAAAAAAAAgM7LHQAKDQPZL5tuixUe LjLk5IScbe7gUFcIEVmWpbVr1wYCQosWLVJZWVlM++bk5Gjs2LEaP368SktLdfDBByszM7OdZwwA 7Y/AEJBiaEkGAAAAAAAAAADQebgDPqZpyrIsTzAoWkgouFt4QEiSgjkgyzXWDg/Z5ww+T7UAkWVZ +u677wLhoHfffVc//PBDTPt269Yt0F5s/PjxOuigg5SWxq/VAaQevrIBKYiWZAAAAACQ+rp3797u 59i+fXu7nwMAAADoipyQUHAZXG+aZti44Jimqws1jvQc0+ZUGbLDQ3YoKPg8WoCos4SHTNPU119/ rUWLFmnRokVauHChNm3aFNO+3bt317hx4wKPUaNGye/3t/OMASDxCAwBKYaqQgAAtExn+aEHAHQV ne2H0ok3XZZ1a7sc2TAMz8dh0aJFuu+++/Thhx8qNzdXJ554om699Vbl5eVJkr777jvdddddevvt tyVJRxxxhO666y717dtXknT11VfriSee8JxjxowZuvzyyyOev7nx119/vR555BFJkt/v19atW1u0 P6IL/QtzAAAAxI87KOQEgIJLy1VhKHpQyBsEihYgclcMcp+nqQpDlizLWeeuUJR836PV19fr888/ DwSEFi9erG3btsW0b1FRkScgtP/++8vn87XzjAEg+RAYAlIMLckAAAAAAO1h1qxZuuqqqzRmzBit W7dO559/vq6//no99NBDkqTHHntMp512mu69915VVVXpmmuu0QUXXKC5c+cGjnHxxRdr1qxZMZ+z qfGzZs3SrFmzNHfuXJ1zzjkt3h8AAADoSO4QUOSwUHCcU2EoclAockDI2d/dhsy7zYgQHIpUYcgJ DQWXzvbQPyroaB9++KHeeecdLV68WIsXL1Z1dXVM+/Xt21elpaUqLS3VuHHjNHTo0KQLQAFAIhAY AlIQLckAAAAAAPH273//O/B8+PDhOv/88zVnzpzAujvvvDPwvKCgQOedd54uuuiiDp0jAAAAkGyc oJC7ilBwvbPOXkpyVRgKrou9FVlo9SHPlgjBodBqQ+FhIclQYWFhSy87oUpKSgIBodLSUg0ePJiA EABE0OLA0LRp4evmzLlRljUjHvMB0EZUFQIAAACArmJ6Qs++cOFCjRw5MuK2jRs36umnn9bkyZM9 65955hk99dRT6tWrlyZPnqxbbrlF+fn5Uc/R0vHx3h8AAABorUhBoeZDQ94KQ97jBZ5FWBeZNyPj tH+2PMfyVhsKDws5cz367aNjuex29dZRb0VcP3ToUI0bN06HH364SktLNWDAgA6eGQB0Tq2qMDRn TmW85wEgTmhJBgAAAABdx/TptybkvA8//LAWLVqkt97y/sD+73//u6Y1/rXZ/vvvr+eeey6w7f77 79f999+v+vp6LVu2TFdccYUuvfRSPfPMMxHP0dLx8d4fAAAAaI3w1mPRAkKR2pK517u32c/tY3jO 1sxcgokhOwAUXGeHiUJDRJHbkUmSTz75DF8L7kR8WY3XahiGSkpKNHnyZJWWluqwww5TUVFRwuYF AJ0ZLcmAFERLMgAAIqP0MAB0HnzNTg6RPg4PP/ywZs2apZdeekl77bWXZ9s555yjKVOmaNOmTZo1 a5YmTZqkJUuWKDs7OzAmPT1dBx98sGbOnKmTTjpJ1dXV6tatW9Q5NDfemWO0z5mWng8AAABoLXdA KDwcFDkgFNzXXpqmJcsyXetCg0KRgkNRZxSoMhQMCgWDQ8EqQsEAkTs85GwLHs2SaYVXP2pvPvmc bJPWrFnT6VqkAUCyIjAEpBiqCgEAAAAA2st9992nhx56SC+//LJGjBgRcYxhGOrTp4+uvfZaPfro o/ruu++0//77d/BMAQAAgI7TXEjIDgZ5t9v7OWPd60yZppPSiVZtKLguOAd7GdqGzL2/YXiDQ/bz 4PpgZSF7X/v43pOalqk6q64lt6dN0o10T2UjwkIAED+JqxsHoF04rcgkBZYAAAAAgNR02223yjBu 7ZBz3X777Xrsscf02muvhYWFGhoaNHXqVH3xxRfas2eP1q5dqxkzZqi4uFj77LOPJLv60Geffabd u3fr888/10033aRJkyZFrfbT0vEt3X/GjBkaM2ZMYPxXX32lgoICffXVV4F1Y8aM0YwZM1p0nwAA ANC1hFcVMmWaZmOlIPu1EwIKBoeC+zkVhZyQkDMueIzw49mv7XXOw3284MMeZ88huM45n/3ccp3T 8szV2x7Ne80NVkO7P6xIJwcAxA0VhoAUREsyAAAAAOgKbgs8M4zbmhjXdtXV1br33nslSYccckhg fWZmpjZv3iy/36+zzz5bV199tZYtW6aCggKNHTtWL7/8sjIzMyVJ5513nq699lotW7ZMvXr10okn nqgbb7wx6jmbG//Xv/5VV155ZeB1QUGBJOm7775Tz549W3w+AAAAoCWiVxCKXF3I3sc9VnKHhyRp 3333lWk2yDSdtl/BwE6k8ExzgRqnba+7gpFhOC3InJZjVuM6y7XNObcRaGEWyrRMWWq/QI8hw1NZ CAAQfwSGgBRDSzIAAAAA6BoqKys77Fy5ubnNnu+EE07QCSecEHX7cccdp+OOOy7mczY3furUqZo6 dWqr97/xxhs9AaL99tsv7Bo/+uijmOcLAACAriM8GBQ9PGSP9waFwp/by7q6epWVrdbIkSNdYSBv lZ+WVN1xjw2Gh4LBILsdWaTQkL0Mti2LzFD0bQCA5BeHwNDMth8CQNw4LcncSwAAAAAAgHhzfpEE AADQlUQPC4W28XIvowWFvKGh/v3764cf1mr//fcPnMt93pCZRGwX5ma/VQsGhex1RtjzSMtghaHI x04zqEsBAJ1dXL6SWxa93IFkQksyAAAAAAAAAACA+IotLOStKuStOKSQMd7nAwYM0Jo1azzr21Zh yN5fCq0wJEVuRxZaYSi4v8MwDGX6M1t03wAAyamVgSGqCgHJiqpCAAAAAAAAAAAA8eWEeEyzqaBQ aFWh0JBQ06GhQYNKtGzZlzJNM7DNff7gc/scsXAHhZzXsbQjc/YJrSjpN/wtuW0AgCTma+kOs2fb FYXcDwDJw2lFJimwBAAAAAAAAAAAQOs4QaFgWMh0Lc2wMJAz1h4fHGOvMxUMH7m3mZow4Sg9++w/ XNu8+wSfu48R+eE+h/1wv7ZCzuFdhj5334dEPgAA8UVzSSAF0ZIMAAAAAAAAAACg7bxVhcyoQRbv uvBwTXh1IfdryalKdOKJJ+mll17SSSed5Dq2vT04J+/ryPN2ngVbi9nrDBmG/TxyhSHJMJzKQpYs y64wNO+oefG4nQCAJEJgCEgxtCQDAHRFoaWRAQCdl/M1na/tQOcUqW0FAABAZ+UN/cQaFmouOKSo ryXp5JNP1v3336fJkyc3bpOccFD0oJB7Xeh7MXdQyHltP48WFpKC6wxD+vLLr/Twww/r4YcfUk1N jefovXv31i233KIzzjhDPp+vcZ/g93Xeh73d5zM84wAAiUFgCEgxTksy9xIAAAAAAAAAAACxc7f8 aios5G7/1ZJAkXt98Lk0bNgwZWfnaPXq1SopKXHPqHFcszOPuNapKmQHiiKFhsLDQpZl6Y033tBd d92p9evXe46Xnp6uX/7yl7ryyquUl5cXCEcFz2dEaCNmSvJ5roHQEAAkDoEhIAXRkgwAAAAAAAAA AKB1mgoANVU9qOngUPg+3nMpMGbKlCn605/+qHvvvTcQrgmGbCIFh0KDOcEQjpPHcVqL2aEgJ0Bk BI7lvHbaka1atUp33PF7vffee2H354gjjtD06bdq77339gSDTNM+n/Pw+SKFhiyZpuTzuWZLaAgA EsLX/BAAnUlxcZ9ETwEAAAAAAAAAAKBTao+wkFOpyDRNT0Ui72uzMVxj6pBDDlFhYXfNn/9WSJUj s/E4wdfudU1tc7+2j+mucGQG5lBVVaUZM2bolFNODgsLlZSU6KGHHtLjjz+hIUOGxHTNsd5TAEDH o8IQkGJoSQYAAAAAAAAAANA6sQRbWhoWihY4sisKOWEZZ739/Lrrrtdpp52iI4+cENjmHhcy65Br MDzb7NZjwQpDTiWhYFsyQ5bVoBdffFH333+ftm3b5jleVlaWLr30Ul188SXKzMwM3INY2NWEDM91 2vt7x1FlCAA6HoEhIAXRkgwAkMr44QEAdA18vQcAAADQ0WIJC7krBAUfZmPYx4ywXXKCQdHCR/bS HSKS0tPTdMUVV+rJJ5/QeedNVXhQKFJwKLhNctqRGYE5OOGg0NDQsmWfaebMmfriiy/CjjRp0nH6 zW9+rX79+nvaj1mW5PNZstufGWqqsY3d8swIXJ+zLsjexveBANCxaEkGpBhakgEAAAAAAAAAALRM c+3GvGNCw0Lh7cbc251twfZgwepClqUILcPs5aRJk7R58ya98cbrntZl4ecyQx7eNmjBOVqec2zZ Uq5bbvmtzjnnnLCw0D777KPHH39C999/v/r06euavxk4prcVmvfcoa3JYq3OBADoOC2uMDRtmvf1 nDk3yrJmxGs+ANqIlmQAAAAAAAAAAACxa2sbsshBoWjH8rYei1yJSIFx11xzraZNu1x77bWX+vXr r4yMjMB8mriiwDO7so+9znne0FCnZ555Rn/5y8PatWuXZ8+8vDz96lf/pbPPPlt+f5qrKpDhekRm tx8zFalmhTNdu8qRt8KQXekoOF8AQMdoVUuyOXMq4z0PAHFESzIAAAAAncWMGd4/Qvrggw8kSdXV 1Z71N954Y4fNCQAAAEDXEx7oify6LY/wY7nbkIW+VmD54IN/1gknHK/CwkI9+eRTSk9Pd8/cE76R gq3InOuy19ltvz788APNnDlTP/ywNmQfQ6effrquuOJKde/ew9N+TDI8oZ6mRAsNBfcNPZb7PPZ8 CQ0BQMdoVWAIQPKiqhAAAACAzmLhwoW69957VVNTE7Zt/vz5geeZmZkqLS3V+PHjO3J6AAAAALqA 5lqRNRcWakl1ofCqQtHDSaGhIUkqKyvTP/7xjH7xi3ObrDDk7CcFK/Y4QZznn38+LCw0atQo3XDD rzVixH6uoJC7qpAal7G1DHOf37vOOYb7WJHDQ4SGAKD9hdeDA9CpOa3IJAWWAAAAAJCMSktLNWzY sGbHDR06lLAQkGKabqEBAADQcbxhndBwjxRa/SfWh2mGhonkWR/cbjY+3K+Dz51jPPTQXzRx4kRt 2LBRpmm6zmNGfIRud57v3LkzcO2FhYW6/fbf69FHH9OwYcNdczWjzFWe62tLpSX73stz373PAQDt jQpDQAqiJRkAAACAzuLuu+/W2WefrcrKyO3PCwoKdPfdd3fwrAAAAAB0BeFBILkCLa0PxDhhGm/Y yIxwPkujRx/c4nk///w/43L9FRUV+t3vbtHvfndL2LaPP/5EkYv82NWBDMNpPxY+IrTCkGF41znV hqK3JjMCFZEAAO2njYGhmfGZBYC4oSUZAAAAgM6ktLRUgwYN0ueffx5xe0lJCdWFAAAAAMRdU5WF gsvQqkKxVxmKLXBkz2Xy2xfKl0ThmJcnPOYK77hbk7kfihoaMk1DPl8wMORtR+YODwVblAXDQ8Hn BIYAoH21uSWZZc2IxzwAxAktyQAAAAB0NnfffbcKCgrC1lNdCAAAAEB7cre/cod8Gre6Qj2xB4FM M7awkNNyLDAXxR5Gas9H8N4EW6XFIxjlHe+u5OSt8BTaAg4A0H5oSQakIFqSAQAAAOhMolUZoroQ AAAAgPYQGhTyBlSaqyTUdNWhaAEap01ZtICOJJkyZbpCRB3Nb6TJqeljmnbbMfcjvP1YsGqQZ62n 1Zg3+OOEgoJtytzVhYL7UWUIANofgSEgxdCSDADQWfHNPwB0bffcc4/OOussVVZWSrKrC91zzz38 9wHoQizL4t88AADoMO4KNu6gkPM6UrWb2CvseMdHCwtFqqBTbzbIihDCaW9phl9yvRWLNLfw9mPu tmIOw7OvHQyyXM/t8U5YyA4PGY3hoGBIyN7H4D0iALSjVgaGZsZ3FgDixmlJ5l4CAAAAQLILrTJE dSEAAAAA7SU86BMaGorUSitaZaKWVCdqPjAkSaZldWhoyGeElQ6KPjdPaMgZE7lKkH2cYKDIee4O DjnPg/sHw0JUGQKA9hX+1b8Zs2dLljUj8ACQfGhJBgAAAKAzuueee1RQUBCoLgQAAAAA8eYN+ESr LhS5glC0dmORw0KxBYeizrMDH9HvU6yhp9CgVdOBq0gBK3u7wo4V/BgBAOKNlmRAiqGqEAAAAIDO qrS0VL169ZJlWVQXAgAAANAuwsM9kaoLBcfGVnEo9DjNP0zTjBqEMQxDfiW2qo5pmvL5IteeCE7b CnntrRQUfB7alixyxaFgRSFvazIqDAFA+yAwBKQYWpIBAAAA6Mw+++yzRE8BAAAAQIqKXFUoekCo uaBQpEo54cGg6GGhSIEhv+GTv/1vRbOceUYKDcUWGAreVyf4Y491QkJOGCgYFlJjSMppSeZd0poM AOKNwBCQgmhJBgBIdnxzDwAAAAAAgERoOjQUGhAKrnP2CQ0K2eul0GBRrG3J3Az5lBalqk9Hc+YW KTTkVBDyBoacsJAh+0d/3ipBkrdikDssFLz/zjHdxwoeBwAQXwSGgBRDVSEAAAAgNrm5uYmeAtDp VFdXJ3oKAAAAQKt5w0JO0MUJ7UQLCIVXF4pUUcgdNnK3JWuuRZnDUHKFYoJzMxQabHLft+ihH+++ 3pBQpGpDclUZCg8L0ZoMAOKPwBCQYmhJBgAAAMTOKv+vRE8B6BQu+NW/9eSzPyR6GgAAAECrRQsL BduRuV+HBoSiVRcKrTAU6dF0lSFJevWoxzviFrRIMCRkyrJCKwyFVhdygkDOcyfYE15lKLwlWWhr MgXCQ8HXFqEhAGgHBIaAFERLMgAAACB2b72zJNFTAAAAAAB0gObbkbmXkUJGodWFIh0rvMpQ9LCQ pbfffkemGUvrMvf53IEe6dJLL9KGDRskSccff4KmTQv+cYxhOC3CjAjPwx8+n7elWGiFIW+LsfDq Qk7Qp+kqQ9HCQlaUpRMias1HHQAQDYEhIMVQVQgAAABouV27GhI9BSBp5eT4Ez0FAAAAoM1ib0fm LCOFhdzVhRQ4jruakDs0FNrKrLlxwYcZcX1oaCj42nudpmkGgkFOMMddqaep4I1pSj6fUwVIrvl6 76P93D3OHRyKXmUolrBQeFsyb3syAEB8EBgCUgwtyQAAAIDWqa0zEz0FIOlkpPuaHwR0MFpRAACA 1orcfixSOzJn2XRoKNL46EEh9/poYSEzSoWh0H29wZ2Qq/SEkuz3TU7oJhjisUM57kfwvb9TLUhS IKhjPw+vFmSP9waHIoV8IoeFjMbt0SoKha8HAMRPiwND06Z5X8+Zc6Msa0a85gMgDmhJBgAAALRO fUO0H7imnhtu/1onT+qt8WN7xP3Yv52xQhPH99TRpT3jfuxk0tZ7mOz3Kc3PT+MBAACQGkIr8sS+ 9IaEvC3Bou0XqaKQOyTUVGWh4MM0o1cXCm9L5v1e1jRN2e3BwqsKuV/7PH8f4K2a5HDCO5Fai7mf R28rFjxnSkfGJgAAIABJREFUy0JD4RWH3BWTAABt16oKQ3PmVMZ7HgDihKpCAAAAQNuYXajQkGW1 3/VaZvDYt9y9QkeP66mjkjQY0xZtvYfu+5RMfBQWAgAAQIoJD9c0FyIKrywUuk9TlYZC93dX/QkN /4SGiELDQt7gkDc0FH6d3nk54ZpgUCgYtrHbjwX29BzDFgwDBa+vZWGh0KBP06EhBZbBOYWPBQDE Rxtbks2MzywAxA0tyQAAAIC2i17aPbVYaq9rtez/NR779hv2tdem4H1t2z303qdkwQ/gAQAAkGrC AzyRxoQuo7cjcweEgsGf0G3R25h5948eDmoqNOQOKIVeh2W5KwwFw0KRBENDTggoWFHICf4457O3 h7YZixYWakmFodBAkFNVKBgg8gaJAADx0MbAkEQ7MiD50JIMAAAAAAAAAAAgXHgVIft146vGdU0v XUeLGigKrRoUPH749vB2ZU2FhUL38wagnApF7uCOU8GnuXsSfG647pHTFsx+7g732OObCgvFHhoK hoTc+4iWZADQjtocGAKQXKgqBABIJL5ZB4D2ceOd32j/Yd206vtdWr12t3p1z9Cl55Xom1U79dr8 Ldq9x9RhYwr1yykDA39xOevP3+mTZTtkGFKvHhmaMK6nTju+OOJfZNbUmnrwse/VYFq66qLBysz0 aU+Nqf97cYM++qxSu3Y3aNjeubrg5wPUq0dGi+f/u3tW6KhxPXXUOLsl2dy3t+i1+Vu0o6peg0uy dd5PB2hISXbgWg86IF9ff7tT3/+wW32KMnX+WQM0dO/cZs8T7bjzFpTrzf+U6+5bhgfGbtxco+tu +1p//P0I9eqR0ap7LEnrNuzRbfeujDjXHVX1euqf67RseZVkSAfun69zz+yvbrn+Ft/DZMF/6wEA ANDZNNdWLNLSPS68KlGkKkVNBYy81YfCzxm5LVnzoaHQsFNwLvY4d9DHXTko0j1yAjnB56GVg4LX Gd6SrLmwUPA80asFhW5zh4WoMgQA7YOO9ECKcVqRSQosAQAAAHR+Sz6t1Hk/7a85dx+gfYbk6K7/ +VYbNtVo5s3DdeeNQ7X08x368JOKwPjrf7WX/j7nIP3vgwfq6kuHaMHibXrvo+1hx63YUaff3/et uhem67rLhygz0/5RwZwnv9fGzTW65ep99MBd+6lfnyzd91BZk3+VGosNm2r09PPr9asLBukvfzhA 55zRT4tD5jVvQbl+enJf/XnG/jpsTHfd/eB32rGzvtXHLf1xD5Vvq9OKVdWB8fPf3aqRI/I8AaiW 3uPm5vqnR1Zr1+4Gzbh5mO68cZi2bqvV7Ce/b9P9AwAAANB63qpCTW8LHxNelSi0tZi9LVLQyBtS ihT+cYeHolccMhsrCCnw2jQt1dfXBWZZW1sr0/SONU2rcV1TFYuCz6NVQQq/D82Hr2ILY4WHubwf l8j7AQDahsAQkIJoSQYAAACknuOOKtKQkhxlZfo0fmwP1dSYgWo1fXpnav/h3VS2ZnfYfj6focED s3XcUb209PNKz7Z1G/Zo+qyV+vEhhbrw5wPk89l/qrlte52WfFqpi88dqKJeGcrO8mvKGf20aUut fli/p03XkeY3lJZmKDvLr/R0n/YZkqspZ/TzjDnmiF7ab2g3ZWf5dfKk3upRmK6PPq2McsTmj5uV 6dP4H3fXvAXlkqS6ekv/WbxNRzdWPHK05h5Hm+vm8lotX7lTF5w9QN0L0tWze7qmnjVAny7boYrK OgEAAADoOKHVgSJVGXKvj96KrDVViZoO0XirDzVVZch0rTddISBT9fXBP7AwDF/Y9tDAUaSKRuGV kELDTJGu13t/vWOaDvtEr/gUW6ALANB2tCQDUgwtyQAAAID2kehWTAV5aYE5ZGT4lJHhU1ZWsLVV RrpPdXVmYMz7H1foxbkbtWFzjWpqTEnSsL1zPdfxzntbldctTZMmFHnWb9lWK0n61W++DJtH+bZa lQzIbma2hv2/wDGDr3sXZerKXw7W0/9ar6qd9Ro0IFvHH12kQa5jFvfK9Mynd1GGtlXUNfkxaO64 x04o0k13faOpZzXo02U75PdLow8s8Byzpfe4qblu214nv89Q716ZgW19e9vPt1XUq3thRoT71PH4 y1wAAAB0DaEVa0K2xhBGaVtVoqaqE4UHacJDO021KpPGjz9S8+e/qR49emjEiBEyTSvQzst+ONzt xoItxezzOtvsdaEtycLbhLnHupdO2zArcG5nXXCb9x56t1mBeTrLYHs1w3NcAEDbEBgCUozTksy9 BAAAANC1VO6o1wOPrdbVlwzR/sPzlJXp09y3Nuu9j7zttH5+en99/uUO3fXHb/XrK/ZWbo4djunV I0OGIf3lDyPVLTf+Pzo4ZFSBDhlVIMuSFn24Tbf9YaXm3HOAMjPsQsibt9Z4xm/eUqvRowradNwB fbO0z5Ac/ee9bVryaYWOPKyn/P62/5A52lx79khXg2mpfFttoO3Zxi12EKtn9/Q2nxcAAABAy0QP /ERuhxW9Ek5slXOiV9CxNPbYia29jIhOc56sWyc9NNt+xNmSt96RE9aJFhaKFPJxwkY27/6Rwj+R QkUAgPbRyp/6zYzvLADEFS3JAAAAgPaTyJ9bGlGWoWPq6uwy8znZfqWnGfq2rFqvzt+iwoJ0zz5+ n3TFLwfrkafX6Pf3rdRvr9pH+XlpKuqRoTEHFmjOk2t07pn91aN7un5Yv0f/nrtRV140ROlpsd2F 0FGGpC+WV+nLb6o0YVxP9eyeIdOUautMyQqOn7egXKNG5GtISY7mv1uubRW1OvSgwibvfSzHnXRk Lz3xjx9UtbNel58/KOr9i7SMdl3R5pqfl6YR+3bTE8/8oEt+MVANpqW/PrtWBx2Qr+4F6VGP11Go K4SuIPiLKAAA0JVFCu40PT62dS3bFn7u+cv+3eQ8ksnEA04LC/I0VS0oVsHqQtECR207PgCgaS0O DM2eLc2ePaM95gIgDqgqBAAAAHSARPyAMrSSfKR5NI4p6pWhc87or/95rEzVuxo0pCRHhx5cqBXf VYdVozd80iXnluipf67TrX9YoZuv3lc9uqdr2gWD9fwrGzTjgVWqrKrTwH7ZOu2EYqWnx3jxkSrf G9KIod1UtnaXZj6wStu216lvcab++5IhysryBYZOHN9Lz764Xt//sFt9emfq1/+1t/Lzm/4RRizH PfTgQv312XXab1ie+vTODD9IC+5xLHO96pLBeur/1un6338tw5AO3C9f5/2sf8T70qFICwEAAKCL izUUFKnFmLOMpTpRpFZoztI0zU4RbnZfS6TWYJGqBTUV7Gld6CfaOQEAbUFLMiDF0JIMAAAA6Bgd +bPJe3433PN66N65euqBAz3rLpta4nl98nG9dfJxvWM+5tSf9dfUn/UPvM7J9uncM/vr3DP7h+7a rDtvHBr1dXq6oVOPL9apxxdH3X9gvyxNOaNfi84Zy3EtSfUNpo4Z3zPs49eaexy6T6juBem66uLB UbeH3qeO0NRfPwMAAABwRK9K1FSwqKXViQyfIZ/hiz4gwRrMhoh/cNB0daHwtmTusE9sx2h6HQAg PggMASmIlmQAAABAx+AvGtuBYd/XeN9by5LeeGeLMtJ9Gju6e5f82FmkhQAAANDFtTTQE59zhZ7A +zotPU1+v799JtEGdXV1dmCohZoP/UQOEAEAOh6BISDFUFUIAAAA6FhdLXeypbxW036zLOK2CYf3 1K8uHNSm4xuN/xd6X9t63nOmfarcHL+mnT9IaWld7IMmKgsBAAAALdFewaJox/D5fUn1Rw2maTYz Ip5hH4JDAJAoBIaAFENLMgBAe0imH1gAQDLydaEvk8VFGXr+sUPa7fj33jqiXc77j4cOavW+nZ0Z x7AQ7wnQ2VmWxecxAACIu4aGBlVVVWnHjh2qqqoKPKqrd2rnzp2qrq5WdXW1du7cqd27d+mFCMdo j0qrrRGtMun69euVl5engoL8pJgnAKDtCAwBKYiWZAAAAEDH83Wl1BA6DTOeaSEAAAAghTU0NKii Yru2bduu7du3afv2Cm3fvl2VlRWqqKhQRUWlKisrVVW1Q5WVlYFwkB0C2t3m81uWldRthGfNuqfx equUnZ2j/Pw85eXlKT8/X/n5+crLs5cFBQXKzy9QQUG+CgsLVFBQqPz8AnXrlhPlyHwvDQCJQmAI SDFUFQIAAAAShx9zIpkk768aAAAAgPZXW1urLVu2aNOmTdqyZYvnUV6+VVu3lmvr1q3aunVrYzCo MqbjGoahvDw7LNOzZ08NGjRIeXl5ys3tptzcXHXrZi9zcnKUk5Oj3bv3aPv2bSovL9eGDRtUVVUl ff6Z55hmQ3MtwBLv/vv/KMMw5PMZ2rVrj3bt2qmdO+2qSTt3Vqmqaqd27tyhtWvXqqrqK1VV7Wis ulSlHTsqNXDgQG3atEk9e/ZSr169VFRU5Hn07l2koqLeKi4uls/nT/TlAkCXQGAISDG0JAMAAAAS jNQQkgFpIQAAAKSohoYGbdq0SevXr/c8Nm7cGHhs2rRJ27Zta/I4Pp9PhYWF6tGjh/bdd6i6d++u Hj26N1bHKVBhoV0px66eY1fSccJAkl3N07JMz7KyslKff/6ZVq9erUWLFmrVqlUqKirS4MFDNGjQ IB1++DgNHjxEOuPUwDzq6+pVX1ffrvcs3nJzc9StW6769PE1hoh88vkMGUbkpc/nk2VJ1dU7tW3b Nm3bZge1ysu3qqysTB99tETl5VtVXm4HugoKClRU1NsVIuqt3r3tR58+fTRw4ED16NEj0bcBADo9 AkNACqIlGQAAAJBYhkFqCImTzG0MAAAAgOY0NDRo3bp1KisrU1lZmb7//nutWbNGa9as0bp167R+ /Xo1NDRE3Dc3N1fFxcUaPnx4IGDiVLDp2bOnevToEXjk5+dLMsJCP6ZpyrK8S2e70zbMNC0ZhqVd u/bok0+W6tNPP9Vnn32q8vJyjRo1SqNHj9HUqRdoyJAhSktLC+xrHz/4ft0yLTUo8rUkH0Peb3Xt F8Hvf8OX9ib7tc9nNLYsK9Tee+8tny8YNgoNHVVWVmjLlnJt3Vqu8vJybdlSrhUrVmjRokWqqanR l19+KUkaMmSI9tprLw0ZMsTz3Ofzte+tAIAU0eLA0LRpwedz5twoy5oRz/kAaCOqCgEA2opfcgMA gGh4nwAAAIB4qamp0ddff62vvvpKX3/9tVasWKGVK1eqrKxMtbW1YeOLi4s1YMAAHXzwwerfv7/6 9++vvn37eh5O9R+30NCPO/zjDu84DEMKzeCHrluwYIFeffUV/fDDWg0aNFgHHXSQjj32Bg0aNChi 4MgOzViyQzT2gTpLqCX8ewAnKBRprKJuCx3jHe8NG3Xv3kM9e/aUYQyXYUSuWFRZWRkIlZWVlenf //534Hm/fv0iBol69+7d8hsAACmsVRWG5syJrYcngI5HSzIAAAAgeZCtQEeisBAAAACSVUNDg776 6it98MEH+uijj/Tpp5/qm2++UX19sBVXZmam9t57bx133HGBgMegQYM0ePBgDRgwQFlZWW2aQ/Qg UDDM414ahtFYvdN+vXr193rllZf1yisva8yYH+mMM87Q6NFjXCEkOxzk7Be6vxMWss8nTTzgtDZd T0dzVwsKrS7UfJUhRdwvUk/vWMNGhYWFOvjgg3XwwQeHjVu7dm0gPPT111/rtddeU1lZmXbs2KG9 9tpLI0eObKwENVpDhgyJfkIASHG0JANSEC3JAAAAgORBZggdgawQAAAAkk1lZaVefvllzZ07V++8 844qKiok2WGRoUOH6rTTTtPIkSO13377afjw4Ro4cKD8fn+7z6upCkLRtv3hD3/Q559/rsmTT9T/ /d8/lZ2d7apU5ASBYju2YUjvv/lWWCu00KpETvsz++G8Vsh6e92CBe9o7txXdddddztnlWGosTqP ++Gs8wXWOZV7DMNQTc0evf/++3rnnbf1ySdLZZqmDjhgpCZOPFpHbK9Qz57dpZBWY+7rjLSMNCba xyW2bc1/lz1w4EANHDhQRxxxhGf97t27VVZWpm+++UZLlizRI488ou3bt2v06NEaPXq0Dj30UI0a NarZ4wNAqiAwBKQYqgoBAAAASYjUENoTaSEAAAAkke+++0533323nn/+edXU1CgtLU2HHXaYjjzy SI0dO1ajR49Wt27dOnhWkasIeav+hFcX2r59u6ZNu1xTppyja665trGFmSnTVGC/pvYPX8qzT3Cp wDjJ2wbMvT54DrnOZQeM/P60xuBP8Jq9IaFggCi4zfs8JydHEyceo2OOOVY7dlTq3Xff1TvvvKU/ /elPeuCBB3TIIaN17LHH6ogjjlReXl7IXEOrCoUv3eObqk7UdDWjWD7ekWVnZ2u//fbTfvvtp9NP P12SVFFRoY8//lhLly7V3/72Ny1evFiTJ0/W5MmTdeCBB7b+ZADQCRAYAlIMLckAAACA5ERmCO2B rBAAAACSydy5c3Xuuedqz549Ki0t1dSpUzV58mTl5+cndF5NVRAKHePYvn27zjvvPP35z3/WgAED GtuNRTpOcyEhd2uy8KCRHYAJhoK8ASE17u8OyjhBJzVWHLK3+/0++XyG6zzekE2kgFBo5SF3ZaLu 3bvr1FNP1Wmnna4tWzbr7bff0ltvzdeMGXfp3nv/oLFjD9OkSceqtHS8srNzAnN17ok3LBTa0sy9 rvVVieKhsLBQEydO1MSJEyVJmzdv1quvvqo77rhDW7Zs0ZQpU3TJJZe07yQAIEEIDAEpiJZkAAAA AAAArRf6izoAANC8FStWaOrUqfL5fHrhhRd0zDHHJHpKkhQS2PFWFYpUJcgwDO3Zs0ennHKyFix4 N9AiLPpx3IGkpkJD8owPhmkiB4eC8/dJMgP7Ocd05mIYks9nj/P5fCH7eoNCzvHsNmShVYa8oSF3 haI+fYo1ZcoUTZnyC61Z873mz5+n+fPn6+abb1Z2draOOOIITZp0nA477HBlZWV5zt/4zPO6pVWJ olUnag+9e/fW+eefr/PPP1/r16/Xf/7zHx144IG69dZbA1WJACBV+JofAqAzKS7uk+gpAAAAAAAA AACALsSyLF1xxRXavXu3nn322aQJC7nFVs3GXvnAAw/o6quvaaJtVmjoxwgLw3iX3nGhIZ2mHj6f IZ/PDgPZ4SFnva9xmyHD8MuyzMDxnPX2PkbYPs2dM7QakX3d9nwHDx6iiy++RP/4x7N68smndMYZ Z+jTTz/Vtddeo0mTjtH06b/Te++9p/r6hoj3NvaWZOH3uKP169dPP//5z/X+++/rgw8+0Jlnnqll y5Z1+DwAoL20ocLQzPjNAkDc0JIMAAAASE60jgIAAACQqubPn6/33ntP559/viZMmJDo6YSJ3B7M atwmV5Uhad26H7R58yZdd921Ms3YKhO524uFVhayz2Hv792mxnVOMCZYMSiGK3Id31J6epoaGsyQ CkPhwZzmH5HCTO7gjjfkNHz4cI0YMUJXXHGVvvzyS7355ht688039f/+30sqKCjQscceq+OPP16H HjrWFV6KFBqSZ+n92IUuOz44lJ2drZkzZ+qLL77Q9OnTdeSRR+rKK6/s8HkAQLy1qcKQZc2I1zwA xBEtyQAAAIAkY/Hg0Y4PAAAAIMH+8pe/yDAMXX/99YmeShPC21+FvjYMafXq712homiVhCItQ0M2 Rkgwxlu1p7UPJ3hjGMFlenq6GhrqG+fs82zz7tPSh3OfvNcZvCb7/vj9fh100IG64YZf6/XX39Cj jz6m448/Xm+99ZYuuugiTZhwhO644/daunRp470NDQI13YosNPyUKCNHjtTzzz+vvLw8XXbZZQmd CwDEQysrDFFdCEhWVBUCAAAAkgt5DgAAAACp7JtvvtG8efN0+OGHq6SkJNHTicqu/hNaUci7bGiw 9PHHHyknJ6dxn2A1IPdY5zs9b8glerUhe2wwhBT8TtFdUch+4vNJphlt/u752PtYlqWsrCzV1NR4 Kgx5q/e424yFVxuK3qZMnvBT80EoKS0tTYceeqh+/OOxuummm/Xxxx9p7tzX9PLLL+vpp59WcXGx Jk+erBNPPEmHHHKwpLSYQ1nJ4oILLtCgQYN09NFH65VXXlF2dnaipwQArdLiwNDs2dLs2VQWApIV LckAANEk+i9wAKArskgLIcXwfgIAAAChLrnkEtXV1Wn58uXavHmzevfunegphQltSeYNDwXDOK++ +qoeeOAB+f1+nXTSyRozZkzjPsHATzD4Yy+dbaFhISkYFnIHh5ygj3eMO0xkh4Ysy/1wWqmFhpfs a+vWLVe7d++Wz2d4jhO5CpI3+BNLe7LogaPQ9mLekE9amk9jx47VYYcdpunTb9V77y3Sq6++puee e05PPPGE+vTpoxNOOEEnnDBZY8f+WD6fXSnJ50sPmXtiW5JFcvTRR2vo0KEaO3asdu3apVdeeUVD hw5N9LQAoEVaWWEIQDKjJRkAAAAAAAAAAOgIZ555ppYvX66LLrooKcNCjvDQkBPCkZwg0Mknn6wr rvgv5eTk6NBDD/WEdJxqPsH9DHkDPM5xpGC1oeC5g/MIBo2Cr32SIpQVCgSTghWNghWOglWMcnPz VF1drUgtw5zn4aGhpoJD3upB0R6RQkiRqiYZhqG0tDRNmHCUjjrqaNXX12vRokWaO/c1vfDCC3ri iSfUo0cPHXvssSouLtbq1av16KOPhd2/ZAkLOQYMGKBu3bppzZo1uummm/Tcc88lekoA0CIEhoAU Q1UhAAAAIPEsSgsBAAAA6CImTZqktLQ0XX755YmeSrOihYbcVXseeOAB5efnByr/hLYXCy7dlYUk b0goGJpxVxdy5hDOHRpyh4Qsz372sYJt0ZwKQ4WFBWpoaNCePXuUm5vr2sc9l2Cwp+kgUKSwUGiw KFKVofD1kQJMhmEoIyNDEydO1DHHHKOGhnp98MGHev31uXrzzTe1bt26xs+ny/Twww8nbVjIsWDB As2ZM0crVqwI+1gDQLIjMASkGFqSAQAAAAlGVggAAABAksjLy+uwc91www0ddq6qqqrA8468xnha sGBhyBonNOQOCXlbknnbkQWDSoWF3SVJFRXb1a1bt0BYxzlGpNBQ5ApCsbQqC21RFikopLD1kcND Unp6ho44YryOPPJIzZgxQ8ceO0mbN29STU2tevXqFd+b3gLuzzEpts+zJ554ol3nAADxRmAISEG0 JAMAAAASg6wQAAAAgGTz+N0nKVW+WzEMQxfc8HLY+kefuLTTVHo1DEMXXRCsnOMVrF7kPMJbn1mu pb09MzNT+fn52rZtm0pKBrnOZW9vKjTU0jZkTVUdilTFyLlmb3jIe65guMinefPelM/nl89nqFev Xnr8+vT4fxCaceGsuojr7358dIec3+83dN3UjzrkXAC6NgJDQIqhqhAAAACQGKbZOX44DQCIH9pO AAA6C8Mw1Nn/ixXLt1w+X3Jfpfv7xkjvIZzWZwp8tJoKC9lLR3FxsTZv3uS6B9EqDDlLd4inpWGh 6BWJnHNHqkjkXLf3nKFz9HkqJDnPOuotV3OfZ0Y7f45Z/GwBQAciMASkGFqSAQAAAB2Pn+cBAAAA SHY+n09+f3IHaqKpbzClhua/8TIMQ2lpvg6YUcvV15vythsL/1hYljcY425JFiksZFnBwf369deG DRtlGL7Avo1HiRgaCq3+03xYKHq7sshVixRxffDaw48ZnLe7tZnN55P87fyhrauPbVx6evv8O6qv s1KkFhiAzoLAEJCCaEkGAAAAdJxOUvUeAAAAAOT3u6vAdA6Waam+IfbxPr9PviS7RtOypHrTsy7y x8ForGDoVBWyqw05waHwSkOSE0IqKSnRqlXfxlhhSGFVhSIFeJyHz2fIMHwxVRzyBo/Cg0LhFY1C 5+cNNLml+Vt1+2PSks8xSXEPpjWYllKldSCAzoPAEJBiqCoEAAAAdByrg9JCZ13ySbuf49m/HNzu 5wAAAACQeD4jvHpLsrIsqaEVIQrD1xg6aYc5tZRpKWJ1JHcgxjDsoJD9UOBhh2csV1jIGxqSFKgy tNdee+vNN99oosJQeHjIOXfzlYWaCgu5ryU8NBQpQBQeTgqdX/SPnM+If3uyBrP5MZEYvvjMxWzl +QGgrVocGJo2zV7OmXOjLGtGvOcDoI1oSQYAAAB0jI6vLDRdlnVruxzZ/uF08PVXK3bqxbmbtGJV tbKyfBpzYIGmnNFP2VmR/5zz0afXat6Ccs+6837WX5Mn9pYkVVTW6al/rtMXy6tUX29pzEEFuvDn AwLHM01Lf39hvf7z3jbV1poatV+eLjqnRAX50X9ssXzlTv3jhfUqW7NbfXpnaurP+mv/4XmSpAv/ +3Pt2h3+56GzZx6gHt3TW3y+5u7Hjqp6/fXZH/T58irV15saPDBH5/60v/YalOM5jmVJt9+7UstX 7tTMm4dr8MDsqNcHAAAAtKs4fD/TGWqhtGqOVsdcm8/nc4WEQs/oBIUsT5uyYGgo2I7M2TZ06FBt 3LhRO3ZUqrCwMHiksBZf3qBQU5WFYn+E7h9eTSj0XKHhouCcvOtaoyO/X496qs7wDwRAl9eqCkNz 5lTGex4A4oiWZADQtXS2MtIAkBJS8Qd/rmt64dWNOmVSsfa5OEdbt9Xpj4+W6YlnftC08wdF3XfS hCJdePaAiMe87+Ey5Wb7Net3w2Wa0p+f+F5znlyjay4dIkn692ubtHhJhW7+731UkJemh/53jf70 SJl+d82+EU+3YlW1Zj6wSuee2V83/Kq7dlbX65X5W7T/MDsw9Pj9ozzjH39mrdau36MehemS1fLz NXc/Hn9mrbZX1GnGTcOUm+PXsy9u0MwHVumhuw9wtQOQXpu/WRnpvuC96YSfR7zvAAAA6PxMsxO+ EW0hsxOUbIn23jpYbUhyB4eC7cqC6x2WJfXt21eFhd21fPlyjRt3uPuIYeeMFBRy1sfysFuUeR/e SkJeK8zmAAAgAElEQVSh25o+tndO3gpIoZKlc5clyUr+TzMAaBItyYAUQ1UhAAAAoH0lwc8l24X7 um66ap/A8/79/Dq6tJfmvrU56rVbIUu37RV1WrGqWjN+O1wF+emSpLNO7avps1ZoW0Wduhema96C cp1yXLFKBtgVd35xZn9dd+tyrdtUo37FmWHH/MeL6zXh8J6aOL6XJCknx68Lzh4Q8fw1Nabe/WC7 fjllYGB7S8/3/9u77/im6jWO49+EbjbdLUP2VARl4/XiQDaIiFdQvIKyRVAQFWV4QZAhCgriAFRE 3LJRURQXoCIgQ7YiZbdsaIEm94+QNGmTNE3Tpk0/79crrzbJyfk95+Qk92q/Pk925+PAwYu6o1W0 IsuFSJJuvzlKq9Yc18nTV1SurOWYDx1N06o1x/XE4KraPPaMy/MFAAAA5KXLlwM/4XDlctZuowWR s8CQNSyUcT9jNJklLGT/vLVTrNkW/Ln++uu1adPvatGihRy7CmUOC7kOCmW+n31YSHIWFnIVIHLX ZSjr744uXfHyZPuYySSZLgX+ZwlA4CMwBAQYRpIBAAAAgWiMX1ffseucKpWPcLvN9+uSteaHEypV Mlg31C+tezrHKyK8mDL+VbYjs1n6++BFBQcblHLqsqpck7H/xLgwhYYYdeDghSwBnvR0s3buOa86 NUtqxHM7dPzEJZVPCFPPromqXaNElrp+/OWkgoIMatzQ0pL/3PkrOVrPk/PRuGEZ/fzrKd1Yv4zC w41avfaEalQtrrJlLGEhk8ms2fP/1v3dyqt4hPOxbgAAAEBeSy8EXXdyy2QyqbAcZkY4RzKbDQ6j yTK6DGWEhBx/StagkP0/bTVq1EgffLBIjzwyxH4lW/jG09BQ1jFiOQsLZT+mzD40pEz7cazLKr2g vK9mKf0K//kHgMBAYAgIQIwkAwAAAHzP/r/y9IcxY8bm6f5dHd8Xa45rx+6z+t/IGi636dOjvPr0 KK90k1kHDl7U6+/+o1nz/tbjAyqrbOkgVa4YoQ+WHNLD91WQ2Sx9uOSwDAbpwsUrunDB8l//hocZ HfYfEV5MFy6mZ1nz/IUrSjeZ9c0PJ/R4/8qKjwnTqjXHNfnVvZo6prato4/V6rUndHOzcgoqZjnG nK7nyfnodEes9uzfr0FPbZUkRZUL0cjBVSRZxggsXnVU0ZHBuqF+KZ06c9lyvmX2+zUFAACAoiNw /r+nuxG51jFeBZ3lGIxGS/DHbDbIvv+ofRch52Ehx6CQNTwkSS1atNSUKZP1zz//qFIlx5HSzsJC 1p+uwz/uug1Ztze6CBO5G0GWXXcixw5Mdofod4HzWQIAAkNAwKGrEAAAAABf+WLNcX224qiefrSa YqOz77xTzGhQ5YoR6tU9UeOn71FqqklhYUYN7XuN3v7woIaP/VNBQQZ1aROrbTvPqmSJIIWHGyVJ Fy86jg24cDFd4WFZu/GEhhplMEitmkeqckVLl58ubWO18pvj2rbzrG5qWs627b6/L+ivfy5oyEMZ /6I8p+t5cj6ef3mPYqJCNWtSXYWFFdM3PyRrzJTdmjKmli5cSNfqtSf0/Kia2Z4/AAAAIC/0HrnM 3yXkuYcenOPvEnLMYDDKkoKxhoMyOg1Z7rsKC1mDQhmvs4aHoqOjdf3112vNmm/04IO9bfvJWNNZ WMjyeseuP9l3C3Lfecj9KDLnnY2UZV1J6j3lss/PvbdG9v7N3yUAgE8RGAICDCPJAAAAAPjC4lVH 9cWaE3rmsWoqHx+Wq31FR4Zo+IAqtvsbt5xRSLBRVa+JUHhYMZUrE6y9f11QtcrFJUlJR1KVdsmk SuXDs+wrJNio+FjHeiz/Va5kMDr+18ar155Q3ZolHcI9JYoH5Wg9K1fn4+y5K9qz/4Lu75aoMqUt 3Y3a3Rqtj5Yc1u5953Xpslkppy6r/4itDvt7asJOtb8tRj3vSnB77gAAAIDcOHv2bJ6vYTKZlJiY qMOHD+f5Ws7k9hjNZrNMJrPMZlOW3y03ZXrOejNlup9xy7ydtfuR5ZbxnGQNCmV0GrIPDrkKDVle Z3A4Bqs77mijhQvfU+/efbINC1l/Zg3rZL7vOlCUk85CrsNCjvv/9NNPtWDBAnXs2FG9evVSmzZt cvUe+4I311mrVq20YMECJSYm5kFFAJB7XgaGJvm2CgA+xUgyAAAAIPCMGzdW48ZJZvPYPF/rg8WH 9eOGkxr9eDXFxWTfWejF1/brznZxSogL1eGjaVrwcZKur1tKYWGWbj4rVh9XpQrhqnpNhPb+dUHz Pziozm1ibR19bv1XlJZ9dUy1qpdQ6VJBeu/jQ6pdvYTiY52vffu/IrXki2NqeF0pxceGadU3x2Uy mVWvZgnbNhcupuvnX09pwH8rZnl9Ttdzdz5KlghSdGSIvvzuhGKiQhUWatSan5J1Jd2sSuXDFRsd qpaNy9q2P3XmsgaO3KaJo2q6DSgBAAAAyB+WoIpZ1i49mcd9ZX3O9spM9zMYjZbXmkySZLwa9rF2 EzLYhYTsR5JlhIUsv2eMH7PU4dhhyH4Em30wqHXrOzRjxsv65Zdf1LRpE1vt9tt5GhpyPiYsJ2Eh V6GgrJ2FkpOTtWDBAi1YsEDt2rXTxIkTVbt2bQ/fRQCAN7zuMGQ2T/RlHQB8hK5CAAAAQCAaZ/vN YBjnZrvcS00zafGqo5Kkx8bssD0eHGTQ2zPrO31Nq5aRmrfooP5JuqiSJYJ0Y/3SuqtDnO35xg1L a+7Cg9q+65zKlQ1W+9uidUeraNvzne+I0YUL6Zrw0l5dumTStXVKakiva1zWeEeraF1INWnKrP26 eDFdlcqHa+TgKrYOP5L0w/qTCg8rphvql87y+pys58n5GD6wihZ+ekjDx+3QlXSzEmLDNPThazwa 4wYAAADA/xw78TgGhOxDOpkDQ0ajNRTknDU4ZL1Z928JBenqOhmhIOdhIUOmOqxBIfvAUkaHoZIl S6hjx056770FatasmV3dmUNC1n1kHUuWNTiU+bHsb+7CRJZaLL///vvveu+99/Tbb7+pV69e+umn nxQREZH9mwYAyDVGkgEBhpFkAAAAQO7Z/8viguD91xrk21rhYcVyvF7Da0ur4bVZgzlW0ZGhGvlI VZfPFytm0H3dEnVfN8/btHdtF6eu7eJcPn9HK8dQkrfreXI+KiaG60k3x2evbOmQfH0/AQAAAGTP +s+A1k4+GY9LUkZnn8yBoYxtPGdZI2P/GWEigy1M5BgWMtvVZbYFiOw7DNl3EZKk++/vpa5du2jL ls26/voGDsdi/7u70JDzLkQ5DQsZnYSFLOsvXvy5Fi5cqIiICN1///166aWXba8DAOSPHAeGZs2S Zs2iuxBQkDGSDAAAAPCe0ejvCgAAAAAA+S3zaDLLY7LddxwHJklGSaZsuwxlWkXW8WMW1vUywkL2 o8msj1lDQxnbWX+X3X4yJCQk6K67umnGjBmaO3eejEZrVx9nYSHrT8fH7B/PHCTytrNQcnKyFi5c qIULF6pNmzaaMGGCateunSWkBADIH3QYAgIMXYUAAAAA7wUV419OAgDyR9Y/OgIAAH/L/L/N9oEh C3Om+5bfraPHXAeHrEEfs8N4MmsYyH5MmfOwkH1XoYzfLfvIXKNF//791LFjJ61cuUIdOnTMpsNQ 1lFl9o9nHifmKjzkGBbK6C60adPvev/997Vx40b17NlT3333nSIiimcJFwEA8heBISDAMJIMAAAA 8E5IMK2FAAAAAKAoyxoYyhwQkhxDQ8ar9y1JIWtwKONmuBoSsh8fZtu7rVtQ5uCQs9CQpCy/W2p0 fixlypTTsGHDNHXqFLVo0UKRkVF222buMOQ6KGQ9L9nfrNtlBIWWLFmsRYsWKSIiQj179tS0adPc 7gMAkL8IDAEBiJFkAAAAQM5ERBTzdwkAAAAAgALAPrhiMFjGjtkzm50FiazBIWe3LCs4dBtyFhyy rO0YHrIfVWZ9Pjtdu3bVqlUrNW7cWM2c+YocR49l7qBk32koawch67nJ7paSkqJFi97X+++/rzvu uEPjxj2n2rVrZfs6AED+IzAEBBi6CgEAAACee3DQ5/4uAQAAAAAKrdTUVI0fP14XL17U+PHjNXLk SAUHB/u7rFzLOp4rg9FoGT3mvPuQu33adxzKWCdrcMgSDsocHpIMV8NKtj066VrkKCjIqOefn6iu Xe9Ut27dNHr0s2rQoIEyh4SyjiVzFRKybpv1tmnTJn3wwSL9/vsm9ehxr77++hsVLx7hUcgoEL38 8svasWOHxo0bp2nTpqlkyZL+LgkAsiAwBAQYRpIBAAAAnpv/wUF/lwAAAAAAhVZYWJh+++03mUwm bdq0KSDCQlaWMIvzUJB19JjjeDJn+3AcTWbfccgaFrL/PfMYMmt4yBIOMmcaP5b5vnPx8fFKSEjU rl07NXPmTM2bN99aQaaxZM5DQ65CQqdOnVTHjh01fPhwffLJJwoPj9C9996rKVOmZhpR5vxmNAZu WEiS/vnnH6WmpmrdunWEhQAUWASGgADESDIAKHwC+R+OAaCgunz5sr9LAAAAAIBC74033lDLli01 e/Zsf5fic0ajUSaTKZutzFcDP3JyswZ+sgaFMoeF7EeTWYNGjuPIDHYhJckaVHLVZcj+XzcOGzZU Y8aM1dmzZx1GjlnXz/jpKjSU9b6lU5H0yiuvaM6cOapVq5bLbYtSZyGrqVOn6qOPPtI777zj71IA wCUCQ0CAoasQAAAAAAAAAADwhC87n1SpUsVn+zp79qzP9pVbngRbLN1/Mm9nDQtZ92PfacjxfkYn oowAkTUglDGOzKzatWvm6liOHDms2rVr5Wofme3atUutWrVy+tyJEydcdBcy+rSGvOCrz8ZNN93k k/1IBetzASAwEBgCAgwjyQAAAAAAAAAAgKcG3rfG3yU4mLXAefjEXzzthJMRGnLsKmQ/lizjsYwR Zc5+z/gpZYwjs9TRu13Ber9cmbuiVaENC1n9a95//F2CJMlgNOi7B973dxkAAlCOA0MDB1p+zp79 lMzmib6uB4APMJIMAAAAAAAAAAB4ItBHQ/mCNexiGU9mkGQ/piwjIGQJ9mQeUZbxfNYuQ1l/t/9p 2afjdtZtC7KMYzLaBYUK3xgys9ksg/xbs6W/FADkDa86DM2efdrXdQDwEboKAQAAAAAAAACAnDCb zTKZs98uLxkNBT8IYzQaLefKZJQlAGQJCWWEg6w3x25DmbsMZR1HljUsZAndGK4+n3XkWbq/3zAX ihkz6rSGhKy3Qslg6fDjD2az5PcPJoCAxkgyIMAwkgwAAAAAACBwOPsDIQAAecFsMuvKFVP2G+aB 4GCjVEj+987SLScjHORiqyzdhhzDQ85+d99hyDrOzN7lS+l5c5BeCg4p5nC/0IeFrIxGGYPz+RjM ZqWn+efzCKDoIDAEBCBGkgEAAAAAAAAAgJwymyVTPnc0MRYrfGES1wEYa/jHnKXbkKsuQ+7DQhkd hlwNpjKlF4wONM7ex4AIC1kZDPnXachslrmAvK8AAhuBISDA0FUIAAAAAAAAAADkhuvOOb5VmLMk jkGYrEEh+8ct4Z+swSHL9u7GkbnvMGRlNrt9Os8ZjC4eL8xvsDMGV7Et38qvzx8AEBgCAgwjyQAA AAAAAAAAQG4EWs4jr1g76JjNmYNCkn3gx34kmWNwyL7bkOx+OnYYsv7uug7lT5LFiSIVbjH7NZcF AD5HYAgIQIwkAwAAAAAAAAAAOWUwSMUK4Ygwf8vcbcgSFDLbwjT2oaKM4JBkMFg7CmV0G7IPCFkD R9Z9OlMYR7oVSowJAxCAvAwMTfJtFQB8hq5CAFCwBFzbXQAAAAAAAAQkg9Gg4JBi/i6j0Mrcbejq o7bwkHUby/OO3YcsYaCMcWUZr3PfYYj3K5+YTDKl+bsIAPA9rzsMmc0TfVkHAB9hJBkAAAAAAAAA AMgJg8EgGtX4hvU/IMzcVSgjOJQRFrIPENl3Hbq6pywBooxFCngnqABqxGM2i85CAAIWI8mAAMRI MgAAAAAAAAAA4Il0E2EIX7PvOu48OJTxeOauQ5Lh6rZZA0SSZDJLIsCSL4zFjP4uAQDyVI4DQ7Nm SbNm0V0IKKjoKgQAAAAAAAAAADz12nut/F1CwHIVHMocFsroIGR9XE4DRJI0fyXvV3757oH3/V0C AOQpOgwBAYaRZAAAAAAAAAAAwBNnz571dwlFgrPgkOuwUEZoyBoWsj5//PiJq3vJaYch65i0jPvW 31u2bKnly5erTJkyDuPU3P0sCvhsACgKCAwBAYiRZAAAAAAAAEWL9Q+MAACg4LIP3mQeRyaZMz2u q49J9p2Hru5Jkq5u42491zXY78dgMMhoNNoeMxiKZkgIAIoaAkNAgKGrEAAAAAAAAAAAQMGWOTzk rsOQNUwkyWE8medZHkOmbQ0O4SOj0SiDwUBICACKGGP2mwAoTKyjyCTZfgIAAAAAAAAAAKBgsoZ1 rMEdo9Fo97v1ccf7Gds4v9lvYzQarq7heN/yejmsTVgIAIoOOgwBAYiRZAAAAAAAAAAAAIWPfWAn o/uQbB2HJNkey3jc8316ch8AUDQQGAICDCPJAAAAAAAAAAAAAoOzMA8BHwCALxAYAgKMdSSZ/U8A gO/xD+UAAAAAAAAAAAAorIz+LgCA7zGSDAAAAAAAAAAAAO4kJSXp3Llz2rdvn79LAQD4QY4DQwMH Wm4Gw1N5UQ+AXIqNjfN3CQAAAAAAAAAAACjgHnjgAR0+fFg9evTwdykAAD/wqsPQ7NmnfV0HAB+x jiKTCA8BAAAAAAAAAADAuZEjRyo4OFgDBgzwdykAAD8I8ncBAHyPkWQAAAAAAAAAAABw55ZbbtHM mTPVvn17f5cCAPADAkNAgImNjSMoBAAAAAAAAAAAEIBKlizp7xI8cvbsWX+XAADIBoEhIMBYR5LZ /wQAAAAAAAAAAEBgmPvSdf4uwSWDwaAHH93s7zIAAB4gMAQEIEaSAQAAAAAAAAAABC6DwSCDv4vI xGQ2+7sEAEAOEBgCAgxdhQAAAAAAAAAAAAKfsZhBxYz+rsLiSrpZSvd3FQCAnPAyMDTJt1UA8BlG kgEAAAAAAAAAABQNxYwGGQz+7TVkNpstgSEAQKHidYchs3miL+sA4EOMJAMAAAAAAICnzGaz3//Q CAAAvGc0ym/jycxmiawQABROBaRJHQBfiY2N83cJAAAAAAAAAAAA8DOzs5vZhze/Hh0AFA2hoaFZ HgsLC/PJvnMcGJo1i+5CQEFmHUUmER4CAAAAAAAAAAAIdCaTlO7kZnJ2M/vwdnV/AIC8k5iYkOWx 8gnxPtm31yPJABRcjCQDAAAAAAAAAAAIfJfTrb2DAACBqGa1apKkQ0mHJEmJCQmqfvWx3CIwBASY 2Ng4gkIAAAAAAAAAAAABLj2doBAABDqj0ajaNWqodo0aPt83gSEgwFhHktn/BAA4ZzAY/F0CAAAA AAAAAOSY2UxYCACQOwSGgADESDIAAAAAAAAAAIDA1HvoFn+XAAAIAASGgABDVyEAAAAAAAAAAIDA dPbsWX+XAAAIEEZ/FwDAt6yjyCTZfgIAAAAAAAAAAAAAAFgRGAICECPJAAAAAAAAAAAAAACAKwSG gABDVyEAAAAAAAAAAAAAAOBOjgNDAwdabgbDU3lRD4BcYiQZAAAAAAAAAAAAAABwx6sOQ7Nnn/Z1 HQB8iJFkAAAAAAAAAAAAAADAFUaSAQGGrkIAAAAAAAAAAAAAAMAdAkNAgGEkGQAAAAAAAAAAAAAA cIfAEBCAGEkGAAAAAACA/GA2m/1dAgAAAADAC14Ghib5tgoAPkNXIQAAAAAAAAAAAAAA4I7XHYbM 5om+rAOAjzCSDAAAAAAAAAAAAAAAuBPk7wIA+B4jyQAAAAAAAAAACEwhJUr4uwQAQAE2lrHB8JDX HYYAFEx0FQIAAAAAAAAAIDD17NnL3yUAAIAAQYchIMBYR5LZ//TEypXL8rgyAAAAAAAAAAAAAADg SsOGN+bbWjkODM2aJc2aNTEvagHgI96MJCtZqmxelQMAAAAAAAAAAAAAAAoQRpIBAYaRZAAAAAAA AAAAAAAAwB0CQ0CAsY4ikwgPAQAAAAAAAAAAAACArHI8kgxAwefNSLLcMplM2rl7j5IOHVJaWlq+ rQsAAAAAAAAAAFwLDQ1VYmKCalarJqORXgIAAMCC/1cABBh/dRXauXuP9u3fT1gIAAAAAAAAAIAC JC0tTfv27deu3Xv8XQoAAChACAwBAcZfI8mSkpLybS0AAAAAAAAAAJAzB/n3+AAAwA6BISAA+WMk mQyG/FsLAAAAAAAAAADkiIFxZAAAwA7/zwAIMP4aSZaYmOCXdQEAAAAAAAAAQPbKJ8T7uwQAAFCA EBgCAoy/RpLVrFZNVapUVlhoaL6tCQAAAAAAAAAA3AsLDVXVypVVvVo1f5cCAAAKkKCcvmDgQMvP 2bOfktk80df1APABf4wkMxqNql2jhmrXqJFvawIAAAAAAAAAAAAAgJzzqsPQ7NmnfV0HAB/x10gy AAAAAAAAAAAAAABQODCSDAgw/hpJBgAAAAAAAAAAAAAACoccjyQDUPB5M5KsZYsWeVUOAAAAAAAA AAAAAAAoQOgwBAQYb7oK9ezZKw8qAQAAAAAAAAAAAAAABZGXHYYm+bYKAD5jHUlm/9OVS5euaPHi z/OxOgAAAktICA07AQAAAAAAAABA4eP1XzjM5om+rAOAD3k6kiw8PFSNGzeT0Vi4mo2tW/ejGjVq qmLFivm7lHxnMpm0fv1Puv32NoXufStITCaTvvpqlZo0ac559JGi/LnMC5zPgs9kMmnDhp9Vv34D f5cCAAAAAAAAAACQY/yVFAgw3owkAwAAAAAAAAAAAAAARQeBISDAWEeRSYSHAAAAAAAAAAAAAABA VgSGgADk6UgyAAAAAAAAAAAAAABQ9OQ4MDRrlmQ2T8yLWgD4AF2FAAAAAAAAAAAAAACAO3QYAgIM I8kAAAAAAAAAAAAAAIA7BIaAAMRIMt/oN/gRLVux0uV9QPLPdVKUr82ifOz+8mDffvpy9df+LsOn UlJSdNOtt+v06dP+LgUAAAAAAAAAAMAvCAwBAYauQvCF+x7srU8/X+zyfkHSvcd9Wr6SwAjgL4S2 AAAAAAAAAAAACp8gfxcAwLesI8nsf3prxRdf6ODBg5Kk4OBglStbVo0bNVJ8nHehpE8XL1a9OnVU o3p1r2vKiR1//ql33luoP7ZuU2pamhITEtT6tlvV7c4uCg0NzZcaEBjeXvCe3pw3X6NGPqE2rW/P 9f6K8rVZGI798Sef0oZfftXIxx9Th3ZtbY/v279fDzzUV2FhYfpq+VI/VmhRUOqc88rMPF+jMFw3 AAAAAAAAAAAAhQkdhoAA5MuRZPXq1lXfPn3U8957FRUVpS++/FIXL17M9X7z2vpfftGgoY+pfGKi Zs98Wcs++0RjRj2t8+fP68ef1/m7vDy3dds2Pfr4cN18W2s1bvkvdbu3h+a+/Y7S0tLybM1t27dr 2IiR+nfrNmrU4iZ1uutuPTdhog78czDP1swPJrNZy1auVIe2bbV42fJc768oX5uF6dirVqmiz5Y4 hm0+W7JUVatU8VNFzhWWOnOjMF03AAAAAAAAAAAAhQUdhoAAk9uuQq6EBAerSaNG2rZ9u44eO6Y/ d+7UgX/+kSSVLFFCNWvWVMPrr7dt/8lnn6lihQo6cvSoTiQnq1zZsjpx4oS+XbtW365dq5joaHXp 1Elbt23TH1u36mJqqqIiI9W8WTNFRUbmqlaz2aypL72s9m3baFD/frbHq1S+Rn379Lbdf2LUM/p5 3XoZDAbFxsaoQ9u26tWzhwwGg0frXLx4Ua/Pnafvf/hR586f13XX1tNjQx5RXGysR89//Oln+uCT T3Tq5CnVqF5djw4e6JPuSz/+/LOGDn9C/+l+tx57dIhiY2J0MClJK1Z9oe++/16tb7st12tk9sNP P2nYiJG6p9tdGjJogBLi43X02HFt/P13vTl3np4b86zP18wvG375RaVKltJjQ4fo7h49tW//X6pS +Rqv9lWUr82CcuwP9u2nZk2a6I9t27Rz126NfHyYbm3VKst+mjdtoi9Xf60df/6p2rVq6eLFi1r9 zRr17f2gZr3+hsf1WtfbvOUP7dm3T4kJCRr2yGBdW6+uN6cxz+o8f+GC3pw3Xz/89JPOnTuvW/59 sx4Z0F9hYWGSpAP//KNHHx+hP3ftUmS5chr6yGA1vvEGSZaRZB3btbN1OXqwbz+1aNZMf2zd5nT7 7N4je55eNydPndKMV2fp140bZZBBTRo30iMDB6hUyZKSpOTkFL3w4ovavOUPRUdFqWuXzg7r5KQm AAAAAAAAAACAQEBgCAgwvhxJ5k6b1q0lWf6Ym5ySotXffKNSJUuqWtWqtm127tql22+9VTExMTIY DFlGkp0+fVrrNmxQh3btFB0VpeTkZO3ZuzfXgaG/DxzQkSNH1eZ296OjJk8YL0kymUzau2+fRj/3 PyXEx+v2W2/xaJ3xk17QpUuXNXP6NJUqVUrz33lXT48eqzdfmyWjweD2+aSkJL0653XNmDZVNWtU 1+49e7X6mzU+CWWMn/iCunTqqMcfHWJ7vFrVqhoyaKDt/uBhj+n7H36UwWBQfFyc7uzcSQ/3ftDj UEbmNSdMmqwunTpq+LChtscrViivihXKq0unjrbHuve4Tze1bKFNm7do+587NGbUKC1budJtLd17 3KeWLZpr46ZN2rVrtypUqKCnRjyu6+vXt+33r78P6KEBA7V9+w5FRUXpqRHD1axpkxwfizOLly3X Pd3uUnBQkLp27qwly5dr6OBBXu2rKF+bBeXYJWn5qi80Yexo1aldW0aj82aLBoNBnTq012eLl6p2 rVr64qvVqn9tPcXGxuS43s+XLtWEcWNVo3p1fb5kqUY89bQWvfuOypQp7dExueOrOsdPnKQzZwWc B7oAAB8xSURBVM5qyvMTFBUZqW++/U4bN21S86ZNJUmrvvxK/xvzrCpXrqwPP/5E4ydO0uKPP3T5 neFue0/eIytPr5vRz/1P4WFhmvf6HJlMJk2YNFnjJ07S5OcnSJLG/G+8ypQto0Xvvq0LFy5o7PgJ Dq/PSU0AAAAAAAAAAACBgJFkQADy5Ugyq0uXL2vDr78qODhYsTEZf4g2GAyKioxUvTp19PeBAw6v qVunjmJjY13+QdloNMpoNCokJETFihVTTEyMmjZunOtaT506LUmKjo7yaHuj0ajq1arpri5d9ONP P3v0muPHj2vtDz9q5PDHFB8Xp+IRERrQr68OHTqkv/76K9vng4KCFBQUpOLFIxQSEqK6dWprYL++ Xh+z1f6//tKhw4fVsV07t9u9Mv1Fbf5lvTau+0nTp7ygpcuXa+UXX+bpmlafL1mqRwYN0I9rvlGb 1rd7VMtHn36qwf3766sVy3TH7bdp4KPDdPLkSdvzS5ev0NDBg/TNFyvVsX07PT1mjMxms1fHY+9E crJ27dqtW/59sySpc8cO+m7t916PdivK12ZBOHaru7p0Vr26dV2Ghaw6tm+ntT/+qDNnz+rzpct0 Z+dOXtXbpWNHNahfX8UjItTzP/coKipKa3/4waNj8kRu6zx67Jh++OlnPfXECF1TqZJKlCihTh3a 28JCknT3XXeqdq1aCgsN1Z2dOunkqVM6kZzsch1X23v6Hll5ct0cOnxYmzZv0WNDhigqMlIx0dF6 dPAg/bx+g5KTU5R06JA2//GHHn90iMqWKaPEhAT1f+gh2+tzWhMAAAAAAAAAAEAgyHGHoYFXG1TM nv2UzOaJvq4HQC75uqvQ1m3btHXbNgUFBalc2bK647bbFB4ern3792vT5s06dfq0rly5IklZRreU KFHC7b5LliypW1u10roNG5SamqrIcuVUr25dRZYrl6uarV07jh8/oZjoaJfbrflurd5d+L7+OXhQ qampkuTxmKBDRyzn+M7u/8ny3OEjR3W2xDm3z7do1lRjnxmlV+e8rtOnT6tqlSq6u2tXVataxaP1 XUm5GqKJiXF93PaMRqNq1aype7t317drv1e7Nnf4ZM3lK1fq6dFjbfc3/7Le9vt/ut+t66+7Lke1 3N21q268oaEkqfcDvbR0+XJ9/e136nZnF0lSz//co3p1Le/dPd266ZXZr+n4CffvvyeWrVipY8eP q9UdbR0e/+bb79T2jtY53l9RvjYLwrFXqVxZkhxCj+6ULVNGTRs31uQXpys1NVWNb7xRP69f77CN J/UmxMc73k+I1/ETJzyqIT/qPHLkqIxGoxIT4rPsO2ONsrbfQ0NDJElpaZdyvH1yiiVklN17ZOXJ dXPs2HEVK1ZMcXEZ/xtUPjHB8tzxY0pLu6SwsDCVLVPG9nxiQoLtd0+vGwAAAAAAAAAAgEDi1Uiy 2bNP+7oOAD7i65Fk9erWdegyIUkXL17U12vW6PZbb1ViQoKCg4P1x7Zt2rt3r9t9Oes0VKliRVWq WFFms1l79u7V0mXLdF+PHgoK8n5iYqWKFRUXF6svV69W3Tq1nW6TcvKkxo6foPFjR+uGBg0UHh6u jz79TF+vWePRGnGxsTIaDFry6ccqXapUluePHjvm9nlJatGsqVo0ayqT2azVX3+jwUOH6fOPP1RY aKjnB5tJubKWP9IfO3Y8S4DL3perv9Zb89/W3wcO6OLFi5LkMOIrt2u2b9tW7du21boNG9Rv0CMO 28fHxeW4lvKJiQ73ExMTdfTYsYwaytmFE8Is5y811bsuQFYms1nLVqzUu3Pf1DWVKtke/3XjRr01 722vAkNF+dosCMdulZPRe3d27qjBQx/TwH59s7zO03oPHT7seP/QYbVs1szjGvK6zri4WJlMJiUd OmwL2uQVT98jK0+um5iYaKWnp+vosWO2MNjBpEOW56JjlJqWqtTUVJ08dcoWGrJ/T3JaEwAAAAAA AAAAQCBgJBkQgPJiJJm9K+npMpvNCgkJkdFo1NFjx/TH1q3Zvi4iPFzJKSkymUySpINJSdrw6686 c+aMTCaTzGazbd+5YTAYNHzoo1q2cpVee+NNHUxKUmpamvb/9Zdef2uuvvn2O11KuySz2azixYsr ODhY23bs0Icff+LxGrExMWrRvLmef2GKpWNHWpp27Nypp0eP1eXLl7N9/pffftPrb83VwaRDSr9y RemmdKVduiTz1XPjrcrXXKOE+HgtX7nS5TbJKSkaOeoZ9Xuoj75etUKbNqzTiMeGKT39Sp6tac8+ y+BpLUmHDjneT0ryuEuMt9Zv+EWSHMJCklT/uuu0d/9+7du/P8f7LMrXZkE4dm/Uv/Zaff/1V7q3 +91ZnvO03sVLl2nT5i26cOGC3v/wIx0/cUL/atnSq3ryos7YmBg1b9pUk6ZM1d8HDuj8+fNaunyF flq3zqc1WtfKyXvkyXWTEB+v+tddqxdfnqnk5BQdO35cL7/yqpo2bqzIyHJKTEjQtfXqavqMmTp1 6rQOHT6s1958y+uaAAAAAAAAAAAAAoH3LTwAFEi+HknmTMkSJdS0cWN9vWaN0tLSFBUVpcqVKjl0 fHGm/nXXae0PP2jb9u2KioxUpw4dlJycrBVffKEL58+rdOnSuu2WWxQcHJzrGps0aqRXpk/T2wve U79Bjyjt0iUlJiTojttvVYtmTRUaGqoBfR/WuPHP6+zZs6pRo7puvqmltm7f7vEazzz5hOa/u0DD n3xaKSdPqkrla3T/vffa6nf3/PX162v3nj0a8dRTOn4iWRXKJ+q50c8oPDw8V8dtMBj0zFMjNWz4 E4qIiNCdnTspJjpaSYcOacWqL1SzRnXVq1tXZrNZJUuUUHBQkLZs3aoFC99XVFSk12uOevIJPTZi pEJDQ3XXnV0UHxens+fO6beNv7t9bVpamke1fPTJp2rWtIlq16qljz/9TEePHtOt/77Zq3o9tWTZ MjVt3DjL48FBQbqhwfVavHSZhg15xMkr3Suq12ZBOXZfiouL9ajeTh3a6/W5c7Vn7z6VT0zQ5OfH 20Zt5QdP6hz99JOa89ZcPfbEk0pNTVWrm2/W4AH98qSenL5H2V03kvTcs89oxqzX9MDDfWUwSI1v vFFDBg6w7WPcs89o8rTpuuf+XoqOilLXLp21488/va4JAAAAAAAAAACgsDMkNmxrHjj5E/Wp53zM 2OrVX6pnz162+wMHWkeSTZLZPDGfygQC38qVy1SyVNnsN7TTskULp+EgT0eSbd78uxo3biajsXA1 G1u37kc1atRUxYoV83cp+c5kMmn9+p90++1t3L5vW7dt0+tvzdOmzZuVmpamihXKq33btupxT3eF hobq7QXv6e13F+jM2bOqXaumrqtXT5v/+EML5s2VJN33YG917dxZXbt0dnrfmW3bt+vNefO1cdNm nT9/XrExMapTu7Z69eyha+vVlSR173GfHri/p9q3bWt7XXa1dO9xn1q0aK6Nv2/Srt27VKF8BT05 /HE1bHC9032mXbqkxi1u0tJPP1HFCuVdnsevvlqlJk2aF7rrv6Aqyp9Ldx7s20/3du+u1rfdmqPX cT4LPpPJpA0bflb9+g38XQoAAAAAAAAAAIDH3tpaWrOeuMuzDkMrVy6z/d6xo+UmtXB4HEDuNGx4 o8/2ldcjyVDw1atbVzNenOry+Qfu66kH7uvp8nlrWMfVfWfq1qmj6VMmu93mw4ULclyLJFWrUlmP Dhro0T5DQ0K0+Zf12VQLAAAAAAAAAAAAAEWXR4GhnHY9AeA/+TGSDAAAAAAAAAAAAAAAFF4eBYYA FB72o8gIDwGAf817fY6/SwAAAAAAAAAAAACyIDAEBCBGkiGQOBtjBgAAAAAAAAAAAADwXr4Ehkwm k3bu3qOkQ4eUlpaWJ2uEhoYqMTFBNatVk9FozJM1gMKArkIAAAAAAAAAAAAAAMCdfEnW7Ny9R/v2 78+zsJAkpaWlad++/dq1e0+erQEUBtZRZJJsP10JCwvT2bNn8qMsnwoNDdW5c2f9XYZfnDlz2t8l BJTCeP0XVEX5c5kXOJ8F35kzpxUeHuHvMgAAAAAAAAAAALySLx2GkpKS8mMZSdLBpCTVqlkj39YD CiJPR5LFxydoz55dqlq1ukqVKp0fpeXamTOndeXKFe3evVPVqtUoNHX7wpkzp7V3725/lxFQCtv1 X1AV5c9lXuB8FnzW7+MKFSr6uxQAAAAAAAAAAACv5EtgSAZDviwjSQbGkaGIy8lIslKlSqt8eenv v//SxYsX8rgy3wgLC1elStfIbDYXqrp9ISwsXBUqVNS+fXv9XUpAMBgMKl++QpG7jvJCUf5c5gXO Z8Fn/T4uWbKUv0sBAAAAAAAAAADwSr4EhhITE7Rv3/78WErlE+LzZR2goLKOJLP/6U6pUqULbfeK wlp3boWHh+vkyRRFRkb5u5RCKyUlWeHhEYX6+i+oOJ++xfkEAAAAAAAAAABAXsiXwFDNatUkSYeS Dik1LS1P1ggLDVViQoKqX10LKMo8HUmGwikuLl5//LFZ9epdp3LlIv1dTqGTkpKsrVu3qHz5Cv4u BQAAAAAAAAAAAAD8Il8CQ0ajUbVr1FDtGjXyYzmgSMvJSDIUTtaOIzt2bGdUkRfCwyNUvnwFRgkB AAAAAAAAAAAAKLLyJTAEIP/kdCQZCidGaQEAAAAAAAAAAAAAvGX0dwEAfI+RZAAAAAAAAAAAAAAA wBWPOgy1bNEir+sA4CN0FQIAAAAAAAAAAAAAAO5kGxi67bbWhA+AQoSRZAAAAAAAAAAAAAAAwB1G kgEBiJFkAAAAAAAAAAAAAADAFQJDAAAAAAAAAAAAAAAAQBFCYAgAAAAAAAAAAAAAAAAoQggMAQAA AAAAAAAAAAAAAEUIgSEAAAAAAAAAAAAAAACgCCEwBAAAAAAAAAAAAAAAABQhBIYAAAAAAAAAAAAA AACAIiRPA0NDHh+hlV985fK+P6ScPKnWHTrr9Jkzfq0DBU9BuD7hmf6PDNXXa771dxkAAAAAAAAA AAAAABRKha7DEKGO/Hd/74fVukNn9X9kqMevGTlqtFp36KxO3e7Jw8qQU3x+AAAAAAAAAAAAAABA kL8LyKkZ06b4uwS3Bg19TJ07tFfr2251uc0rr83RkmUrJElGo1Grlnzm8Pyd99yr8+cvZHndwvlz FRUVqS1bt2rRhx9r+587FR4WpuZNm6jPf3spIiLCo9dbmc1mDX9qlP7Yuk2zZ7ykqlUqu6x5wrgx anRDQ4+P4YUJz2nHnzs18pnRLvfpzqVLl9Sh690un3e2pj1P3oecenr0WFUoX14D+j6U633lRX2e rJHXn5+nR4/Vrxt/d3jsxoYN9PxzY92+Lj/Ox85du7Xwgw+1bfsOpaWlKSEhXrf8+2Z16dRRoSEh udq3N/Vn9xkymUx6a/47+nL110pNS9MNDRro0cEDVLZMGUmef849Xe/UqdOa/cab2vj7Jl26fFnV qlZRvz69VaN6NUlSSspJvfbmW/p902ZdvnJFzZs20eD+fW3fO5llV39uvwczy+33XnbHDwAAAAAA AAAAAACBpNAFhgLB4P79NLh/P63f8IvGjH8+y/OfffC+w/2Zs+for7//tv3Re+GiD9X9rq6qVbOG jp84ofGTpujV117XiMeGevR62zqLl3odlMjuGHIrJCREXy5bbLv/v4kvqHjx4npsyGCfrwXfurNT R5+Eqnzpl982auz459W5Q3s93PtBRUdF6vCRI/rm27Vat36Dbr6pZb7XlN1naNGHH+vbtd/rhQnP qUzpMpo2Y6aef2GKpkycIMnzz7mn673y2hwlp6To1ZdfVInixTX/3ff0zLjntOid+TIajXpu4iSV KF5cc16dIZPJpMkvvqSpL83Q6KefdLpedvXn9nvQ2+1dfe9ld/wAAAAAAAAAAAAAEEiyDQxduHBB 8xe8p5/Xb9D5c+f1r5taqv9DvRUWFqZnx/1P63/5VQaDQTEx0Wp7++269567ZTAYPFr8RHKyps98 VVu3bVd0VKQ6tGurWXPe0EcL31XpUqXU/5GhatLoRm3bvkO79+zRsCGD9eniJWrburXa3nG7JKn/ I0PVtEkjbdu+Q7t271FkubIa1L+vbmjQQJKlK8b0ma9oy9Ztio6KVKf27d3WZOsysWmzDAapUcOG 6v/wQypZsoQkqccDvTV82KNqeH19yzGcSFaP//bWpx8s1MuvzNLuPXs19aUZmvrSDNWqWSPXHV1S U1P19ZpvNWTgANtjk8Y/Z/u9UsWKatemtT5bvNTj10vSwYNJ+nzpMo0fO1oPDRiUqxr9wd37NOGF KU7fh9xer5lld+19vmSZPlm8WKdOnVb1qlU1sN9Dqla1qsv6nF3vr781z+X1VqJ4cZefz2kvz3S6 xpDHRzh8frK73rM7Rk9dTE3VvHfe1U8/r9f5C+dVr04dDR7QT7ExMS7Ph7vvHkn6JylJI55+Jtu6 zGazZsyarTa336a+fR60PX5NpUrq/cD9tvvZnYucvp+LPvpEq778UvPfmJOjc2W1bOUqde/WVVUq Wzrg9OvTWw8NGKSDB5NUvnyiw7auPuc5se+vv9SlQwfFREdLkjq2b6vPly5TSspJGYwGbd/xp2a9 PF3lypaVJP33/p4aNuJJJaekKLJcuVzVn52cHp8333vujt9VSAkAAAAAAAAAAAAACqtsA0MvTJuu s2fPafyY0YqMLKe13/+gzVv+UJPGjfS/Mc9Ksoye2bf/L42fNFlxcXG65d//8mjxCS9MUXRUlN55 c44uXLyo5ydPzbLNF1+t1uinn1StmjVkNBr16eIlWbZZ/fUaPfvUSF1TqaI++XyJXpg2XR+8+7YM BoPGvzBZZcuU0dtvWNdwH+AZP2mywsJC9drMl2xdNF6Y9qLGj81+tNaokSN06PBhn45W+ua7tQoO CtJNLZq53GbLH1tdjhNz9nqTyaTJ019S/4d7q0SJ4j6pM7+5e59cvQ+5vV6dcXXtJR06rNfnztWU 5yeoerWq2rtvv9Z8972qVa3q9jrJfL2//tY8t+u7+nx6ei16cr27+3x5avK06bp0+bKmTpqgUiVL asH7H2jchIl69aUXXdbq7rsnJ3Ud+Oegjh49pttuaeW2Rnfn4mDSIa/eT2+dOXtWJ5KTVbN6ddtj FSuUV2hoqPbu358lcOPJ90R2bmreXN9+/72aN22iiIhwLVuxSnVq11JkZDklp6RIUpZzazabtXff /iyBoZzWn52cHp8333vujh8AAAAAAAAAAAAAAo3bOSvHjh/Xz+s3aPiwIapUsYJKFC+udm3usP3B 3rYTo1HVqlZRl44d9PP69R4tfOjwYW3bvkOD+vdV6dKlFR8Xpz4P9MqyXacO7VWndi23I2Hu7NxR NWtUV2hoqDq1b6tTp04rOSVFhw4f0dZt2/XIgP4qU6a0EuLj1Oe/WdewOnzkiLZs3apHBvRXZLly io6K0qB+D2vDr78pJeWkR8fla8tXrlLr229VcHCw0+c/X7pMW7Zu1cO9H3T6vLPXL/roE8XGxKh5 06Z5UnNey+375M316oqray8oqJiCgoIVERGhkJAQ1a5VUw/3/m+2+/Pkerfy9PPpiqfn0dUxuvLZ kqVq3aGz7bbqy6/048/r9NiQwYqLjVVERIQe7v1fHTp8RH/9fcDrY/O0rtNnTkuS2y4x2Z0Lb97P /9x9l9fdhS5cuCBJKl7cMdhi6Sp1Mcv22X1PeOI/3bspOChYPf7bW12636uf1q3XsEcGy2AwKCoy UtWrVdX8Be8p5eRJJaek6J0FC2UwGGy15qb+7OT0+Lz53nN3/AAAAAAAAAAAAAAQaNx2GDp69JiM RqPi4+KcPr/2hx+16KOPdTDpkFJTUyVJdevU9mjhE8nJCg8LU+lSpWyPOVsnJjoq232VKV3a9ntI SIgk6dKlSzqRnKywsDCVKZPxfEJcvMv9HD9xQsWKFVNsbEzG9vHxtufKlSubbS2+tGv3Hu3Zu0+j Ro5w+vznS5fpvUUf6oXx/1NCfNZz5+z1fx/4R8tWrNTsGdPzrG5PfL3mW70wLaMG64gtT3j7PuXm enXF1bWXEB+vp58YrjfmztPpM2dU5ZprdGfnjrbxTK54cr1bZff5zI6n59HVMbpyZ6eOGtD3Idv9 rdu2S5Lu7ZU11Hb02DFVvqZS1sc9ODZP6ypdyrLdiRPJio5yfn6zOxc1a1T36v30VkREhCTp/Pnz Do+fO39eERHhDo9l9z3hqZGjnlV8XJwWvTNf4RHhWrnqSw0bMVJvzH5FkeXKafRTT+rVOa+rT/+B Cg4O1r3d79bvm7eolN13uDf1Zyenx+ft9152xw8AAAAAAAAAAAAAgcRtYCg2NkYmk0mHjxyx/fHc 6uSpU3p+8lSNfnqkGtSvr7CwMH22ZKm+Xfu9RwtHRUbqYmqqTp85YwsNHT5yJMt2uenuEBUZpdTU VJ06ddoWGnK2hlV0VJTS09N17PhxxURHS7J0QrI+J1mCCfahhFOnTznsw2jIvjOMp5auWKkG9a/L cu4ladFHH+vzJcs0deJ4VapY0ePX79m7VyeSk3V3T8dOSwOGDFW3O7uobx/nnYp87dZW/9atrf7t 1Ws9eZ8yvw+5vV690bRxIzVt3Ehms1nffPudHhv5tD54d75CQ0NdXieZr3d315u7z6eU/bXoyXn0 hZiYaBkMBn208F2VKlnS6TaZa83u2HKiYoXyio2N0dfffqvatWo63caTc+HN++mtUiVLKioyUjt3 77bVfOCfg0pLS1PVTCEld98Tnjp95oz+3LlL/R/uYwuKde3SSfPeXaDtO/7UTS2aKzY2Rs+Nfsb2 mnUbflFISIhq1aieZX85qT87OT0+b7737rn7rmyPHwAAAAAAAAAAAAACidu/csdER6tJ40aa+tIM HfjnoM6fv6AVX3yp9Rt+0aW0SzKbzSoeUVxBQUHasXOnPv18iccLJ8THq06tWnr1tdd1+vRpHT5y RG+9/U6uD8hxjTjVrVNbr7w2x+UaL854RSNHjZZk6XB0bb26mjl7jlJSTur4iRN6dc4banTjDbY/ IletUllffLVa586f19Fjx/TmvLcd9leuXFnt++svpaenO13DU+fPX9C3a79X+7Ztsjw3750FWrZi laa98LzLsJCr19/a6t/6ctli223Ru/MlSbNnvJRvYaHc8uR9yvw+5PZ6zamNv2/S3Lff1aHDh3Xl yhWZTCZdupQmk9nstD5X3F1v7j6fnqzhyXn0hZjoaDVr0kRTpr+sg0mHlJaWpp27d2vs+Im6fPmy 01qzO7acMBgMGjJwgFZ9uVpvzX9HSYcsNfx94IDmvbNA333/Q7bnwpv3c9FHn+i/D/fz+rx1aNtG H33ymfbt36+Ukyc15625uq5ePZUvn2jbxt33RE6ULlVKsbExWrJshU6eOqXU1FR9vmSZ0tOvqGoV S8Dnk88Xa9PmLbqYmqpNm7fo1dde173d77Z1E/Km/uzk9Pi8/d7z5PgBAAAAAAAAAAAAIJC47TAk SU8+/pjmvvOunnp2jFLTUvWvli10S5/eCgsL00MPPqDnJ0/V2XPnVL1aVbVs3kzb//zT48VHPTlC L818Vb0e6qeoyEi1aX2bdu7areCgbMvyfI2RIzT96hrRUZHq1L69du7a7Xb71954S/0GD5EMBt3Y sIH6P9zH9vxDDz6gKdNf1r29HlR8XJw6tm+rjZs2257vfldXvTjjFS1eulzVq1XVjGlTsqyx8ouv NH3mK7b7rTt0liR9tPBdW7el1WvWqHhEhJo3beLw2oupqXr/w48kSQ/2HWB7PDg4WMs/+9h239Xr fcWTY8hL2b1Pzt6H3F6vOXHdtfW0Z98+PT16nJKTk5WYmKhnnnxC4WFhLutzJrvrzdXn09M1sjuP vjLy8aFa8P4HGjVmnE6eOqVrKlXUf+7upuDgYJe1uju2nGp0Q0NNm/S83lv0gYY8PkKX0i4pISFe t7b6t5o2aSzJ/bnw1ftpL7vP0H+6d9O58+f1xNPPKi0tTTc0bKDhTw5x2EdOPufZrfe/0c/ojbnz 1af/IF25ckUVyifqmSdH2jr1tGzeTDNmvaYtW/5QVFSU7rqzs7p07OByvezqz833oCu5+d7L7vgB AAAAAAAAAAAAIJAYEhu2NQ+c/In61Dvt71q04dffNGnqi/p00Xv+LgV27u/9sIYMGqBGNzTM0et2 /LlTI58ZrSUff5BHlQEAAAAAAAAAAAAAAMBTb20trVlP3JV9h6G89N33P8hoNOrGhg10+MgRvTnv bbX6103+LAkujBozTlUqV9ZrM1/yaPuRo0br982bFXa1AwsAAAAAAAAAAAAAAAAKBr8GhhpcX18z Z72m6TNfVVhYqFo2b6Y+/33AnyXBiXfnvpHj17ww4bk8qAQAAAAAAAAAAAAAAAC55dfAUKmSJTVq 5Ah/lgAAAAAAAAAAAAAAAAAUKUZ/FwAAAAAAAAAAAAAAAAAg/xAYAgAAAAAAAAAAAAAAAIoQAkMA AAAAAAAAAAAAAABAEUJgCAAAAAAAAAAAAAAAAChCjJKUduGsv+sAAAAAAAAAAAAAAAAAkIesGaEg Sfpz3UrNNrRXSHhxvxYFAAAAAAAAAAAAAAAAwPcuXTyvP9ctlyQZJCmxYVuzXysCAAAAAAAAAAAA AAAAkOeSNq40/B+5AHPulBVTkAAAAABJRU5ErkJggg== --_004_5b7d2e64517641c581a9ed67857694c6eurocontrolint_--
bug-gnu-emacs@HIDDEN
:bug#55636
; Package emacs
.
Full text available.Received: (at 55636) by debbugs.gnu.org; 26 May 2022 15:09:58 +0000 From debbugs-submit-bounces <at> debbugs.gnu.org Thu May 26 11:09:58 2022 Received: from localhost ([127.0.0.1]:59784 helo=debbugs.gnu.org) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <debbugs-submit-bounces <at> debbugs.gnu.org>) id 1nuF7e-0007Q0-KE for submit <at> debbugs.gnu.org; Thu, 26 May 2022 11:09:58 -0400 Received: from eggs.gnu.org ([209.51.188.92]:55626) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <eliz@HIDDEN>) id 1nuF7b-0007Pl-HA for 55636 <at> debbugs.gnu.org; Thu, 26 May 2022 11:09:57 -0400 Received: from fencepost.gnu.org ([2001:470:142:3::e]:36810) by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from <eliz@HIDDEN>) id 1nuF7V-0001bd-2K; Thu, 26 May 2022 11:09:49 -0400 DKIM-Signature: v=1; a=rsa-sha256; q=dns/txt; c=relaxed/relaxed; d=gnu.org; s=fencepost-gnu-org; h=References:Subject:In-Reply-To:To:From:Date: mime-version; bh=SgDzeBa/TDtWZomI916sVQXuHoFwIZrZdOz/XEP/L/s=; b=UDzLD5VoDUFA sm7uMGdNQqGJvqUdokMYeipX6eyC48/nlJp63lVffbmb5c59GhJTX/FIHpJ8cxAUo0jkd8C+ZiP6a YgUCVtndy8ksw3+P5OZy0USlL/phyiU5VcVIs+TJi//WeU5kU9nmUOhAHelQusEaU1tNUJY/9Brut Se+42owTeEttEDLIo5/g6bcIPEH2i1d1F6g+nfO8j9J+vqDh7wuhNT73AduLPsiNmhfShAcH7Fsnp RWVd47wI7GtmsfPDOJZSuDLAkmLq678gUC5ZQeSb6cSNg01mi9sLg/JVUo8MGFnSfbfuTsc0Ubim3 2H/SjsZRS63K0nIPbWpjcw==; Received: from [87.69.77.57] (port=4996 helo=home-c4e4a596f7) by fencepost.gnu.org with esmtpsa (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from <eliz@HIDDEN>) id 1nuF7U-0001Wg-E5; Thu, 26 May 2022 11:09:48 -0400 Date: Thu, 26 May 2022 18:09:41 +0300 Message-Id: <83tu9cnxe2.fsf@HIDDEN> From: Eli Zaretskii <eliz@HIDDEN> To: WAROQUIERS Philippe <philippe.waroquiers@HIDDEN> In-Reply-To: <d5a6b9b21efe4656b9a9a8000d92510f@HIDDEN> (message from WAROQUIERS Philippe on Thu, 26 May 2022 14:54:04 +0000) Subject: Re: bug#55636: 27.2; etags performance fix when working with very big TAGS files References: <80qa6b58uq3.fsf@HIDDEN> <83r14hpm6s.fsf@HIDDEN> <c64340bed8d64a96946bb8d3351f096e@HIDDEN> <83k0a8q3ua.fsf@HIDDEN> <9719dc6296ae4fafb5ccba1c0dab51ea@HIDDEN> <d5a6b9b21efe4656b9a9a8000d92510f@HIDDEN> X-Spam-Score: -2.3 (--) X-Debbugs-Envelope-To: 55636 Cc: 55636 <at> debbugs.gnu.org, jurgen.de-backer.ext@HIDDEN, stef.van-vlierberghe@HIDDEN X-BeenThere: debbugs-submit <at> debbugs.gnu.org X-Mailman-Version: 2.1.18 Precedence: list List-Id: <debbugs-submit.debbugs.gnu.org> List-Unsubscribe: <https://debbugs.gnu.org/cgi-bin/mailman/options/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=unsubscribe> List-Archive: <https://debbugs.gnu.org/cgi-bin/mailman/private/debbugs-submit/> List-Post: <mailto:debbugs-submit <at> debbugs.gnu.org> List-Help: <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=help> List-Subscribe: <https://debbugs.gnu.org/cgi-bin/mailman/listinfo/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=subscribe> Errors-To: debbugs-submit-bounces <at> debbugs.gnu.org Sender: "Debbugs-submit" <debbugs-submit-bounces <at> debbugs.gnu.org> X-Spam-Score: -3.3 (---) > From: WAROQUIERS Philippe <philippe.waroquiers@HIDDEN> > CC: "DE BACKER Jurgen (EXT)" <jurgen.de-backer.ext@HIDDEN>, > "55636 <at> debbugs.gnu.org" <55636 <at> debbugs.gnu.org>, VAN VLIERBERGHE Stef > <stef.van-vlierberghe@HIDDEN> > Date: Thu, 26 May 2022 14:54:04 +0000 > > So, I think the problem is just the size our 4 TAGS files: > > One is about 62 MB, 914_000 lines, of those lines, about 59_000 are file names lines, > another one 46 MB, 629_000 lines, also 59_000 file names lines. > > We have 2 other smaller TAGS file (8MB and 9MB). > > I have run emacs under valgrind --tool=callgrind. > > valgrind points at expand-file-name eating significant cpu (see attachment). I'm not sure I understand how to interpret that screenshot. > I have also used the lisp profiler when loading the TAGS files. > > > - call-interactively 10141 84% > - funcall-interactively 10077 84% > - find-tag 10069 83% > - find-tag-noselect 10069 83% > - visit-tags-table-buffer 9584 79% > - tags-table-including 9578 79% > - tags-table-extend-computed-list 4327 36% > - tags-verify-table 3274 27% > - apply 3274 27% > - ad-Advice-tags-verify-table 3274 27% This says that most of the time is spent in tags-table-including. If you manually load etags.el (NOT .elc!), and then profile the same operation, the profile could show in more detail which parts of tags-table-including takes most of the time, and we can take it from there. Thanks.
bug-gnu-emacs@HIDDEN
:bug#55636
; Package emacs
.
Full text available.Received: (at 55636) by debbugs.gnu.org; 26 May 2022 14:54:17 +0000 From debbugs-submit-bounces <at> debbugs.gnu.org Thu May 26 10:54:17 2022 Received: from localhost ([127.0.0.1]:59735 helo=debbugs.gnu.org) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <debbugs-submit-bounces <at> debbugs.gnu.org>) id 1nuEsT-00070L-8X for submit <at> debbugs.gnu.org; Thu, 26 May 2022 10:54:17 -0400 Received: from esa2.eurocontrol.c3s2.iphmx.com ([68.232.139.104]:51540) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <prvs=1382c6a57=philippe.waroquiers@HIDDEN>) id 1nuEsR-000707-Hy for 55636 <at> debbugs.gnu.org; Thu, 26 May 2022 10:54:16 -0400 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=eurocontrol.int; s=ectl2; t=1653576855; x=1654181655; h=from:to:cc:subject:date:message-id:references: in-reply-to:mime-version; bh=Q2aIC5L0ip2SIQO8uUnJEZNDTWe1LvKIgA1hAken2ko=; b=ZOp/biVZx5ete01hOV3TL0NOjGVwkLAKpIUMT6mVT1mLhUQq5Fr4CMx2 i4zlQkd8tzCxCXW8uRf0tQZsM+XXqu7gfB4jUSQMHxl2Vt+WyHwHesCAp QI0k7OiT3/9A3P+y2EtCQmHVMxrLlZCTyKK3oYkn2/yykkRBbb57V6aMs J0rhsuFgI8C7Suq4kkDAXffj7fH01+oq55PDIey3DCndt6qYle/Bxse8q uYb5XZ6U+XaOm0H9Djsvo/AdDHprbhdVIFMDkL5tkoEvooL4yJciXH6jP GHd9eNYljevtAtzKJJOVqQDdFr2hmK4SHYq1KcExR4woxXE0KQGXVP56T w==; X-SignedOrEncrypted: False Received: from unknown (HELO drsmtpl02.eurocontrol.int) ([153.98.68.247]) by esa2.eurocontrol.c3s2.iphmx.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 26 May 2022 16:54:09 +0200 Received: from SSPEX118.sky.corp.eurocontrol.int (sspex118.sky.corp.eurocontrol.int [172.19.3.9]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (Client CN "mailservices.eurocontrol.int", Issuer "EUROCONTROL Certificate Authority 2016" (not verified)) by drsmtpl02.eurocontrol.int (Postfix) with ESMTPS id 5330C6004C; Thu, 26 May 2022 16:54:05 +0200 (CEST) Received: from SSPEX112.sky.corp.eurocontrol.int (172.19.3.3) by SSPEX118.sky.corp.eurocontrol.int (172.19.3.9) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.1.2375.28; Thu, 26 May 2022 16:54:04 +0200 Received: from SSPEX112.sky.corp.eurocontrol.int ([fe80::841c:58fd:5e16:13b3]) by SSPEX112.sky.corp.eurocontrol.int ([fe80::841c:58fd:5e16:13b3%9]) with mapi id 15.01.2375.028; Thu, 26 May 2022 16:54:04 +0200 From: WAROQUIERS Philippe <philippe.waroquiers@HIDDEN> To: Eli Zaretskii <eliz@HIDDEN> Subject: RE: bug#55636: 27.2; etags performance fix when working with very big TAGS files Thread-Topic: bug#55636: 27.2; etags performance fix when working with very big TAGS files Thread-Index: AQHYcFEPzgigVMgGzkm5D085LKSq8a0v1dh0gAAX1QCAAK7NlIAAcH4AgAArHjA= Date: Thu, 26 May 2022 14:54:04 +0000 Message-ID: <d5a6b9b21efe4656b9a9a8000d92510f@HIDDEN> References: <80qa6b58uq3.fsf@HIDDEN> <83r14hpm6s.fsf@HIDDEN> <c64340bed8d64a96946bb8d3351f096e@HIDDEN> <83k0a8q3ua.fsf@HIDDEN> <9719dc6296ae4fafb5ccba1c0dab51ea@HIDDEN> In-Reply-To: <9719dc6296ae4fafb5ccba1c0dab51ea@HIDDEN> Accept-Language: en-US, en-BE Content-Language: en-US X-MS-Has-Attach: yes X-MS-TNEF-Correlator: x-originating-ip: [172.19.15.150] Content-Type: multipart/mixed; boundary="_004_d5a6b9b21efe4656b9a9a8000d92510feurocontrolint_" MIME-Version: 1.0 X-Debbugs-Envelope-To: 55636 Cc: "55636 <at> debbugs.gnu.org" <55636 <at> debbugs.gnu.org>, "DE BACKER Jurgen \(EXT\)" <jurgen.de-backer.ext@HIDDEN>, VAN VLIERBERGHE Stef <stef.van-vlierberghe@HIDDEN> X-BeenThere: debbugs-submit <at> debbugs.gnu.org X-Mailman-Version: 2.1.18 Precedence: list List-Id: <debbugs-submit.debbugs.gnu.org> List-Unsubscribe: <https://debbugs.gnu.org/cgi-bin/mailman/options/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=unsubscribe> List-Archive: <https://debbugs.gnu.org/cgi-bin/mailman/private/debbugs-submit/> List-Post: <mailto:debbugs-submit <at> debbugs.gnu.org> List-Help: <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=help> List-Subscribe: <https://debbugs.gnu.org/cgi-bin/mailman/listinfo/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=subscribe> Errors-To: debbugs-submit-bounces <at> debbugs.gnu.org Sender: "Debbugs-submit" <debbugs-submit-bounces <at> debbugs.gnu.org> --_004_d5a6b9b21efe4656b9a9a8000d92510feurocontrolint_ Content-Type: multipart/alternative; boundary="_000_d5a6b9b21efe4656b9a9a8000d92510feurocontrolint_" --_000_d5a6b9b21efe4656b9a9a8000d92510feurocontrolint_ Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: quoted-printable Stef did his measurement in a context where the expand-file-name was not ca= lled as the expand-if-relative optimisation was still active. I have redone the measurements with expand-if-relative re-defined as a simple call to expand-file-name. With this, I have not observed a significant nr of file system access when doing find-tag. So, I think the problem is just the size our 4 TAGS files: One is about 62 MB, 914_000 lines, of those lines, about 59_000 are file na= mes lines, another one 46 MB, 629_000 lines, also 59_000 file names lines. We have 2 other smaller TAGS file (8MB and 9MB). I have run emacs under valgrind --tool=3Dcallgrind. valgrind points at expand-file-name eating significant cpu (see attachment)= . I have also used the lisp profiler when loading the TAGS files. - call-interactively 10141 84% - funcall-interactively 10077 84% - find-tag 10069 83% - find-tag-noselect 10069 83% - visit-tags-table-buffer 9584 79% - tags-table-including 9578 79% - tags-table-extend-computed-list 4327 36% - tags-verify-table 3274 27% - apply 3274 27% - ad-Advice-tags-verify-table 3274 27% + #<compiled 0x809ae9> 3274 27% + tags-included-tables 1053 8% - mapcar 4097 34% expand-if-relative 4076 34% + tags-table-files 1144 9% + tags-table-check-computed-list 1 0% + tags-table-list-member 1 0% + find-tag-in-order 485 4% + execute-extended-command 8 0% + byte-code 43 0% + find-tag-interactive 21 0% + ... 1091 9% + redisplay_internal (C function) 735 6% + timer-event-handler 18 0% Maybe this allows to points at what could be optimised ? Note that as far as I can see, the ad-Advice-tags-verify-table is created = by our site lisp code containing vlf-1.7.1. Not clear to me why this advice seems to be cpu costly, I was expecting thi= s advice to only run a few times. i.e; for each TAGS file opening. Thanks Philippe > -----Original Message----- > From: VAN VLIERBERGHE Stef <stef.van-vlierberghe@HIDDEN> > Sent: 26 May 2022 15:51 > To: Eli Zaretskii <eliz@HIDDEN> > Cc: DE BACKER Jurgen (EXT) <jurgen.de-backer.ext@HIDDEN>; 55636@= debbugs.gnu.org; WAROQUIERS Philippe > <philippe.waroquiers@HIDDEN> > Subject: RE: bug#55636: 27.2; etags performance fix when working with ver= y big TAGS files > > You are right, I tried an strace and only see the tags files being read. > > I also can't get the 10 sec behaviour any more, maybe some other factors = were involved that made the emacs tag file processing slow. > > What I did at the time to analyze was to enable debugger on Ctrl-G and th= en I notices emacs was busy here : > > Debugger entered--Lisp error: (quit) > expand-file-name(#("/cm/ot/TOOL/GTK!27.0.0.1/build_G!27.IP.L7/sources/.= .." 0 88 (charset iso-8859-1))) > mapcar(expand-file-name (#("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27= .IP.L7/..." 0 82 (charset iso-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 81 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 80 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 83 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 83 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) > #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) ...)) > tags-table-including("/tmp/vvl.Tstatus.out" t) > visit-tags-table-buffer() > find-tag-noselect("-tv_summary.adb" nil nil) > > From that I concluded the expand-file-name was the cause. > > Hope this helps and all the best, > Stef > > -----Original Message----- > From: Eli Zaretskii <eliz@HIDDEN> > Sent: 26 May 2022 07:07 > To: VAN VLIERBERGHE Stef <stef.van-vlierberghe@HIDDEN> > Cc: DE BACKER Jurgen (EXT) <jurgen.de-backer.ext@HIDDEN>; 55636@= debbugs.gnu.org; WAROQUIERS Philippe > <philippe.waroquiers@HIDDEN> > Subject: Re: bug#55636: 27.2; etags performance fix when working with ver= y big TAGS files > > > From: VAN VLIERBERGHE Stef <stef.van-vlierberghe@HIDDEN> > > CC: "55636 <at> debbugs.gnu.org" <55636 <at> debbugs.gnu.org>, WAROQUIERS Philipp= e > > <philippe.waroquiers@HIDDEN> > > Date: Wed, 25 May 2022 20:42:16 +0000 > > > > For us the 10 sec is reduced to below 1 sec, loading the tags file is n= o longer noticed after this change. > > > > I assume the reason is a huge amount of files all accessed over NFS, an= d expand-file-name does a lot of system calls that translate > into network packets. > > Actually, expand-file-name is a purely syntactical function that is suppo= sed not to hit the filesystem at all, at l;east on Posix systems. > So I wonder why it seems to happen in your case. Any chances that you co= uld show a trace of system calls for those 10 sec? > > Of course, making a simple change that you suggested is a no-brainer, so = we might as well do it without further ado, but I'm just > curious and think maybe we will learn something useful if we dig a bit de= eper into your use case. > > > An alternative approach is to add some switch that allows a customizati= on that simply never calls the expand-file-name, we generate > tags files that already contain absolute paths so don't need any of this = logic and disabling it would also be ok for us. > > That'd be less clean, I think: if we can do something automatically, it's= better to do that instead of placing the burden on the user. > > Again, I'm not asking these questions because I see some problem in your = proposed change. If we arrive at the conclusion that > there's no reason to investigate more, we can just install that change, a= s it cannot possibly hurt. > > Thanks. ____ This message and any files transmitted with it are legally privileged and i= ntended for the sole use of the individual(s) or entity to whom they are ad= dressed. If you are not the intended recipient, please notify the sender by= reply and delete the message and any attachments from your system. Any una= uthorised use or disclosure of the content of this message is strictly proh= ibited and may be unlawful. Nothing in this e-mail message amounts to a contractual or legal commitment= on the part of EUROCONTROL, unless it is confirmed by appropriately signed= hard copy. Any views expressed in this message are those of the sender. --_000_d5a6b9b21efe4656b9a9a8000d92510feurocontrolint_ Content-Type: text/html; charset="us-ascii" Content-Transfer-Encoding: quoted-printable <html xmlns:v=3D"urn:schemas-microsoft-com:vml" xmlns:o=3D"urn:schemas-micr= osoft-com:office:office" xmlns:w=3D"urn:schemas-microsoft-com:office:word" = xmlns:m=3D"http://schemas.microsoft.com/office/2004/12/omml" xmlns=3D"http:= //www.w3.org/TR/REC-html40"> <head> <meta http-equiv=3D"Content-Type" content=3D"text/html; charset=3Dus-ascii"= > <meta name=3D"Generator" content=3D"Microsoft Word 15 (filtered medium)"> <style><!-- /* Font Definitions */ @font-face {font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4;} @font-face {font-family:Calibri; panose-1:2 15 5 2 2 2 4 3 2 4;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm; margin-bottom:.0001pt; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-fareast-language:EN-US;} a:link, span.MsoHyperlink {mso-style-priority:99; color:#0563C1; text-decoration:underline;} a:visited, span.MsoHyperlinkFollowed {mso-style-priority:99; color:#954F72; text-decoration:underline;} p.MsoPlainText, li.MsoPlainText, div.MsoPlainText {mso-style-priority:99; mso-style-link:"Plain Text Char"; margin:0cm; margin-bottom:.0001pt; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-fareast-language:EN-US;} span.PlainTextChar {mso-style-name:"Plain Text Char"; mso-style-priority:99; mso-style-link:"Plain Text"; font-family:"Calibri",sans-serif;} .MsoChpDefault {mso-style-type:export-only; font-family:"Calibri",sans-serif; mso-fareast-language:EN-US;} @page WordSection1 {size:612.0pt 792.0pt; margin:72.0pt 0cm 72.0pt 0cm;} div.WordSection1 {page:WordSection1;} --></style><!--[if gte mso 9]><xml> <o:shapedefaults v:ext=3D"edit" spidmax=3D"1026" /> </xml><![endif]--><!--[if gte mso 9]><xml> <o:shapelayout v:ext=3D"edit"> <o:idmap v:ext=3D"edit" data=3D"1" /> </o:shapelayout></xml><![endif]--> </head> <body lang=3D"EN-GB" link=3D"#0563C1" vlink=3D"#954F72"> <div class=3D"WordSection1"> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">Stef did his measurement in a context where the expand-file-name was not= called <o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">as the expand-if-relative optimisation was still active.<o:p></o:p></spa= n></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"><o:p> </o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">I have redone the measurements with expand-if-relative re-defined<o:p></= o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">as a simple call to expand-file-name.<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"><o:p> </o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">With this, I have not observed a significant nr of file system access<o:= p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">when doing find-tag.<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"><o:p> </o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">So, I think the problem is just the size our 4 TAGS files:<o:p></o:p></s= pan></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">One is about 62 MB, 914_000 lines, of those lines, about 59_000 are file= names lines,<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">another one 46 MB, 629_000 lines, also 59_000 file names lines.<o:= p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">We have 2 other smaller TAGS file (8MB and 9MB).<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"><o:p> </o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">I have run emacs under valgrind --tool=3Dcallgrind.<o:p></o:p></span></p= > <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">valgrind points at expand-file-name eating significant cpu (see attachme= nt).<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">I have also used the lisp profiler when loading the TAGS files.<o:p></o:= p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"><o:p> </o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">- call-interactively &nbs= p; &= nbsp; &nbs= p; 10141 84%<o:p></o:= p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> - funcall-interactively = &nb= sp; = 10077 84%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> - find-tag &= nbsp; &nbs= p; &= nbsp; &nbs= p; 10069 83%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> - find-tag-noselect &nbs= p; &= nbsp; &nbs= p; 10069 83%<o:= p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> - visit-tags-table-buffer &nbs= p; &= nbsp; &nbs= p; 9584 79%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> - tags-table-including &= nbsp; &nbs= p; &= nbsp; 9578 79%<o:p></o:p></= span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> - tags-table-extend-computed-list&n= bsp;  = ; 4327&nb= sp; 36%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> - tags-verify-table &nbs= p; &= nbsp; &nbs= p; 3274 2= 7%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> - apply &nbs= p; &= nbsp; &nbs= p; &= nbsp; 3274 27%<o:p></o:p></= span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> - ad-Advice-tags-= verify-table &nb= sp; = 3274 27%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> + #<= compiled 0x809ae9> = &nb= sp; 3274 27%<o:= p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> + tags-included-tables&nb= sp; = &nb= sp; 1053 8%<o:p= ></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> - mapcar &nb= sp; = &nb= sp; = 4097 34%<o:p></o:p></span>= </p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> expand-if-relativ= e &n= bsp;  = ; 4076&nb= sp; 34%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> + tags-table-files &= nbsp; &nbs= p; &= nbsp; 114= 4 9%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> + tags-table-check-computed-list = ; &n= bsp;  = ; 1 0%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> + tags-table-list-member = &nb= sp; = 1 0= %<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> + find-tag-in-order = &nb= sp; = 48= 5 4%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> + execute-extended-command  = ; &n= bsp;  = ; 8 0%<o:p></o:= p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> + byte-code &n= bsp;  = ; &n= bsp;  = ; 43 0%<o:p></o:p></s= pan></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;"> + find-tag-interactive &nb= sp; = &nb= sp; 21 &nb= sp; 0%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">+ ... &nb= sp; = &nb= sp; = 1091&nbs= p; 9%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">+ redisplay_internal (C function)  = ; &n= bsp;  = ; 735 6%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><span style=3D"font-family:"Courier New"= ;">+ timer-event-handler  = ; &n= bsp;  = ; 1= 8 0%<o:p></o:p></span></p> <p class=3D"MsoPlainText"><o:p> </o:p></p> <p class=3D"MsoPlainText">Maybe this allows to points at what could be opti= mised ?<o:p></o:p></p> <p class=3D"MsoPlainText"><o:p> </o:p></p> <p class=3D"MsoPlainText">Note that as far as I can see, the ad-Advic= e-tags-verify-table is created by our site lisp code containing vlf-1.7.1.<= o:p></o:p></p> <p class=3D"MsoPlainText">Not clear to me why this advice seems to be cpu c= ostly, I was expecting this advice to only run a few times. i.e;<o:p></o:p>= </p> <p class=3D"MsoPlainText">for each TAGS file opening.<o:p></o:p></p> <p class=3D"MsoPlainText"><o:p> </o:p></p> <p class=3D"MsoPlainText"><o:p> </o:p></p> <p class=3D"MsoPlainText">Thanks<o:p></o:p></p> <p class=3D"MsoPlainText">Philippe<o:p></o:p></p> <p class=3D"MsoPlainText"><o:p> </o:p></p> <p class=3D"MsoPlainText">> <span lang=3D"EN-US" style=3D"mso-fareast-la= nguage:EN-GB">-----Original Message-----</span></p> <p class=3D"MsoPlainText">> <span lang=3D"EN-US" style=3D"mso-fareast-la= nguage:EN-GB">From: VAN VLIERBERGHE Stef <stef.van-vlierberghe@eurocontr= ol.int></span></p> <p class=3D"MsoPlainText">> <span lang=3D"EN-US" style=3D"mso-fareast-la= nguage:EN-GB">Sent: 26 May 2022 15:51</span></p> <p class=3D"MsoPlainText">> <span lang=3D"EN-US" style=3D"mso-fareast-la= nguage:EN-GB">To: Eli Zaretskii <eliz@HIDDEN></span></p> <p class=3D"MsoPlainText">> <span lang=3D"EN-US" style=3D"mso-fareast-la= nguage:EN-GB">Cc: DE BACKER Jurgen (EXT) <jurgen.de-backer.ext@eurocontr= ol.int>; 55636 <at> debbugs.gnu.org; WAROQUIERS Philippe</span></p> <p class=3D"MsoPlainText">> <span lang=3D"EN-US" style=3D"mso-fareast-la= nguage:EN-GB"><philippe.waroquiers@HIDDEN></span></p> <p class=3D"MsoPlainText">> <span lang=3D"EN-US" style=3D"mso-fareast-la= nguage:EN-GB">Subject: RE: bug#55636: 27.2; etags performance fix when work= ing with very big TAGS files</span></p> <p class=3D"MsoPlainText">> </p> <p class=3D"MsoPlainText">> You are right, I tried an strace and only se= e the tags files being read.</p> <p class=3D"MsoPlainText">> </p> <p class=3D"MsoPlainText">> I also can't get the 10 sec behaviour any mo= re, maybe some other factors were involved that made the emacs tag file pro= cessing slow.</p> <p class=3D"MsoPlainText">> </p> <p class=3D"MsoPlainText">> What I did at the time to analyze was to ena= ble debugger on Ctrl-G and then I notices emacs was busy here :</p> <p class=3D"MsoPlainText">> </p> <p class=3D"MsoPlainText">> Debugger entered--Lisp error: (quit)</p> <p class=3D"MsoPlainText">> expand-file-name(#("/cm/ot/= TOOL/GTK!27.0.0.1/build_G!27.IP.L7/sources/..." 0 88 (charset iso-8859= -1)))</p> <p class=3D"MsoPlainText">> mapcar(expand-file-name (#("= ;/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset = iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 81 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 80 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 83 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 83 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1))</p> <p class=3D"MsoPlainText">> #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bui= ld_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) ...))</p> <p class=3D"MsoPlainText">> tags-table-including("/tmp/= vvl.Tstatus.out" t)</p> <p class=3D"MsoPlainText">> visit-tags-table-buffer()</p> <p class=3D"MsoPlainText">> find-tag-noselect("-tv_summ= ary.adb" nil nil)</p> <p class=3D"MsoPlainText">> </p> <p class=3D"MsoPlainText">> From that I concluded the expand-file-name w= as the cause.</p> <p class=3D"MsoPlainText">> </p> <p class=3D"MsoPlainText">> Hope this helps and all the best,</p> <p class=3D"MsoPlainText">> Stef</p> <p class=3D"MsoPlainText">> </p> <p class=3D"MsoPlainText">> -----Original Message-----</p> <p class=3D"MsoPlainText">> From: Eli Zaretskii <eliz@HIDDEN></p> <p class=3D"MsoPlainText">> Sent: 26 May 2022 07:07</p> <p class=3D"MsoPlainText">> To: VAN VLIERBERGHE Stef <stef.van-vlierb= erghe@HIDDEN></p> <p class=3D"MsoPlainText">> Cc: DE BACKER Jurgen (EXT) <jurgen.de-bac= ker.ext@HIDDEN>; 55636 <at> debbugs.gnu.org; WAROQUIERS Philippe</p> <p class=3D"MsoPlainText">> <philippe.waroquiers@HIDDEN><= /p> <p class=3D"MsoPlainText">> Subject: Re: bug#55636: 27.2; etags performa= nce fix when working with very big TAGS files</p> <p class=3D"MsoPlainText">> </p> <p class=3D"MsoPlainText">> > From: VAN VLIERBERGHE Stef <stef.van= -vlierberghe@HIDDEN></p> <p class=3D"MsoPlainText">> > CC: "55636 <at> debbugs.gnu.org" &= lt;55636 <at> debbugs.gnu.org>, WAROQUIERS Philippe</p> <p class=3D"MsoPlainText">> > &nb= sp; <philippe.waroquiers@HIDDEN></p> <p class=3D"MsoPlainText">> > Date: Wed, 25 May 2022 20:42:16 +00= 00</p> <p class=3D"MsoPlainText">> ></p> <p class=3D"MsoPlainText">> > For us the 10 sec is reduced to below 1= sec, loading the tags file is no longer noticed after this change.</p> <p class=3D"MsoPlainText">> ></p> <p class=3D"MsoPlainText">> > I assume the reason is a huge amount of= files all accessed over NFS, and expand-file-name does a lot of system cal= ls that translate</p> <p class=3D"MsoPlainText">> into network packets.</p> <p class=3D"MsoPlainText">> </p> <p class=3D"MsoPlainText">> Actually, expand-file-name is a purely synta= ctical function that is supposed not to hit the filesystem at all, at l;eas= t on Posix systems.</p> <p class=3D"MsoPlainText">> So I wonder why it seems to happen in your c= ase. Any chances that you could show a trace of system calls for thos= e 10 sec?</p> <p class=3D"MsoPlainText">> </p> <p class=3D"MsoPlainText">> Of course, making a simple change that you s= uggested is a no-brainer, so we might as well do it without further ado, bu= t I'm just</p> <p class=3D"MsoPlainText">> curious and think maybe we will learn someth= ing useful if we dig a bit deeper into your use case.</p> <p class=3D"MsoPlainText">> </p> <p class=3D"MsoPlainText">> > An alternative approach is to add some = switch that allows a customization that simply never calls the expand-file-= name, we generate</p> <p class=3D"MsoPlainText">> tags files that already contain absolute pat= hs so don't need any of this logic and disabling it would also be ok for us= .</p> <p class=3D"MsoPlainText">> </p> <p class=3D"MsoPlainText">> That'd be less clean, I think: if we can do = something automatically, it's better to do that instead of placing the burd= en on the user.</p> <p class=3D"MsoPlainText">> </p> <p class=3D"MsoPlainText">> Again, I'm not asking these questions becaus= e I see some problem in your proposed change. If we arrive at the con= clusion that</p> <p class=3D"MsoPlainText">> there's no reason to investigate more, we ca= n just install that change, as it cannot possibly hurt.</p> <p class=3D"MsoPlainText">> </p> <p class=3D"MsoPlainText">> Thanks.</p> </div> ____<br> <br> This message and any files transmitted with it are legally privileged and i= ntended for the sole use of the individual(s) or entity to whom they are ad= dressed. If you are not the intended recipient, please notify the sender by= reply and delete the message and any attachments from your system. Any unauthorised use or disclosure of th= e content of this message is strictly prohibited and may be unlawful.<br> <br> Nothing in this e-mail message amounts to a contractual or legal commitment= on the part of EUROCONTROL, unless it is confirmed by appropriately signed= hard copy.<br> <br> Any views expressed in this message are those of the sender. </body> </html> --_000_d5a6b9b21efe4656b9a9a8000d92510feurocontrolint_-- --_004_d5a6b9b21efe4656b9a9a8000d92510feurocontrolint_ Content-Type: image/png; name="emacs_callgrind.png" Content-Description: emacs_callgrind.png Content-Disposition: attachment; filename="emacs_callgrind.png"; size=163223; creation-date="Thu, 26 May 2022 14:34:18 GMT"; modification-date="Thu, 26 May 2022 14:24:07 GMT" Content-Transfer-Encoding: base64 iVBORw0KGgoAAAANSUhEUgAAB84AAAPWCAYAAACBSbIsAAAABHNCSVQICAgIfAhkiAAAIABJREFU eJzsnXd8ldX5wL93JDe52bnZe5BAIBD2EBBFRBBQW0dbW1u1blulVTu02/ZnrbO1aB111ap1tCq4 AEX2hgTIIJsQsndy93h/f1xyyd03IUzP9/PJB+573/c5zznP85zznHPe970yjpM6damEB6LCQjwd FggEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAsFJEKJJP9MqfO1obahy+nxs36cyABnApMU/kB7+vz+T nRKHOlhGkPwMaCgQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCARfI0IUNtr6zadEdkJEkJDtQlx4ECab HLMNdCaJuqYOfv3gLziw9jWZLHXqUukPj/6V0MhYFLITFxWkhFLepPct2aRHZzQTFKpCoQTJZEIp UyAFqX1elpcYQlWrYRSqJhAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBOcmAe3JCtmjhus+tVUCfV8X v/n5vSgBUlJSaerSOl1kMNkYMNq8CpVMBgbMFqKzEgmLDMZskcBmRersYKCnH4LDvF6r9yNbIBAI BAKBQCAQCAQCgUAgEAgEAoFAIBAIznf87ckK2aOLp33qlJRUAPvGOXIlBrPzCQaL5HbM6fueHqLH jSEvQ0WYQkan3obZJkelSca4u4I+UwgymczztWbfsk+Gd/63BoPBwLzZM8jJznT7PJqyR4LBaOKd /34EwNJLFxIfF3tSOgncef+jT9BqdY7P3776CoKDg8+gRgLB+cFo9afD7adFvyk4GwjUDwOJk9HM TQRnL+dK32W1Wtm2ay9NTS0YTSbiNLEoFHJa2zoYPy6f6VMmAcJvBYKzHZGnCb7OjDRPO5XrR4Lz F+FHAsGZQ8SbwB8iN3Un0DhpbW3n8y83kpGexkXzZp9GDU8954pf+NuTFbKdMeq19Hd3EB4dR4g6 zON3ETFxqEI9P+TtcZ9abt8yVwKYrPbddaeLTDa3Y4PYJJBkcsIjlKgVMtSANVSOXAkKGWgT1LTU GZAHqbwo5F32ybD640/47x+/Q2ykmt+9vJ633vuQDx/5nuNzRXU9mRkZoyJ7JLKMJhObNqxnxwt3 A3DLn9/DaClAE3vqAnXL1m00t7QwJjeXKZOLfJ574NAhDh+udDp27dXfdPxfq9Pxyaefeb3+mm9e hUwmp6u7m6qqalrb2rCYLajD1GRnZZKfn4cMWcByHOVqB/jiy68wmkwArFh+OSGqEI/XfvzpZ7z5 62tI0kQ4jl268iUWXrKY4OAgANZ98QWamFimTp3iozVGh+GW5c9eg/IaGhsxm73/tkNMTDSLFi4E oKuri4rKSjo6OjGZzAQHBxGn0TB2bL6b7wV67rr1X9DT20tGRjqzZswIuP4DA1oOV1XS2tqOXq9D hozg4CDCw8OZWFiIRhPrJF8mg4UXX0xsTAwAu/fspf7IEVJSkpk7Z45XXYwmEx+tXgPAzBnTHbHa 29vH2vXrAVh++VJCQ0Pt9R5lnx2KJEmUV1RQX38EvcFASEgImRnpjC8oQC73fM3JXOcvjsFuh/KK ClpbWzGZzYSGhpCWksqE8eORK5xlD9rwWHPzSfeBMPx+eqT9ZqC+diZ8wpPPDh4bRCFXoA5Tk5mR ztj8fI829xWHw9XvdPaLp5PhjIG+8OeHw4mTk80nzldbDXIqY8+f7NHkTOR8I8Fqs7J16xbuWjGV OYWXEhkWQmldKyazlSn5Kby5rpjP9pTQcPToqIwBgSDyNJGngcjTRJ4m8jSRpwXOSPM0V/8ezfWj 08n56h+DnC25ofCjc4+hdTrb/CiQdtbp9BwqLaW1vQ2T0YQqOJj4+DgmFhaiVp/4idTu7h7Kysvp 6OxAkiAuXkNR4UQiIiJ8SD9BoNcPZ232VHEq1/3PVc7H2D0ZzpV5+Okk0DWo9vZ2+lpr2fHC3WzY V8Oq1duZM3vWqOgwWjnfSDmX/MLXnuxQqkq2ouvrBiA+NYeUnPGjJnsk+JJdsnlNQDKK5i8flmyj QUdj2Q6mF2Sw98A24rIKiYxNBKCno4WO+oPMmJDNnpLtpI2fjSrE/efFPe1Tm6z2f5UARouE3iy5 X+RyzCqBCTmlCeFMN3QA0NJnIyZchkYlRyEDBRCKAr3BiBzPT/nqPcgeDSRXkS6fzR7qOVLZI5Fl 8nC+0cIpaQuA3Tu38bPrZjB3YibvbTjIezuKKZzouXMqLy9lyUQNr913t9Px2betYvkV30Cv11G2 b5ujg/HE3DueY/bc+Qy01nDLkgnMHHcpoSFBtHT2s3prOWu3bKdw0iTK9233K2fJshXIZHJ6e3qo q9jPh3++gehwe0K27P5XmDpnASoPCdrQllz519XsKG3gsqXLscqU6M0SGzesZ9XKyzl8tJM3Nuxj YtGpSyyGW5Y/ew3KK6trZdGMRYSHen+KvuJIO/euWktKcioyQwc/XjGVorxkIsNU9GuNlNQ088Zn xTQ2R5OfPw6AmqrKgM7d9NWXrFq5hLy0OD7fWckLn+9mytTpfusfq4mj41g13710MjMK5pIQE45N kujXmWhs6+HVT0swWiQOHih2yJckuPn/3sWYOZ4jdbXcuCiPZXOWs6m4jif/ux2dTuemy4TCSeza 8oXDx3738nqqa48QERXNsar9juNX/Pw1Jk2fh8FooL+letR8diiSJLF92ya+MSeXP95wDfHRYXT0 avlsRyXvbNzI7AsWIJe7b9aM9Dp/cQyg02pprDnEDy6ZwPRxFxOhVtHRo2XD/hre3biF6bPmOhZl h9rwz/9qcJI50v50uP30SPrNY41HA/I1hVJ52n3CU/z09/U5jjnqaLbQ0tnPpzsq+WTLcbsMWZT1 FYeB9teD+p3OfvF0Mpwx0B++/HC4cXIy+cT5aqtBenq6T1ns+ZM9Y9bsUd08P90530ipq63loolp XDYrnyMt3az42WtYJXhm5QrHORabNCp5cCCIPE3kaSJPE3mayNNEnjZcRpqnufr3aK4fnS7OV/8Y 5GzJDYUfnXsMrdM/P99BYoT8rPIjf+2s1+s5fHAXt1w+lenjFhIVHkqv1sC+w8d4cfUu8ifNIDRU zdGGIxi7G7nv6hkUjUkGmYySqmZe+mQfiVnjCQ/3vXke6PXDXZs9VZzKdf9zkfMxdk+Wc2UefjoJ dC6/t/gAT961CIA31xWTmT12VNptNHO+kXIu+YWnPVlXejuasJl0vP7HWwG47Y+v0xIaRVRcyknL Him+ZJutEm89cpvP67/zyxe8Xu9Ndk9HB1PGpnPzVfO5dE4hf3xxjePp8Z6GUn516wrSE2Ow2jZx uKOD6MR0Nxme9qmNFvvn4xvn7k+c61x28iUJyuMjocvC/kQV4fUGxlglrBIEKWXIZBAOqCSJpoYW DCQh83KXgd7LXQJms5kjdVV0tDZjMBgICw9nzLhCYmI0AOzc+hUD/fY7vWUyGaHqMFLTs8jIyrXr 6DJiun42WSW6egaoKC2ht7eL0FA1KWmZVJYfBGD67AuJio5h84bPMBmNZGTl0t/XS19vD2PHT2LZ A68iSRJp6VmMnTCOtZ9/gsloJDM7j/6+Hvp6ulEGB5GdM5aUdPtrL/Q6LRWHSujt6yYkJJQglzob vTx9bzabqKs+TEd7K0aDgZCQUOITk8gaMxalwv66gC8+/wgkiaJps4mLT8Ro0LPlq7UAzJm/kM7O TieZ9XW1HGts5MJLlrqVl5VbwJriMlb9dxULJufw6F0nztGbbKAIIadwDrNvW+V03T9/eQ0TshPp 6NGiVAVTUV7On2+/hDc+2cMTb28mVRPOX1dewY+uvgClYiebq48GJMdgApNJx6H9u3jh51cREqx0 Ot9glrDJ3NvNdTCYMn0OFkmBxWTDoNejDpLIT4/j+Q92EB2XTJ/W6NPnNn3xKWaziaycfHq7O+nr 6yE0VM2YcYV0trfS0nQUCUhITKFgQhEc/3kCz2UZfNrUl71c5T321masVqtT263fXcWvXrTbPyIq iozsMSTIe/jjvd/EbLHx8CtfsLPsKNPGpfK7mxcxf1I2v3t5HTV19cgVcpJCDQGda3NpY6tNcn9j hYu+imA1cm0z//r1t1AFKXn9s718sLmMAa2JrJRorphXSFJ8LDXdOif5Mhnce91c7ntuPZGRMc7l SlJAuoA99o0eOliD2UZ5Wdmo+SwuPllxcD83LS7k2osn8sn2wzz9zhbu+sZsbrx8GnFRal5Yu5uJ Re6L2SO9zm8cA9U1NdyydBZf7S7n6Xe2khQbxjM/uYIbLpuKUi7nf7sPkTeu0M2GMpcnaaqqKjl4 oARVaAhj8icQl5AE+O+X5l18mVNfKnN5csreT/ePqN8E6OpoC9jX1GHuk8hT7ROefHbosc93VvLb f64jMymaZ+//BndcNYvo8BD+u8tuF19yHG0SYH9tMIHBoHXrqwIZJy1mM3U1h2lva8FkNBASGkpK WhYZmTmOfnBwLPU1Rg5HjuuY3FBf4zMn8NWnBlJuION3d6922HHiGgOB5hOexpV+rdFvPUY6jvnL ucB/3tZQX8Oxo/UY9HpUKhWa+EQys/MIOf7EoCunMvb8yq44TFZOvke9AiUQn1mz+gOffaQ6LGLE NjsRc2PssdLT7dZHu1JTVcXyyfZXsDW09mA0WwC48/H/ARARGc3MCxbQ2HjU6TqTVQrI/8oO7Ke5 yWWBeQhZOfnk5hcA3nInkaeJPE3kaSJPO4HI00SeNpp5Wv74iT793Vsc+dOvo62Fkn07USiVzLrg YkLVakr27aSjrYX4hGQmTZ0ZUB395VkiNzw9uaG//lb40dnnR6510mp1/OjmpWeVH8mDQljz0f+8 2tdsNvLorRdRNCaZT7Yf5vG3NnHPNRdw1YUTSEuIYuWqdeSNmwgDLbz482/S2afjgWc/ofJoJ0Vj 07l60Qze+KKc3LwCj7EF0NPdFdD1JqNh2GuzENjcxJ+tXXFd53eNv0Dn1v7yIZ1W6zf+PKHX6QLe czgZ/dRhEedl7I7UjwLJCT7/9OPTNsceDv768fLSYpqOHiEpOZUJx+cXA/197Ny6AZlMztyLFlO8 Z/uw9stMVvc5WX9fL8lRQUzMSaK5s5/Kxm7m5UWjN9n82s1fHXzlfENt5y1mPBGIPwbiF19t+NKv HFcCGZ+95cfxCUlubTV73iVO8l33ZF3p62hioLmCP9xx4mGHX9+6gt/8YzUGk41IH5vn/mSfDL5k myz+N+tNFs9rBb5ky0Kj2XZwF0vmdpOeGMOvbl3Ob/6xGoA/3GHfND/a2s22g0dIGDfXowxP+9RG +7KYfePcYJHQDj6DfhytyeZ0zCwPojU6hJIUGYo+C1U1BjqSm4gcn87gWQpJoqulk+rqNvRxcUgy hcfKao02t/LMZhO1B7Zx/SUTuXDKTBKiw6hv7ubZD3bRbLZRX3mI53+61HGnt8Vqo6mjjw82lbKu ZB+5BUVum6aun/u1enpb9/D7789nQnYSzZ19fLi5jNd/cuI1DcV7u/noke8SG6nmzXXFjMuYREFW Ao+/tZHHH7vR8VqLdes+ZvWjNxAbqeb1z/YxNqOAwpxEBnQmXv5kN8XVVcTEJdBZX8Lvb7yQCVmJ NB0vbygGsw2lS1uYjAbqS3dy45LJXFB4AfExYbR1a9m4v5Z/r99I7uS57Nm0lm3P3YlcLuO+Z9ZQ 32Cgv7nacYfkt37zJq//6lpyUuyvnLjm4olcc/FEerUGlj3wL6ZfuNjNLslZY1GFRwFdLr5wXD9F MLMX2l+ZMNDbA91VTMi2v/7g32v3k5SaS3JGNg88t56k9GzypuRSdWgvO0sbWDQjjwVTsnlv8zri 03L9yhkwmDmwezNP/2gJcVFhPPn2Zh78/sUOnXQmK2ac2w3A5mJ0g+WEr7U0N3FhUTZ6o5m9lc2M n57HwT2bvPpc5YE9fPzYDUSFhfDqJ3soyptAQWYCTR19/O3drVw7J4vLZy9EAjbsq+HZj7cxbtIs kMncyiqYmsuhvVu82lRvwae90nLyneRNn38ZMrmcQ3u2ONVXk5hC3oSp2GxWSnd+xRN/uh6FXM5b G0rY19DPuBkXc+jwAd5cV8wPl8/ggesX8I0H/40kEfC5NrlzomyxufcfrvWXyeX89fffJiRYyWc7 DvPa2jLGFs1AGRSEXjvAS+sqiYyNR5OQhK36sJM9J+elMCMvnn11vW7lutrbYpPQmd39wmixofBw XGe2kjdp5qj4rNZFvsVkQtvfwTcXLAPgvQ0HiMvI550vD3DVhRNYdkEBL63ZTVffAKqQ0JO+bhB/ cZySU8Bza4qJio0nf+p8yvZv50BNC/MmZTEmTUPvF5VoTVZ3Gw65s3pMqoblFxRQkBVPe7eWVf/d Tk3tAPVVZX77paZOLR8P7UubnNttQKunr23vsPtNAJvNRkXpft4J0Nd0A/2n1SfAvY/y5MdxSakM 2GDj/lq+uaCQS2fmseqD3aTkFPiU4xSHAfTXWrO7nfOLsmg47Huc1OqzaKkv4weXFTFv0hziosNo 6eznwy1lfLprK+Mmz2bv1vV8+H/X+xwj45PTqDmwPWA5zmPyJn75kyVecwJtX4+PPvV1IsJCfJZr 0GsDGr87uoYfJ8fqq51jIIB8Ijkjx81WE6bncWDPZp/12LN53YjGsQO7N/vNufzlbd0drSzID+dP 372SxNhwOnt17Cpv5O2vDhKTPgFViPuTCacy9gKVPVIMugG/PrNn52a/feSxjgE+fuz7w7bZ0Fh5 4/P9jMssdPO9pLRsJ33K9+/gsbsvY8a4NADmF2W7PWnz5rpi3t1x0C2n1hlNfv2vpryEO5aOZdmc FXjj1U/2sLq4jPScsSJPE3ma23GRp4k87XT6BIg87euUpwFUlB7w6u/e4iguMdVnuySm5RAvb2fH C3ejM5i54eG36dTa+ONNC5hXlMXG4lr+/J/tYNH7rKPZYvaZZ0VGx4rc8DTlhr76W+FHZ6cfudap aM6is8qP9lQ2M2NcCm/5sO8vnvuc/HR7O207dITIuGS2H2rgqgsnMDYjjoH+PipKD/D3excTpFTw 3P92UFLdglwup6SmnZr2/WSPneSWA7r6rr/rB/QjW5vdu2Wd37mJJjHVr3+64joncYu/AObWR2rK /eZD6YlRPuPv0Xd2kj/J+SZJvU5LZ11xwHsOJ6NfTFYRPV0d513sjsSPomPj/eYE+3dv55PHT88c ezhYzCafY0FwaBg/vCSXK+cvZ+2uKv760S5Ss/LRNR1ixwt3Y7XZuPLnr/PcT5YPa7/MaHHflzvW dIwV0+zrITtKG4jWJKI1WTlSXe7TbgqF3GcdTCaTz5wvOS7cYTtPMWMw5xEeFe2k64Fdm/z6YyDr M4dK9vLiA77bzpXujlbiZb7H51/+Yw1r/vJ9t/z4yf9sZvOujdy4dIpTWz29sc+pDNc92aHoetrR Hivnkbvtm8KDpCfG8Pvbl/PLVavRWyD8+OvKXfEl+2TxJXvwCe7lP/mHx+/XPHUHRg/7035ly0NQ JozlF6tW88hdy8lIiuXhO68AIC0hmoaWLn757BrUyeMwSgqMHmR42qc2HNdXDvY7ok0WyenPYLY5 fdYbIKNygFCVkvzSfuIjEtm3s4aGA+VYrDbMNolDZXV8+MFWMqOVTO15Dbm+3U2uySJhsDjLNppt lO/byjP3LueGJVOpbuzg6ofe4OHXN3LJBZPpam9j3NT53PbEp8y+bRVzbl/Ft37zb2w2iXuuncuE 5CDaWprd3pDkSltjLU/+6HJmFKTz7oYD3PnEhxTmON8dNFTGRVNyePI/W7jk3pf4bFeNV7kLJufw yL++4i9vbCQxNpyfX38R/e31HC7eyRN3X86McWm8tb6Yu574kMJsZ8c1W53bxmiyUrlvO39fuZzr Fk5i7e4qlt3/KjtKG/jeZVN47M4llO3d5qazxYPvfO/hd9h68AgA7204yOzbVrHsgX8x6YJLPdrF ZJGwWN1b0dN5DfWVfGfRZAB6Bgx8uLWCmKR0TBaJnMKZqKPisUlydAO95B1P9vq0RuRKpX85iemU Fm/joe/OY1JuMr9/ZT21Tc53J5msnvV3ZWj7drY1M68om93ljYSExVJRvN2nzw3lgsJMHnz+c1Zv LScnJZan711BS2cf3/rtm1htElfMG8+sMbG0Nh/zUFYMVcU7fdpULpNxw8PverWXq+5mmwyTxf3V qYOx3N3VzbiMWMcrlHaXH0WTlIUNBXFJmewssz85FqFWUZgdP6xzrS7OZrW5+8hQfZXB4YxLiyU+ OgyA9XurSc4ai0WSsXvjZxzas4XWpgZajzW41Wn97mrMFis/uvoC9FrnBVnJ5p40W21w/GE5JyxW sNhkWKy2IcdsWKyy0fHZ474/9K+7u5vCrAQUx+9Ib+kaQB2hoaXLvggok8GE7ER6u7tH5brhxHFy 9nh6e7rZu2UtGbEhTMy194PrdlcTHZfsMV6GSlwwJZs/vbaB+//+MemJUTx651IUuhZn++C5X/LX T7cerR12vzm07Ybja6fbJzzFrNWLH9skGzLZkNe8uozTnq7x5g++9HO1c/Wh3X7HyfrKg/x95TK+ vaiIL/ZWs+KBVyitb+Xea+dyy5IJVFccdPYXL2Nk6d4tw5IzdEw+1BnsMydIysz32qcGq4J9lltV cYDKkl0B+eFI4kRye7+c/7bS6QxuZZUXb/fbfkMZzjjmN+dqbvaZt7U2HSWSPlZeNw+DycLyB17l 7ic/oralj+sWTaXpaB3tra3s+HKN46+iZPcpjb3hyh7886Sn67Hykt0B+cxQvPWRI7VZIL53rKHe SW+ZXMF9f/+cj7bYJ5CbiuuYfdsqZt+2iv2VTQ55Vsm9724+UuXX/1yfuPTGYP8l8jSRp4k8TeRp Ik8TedrpytP84S2OSvdu9qlfZ0crhxoNvLWuGHVIEL+7+VKWzcxiXlEWTR19/On1jRj0A37r6G99 zJN/iNzw1OSGwo/OLT/yVCezTXZW+VFoWKxf+0ZqEtlUXAfAnMIMetubmFNo/03iTcV1RETHE4SR gswEAL69qIi1T97MZ0/cxJ9uvpAwSUtPT49XnXV6k//ru3sCWpv1FLuB5CVlezf79E9/cv3Gn5fx bSje8qEDRwZ82ycu2W0+WHVg57D2HE5GP/N5GrtuednQ9vLiR4eLdwxrHj7ac+ze3r4RryGU7dvq 02Yms4kPNpU6yjf0d9F8tIHL59h/ymtzST0mRdiw98ssVve8tK+n23GzUGVDO6qwKHp6evzazV8d 1JEx3nO+oCAn293xxIcOHRy+7mFeEYg/BpIrZo6d7LftXO3WeqzBb/8tU5x4kHgwP15470us21PL qp+ucGsr1/q57skO/Ws5cpgHb1pMRlIsR5pP3Ih9pLmLjKRYHrxpMW1HDnu93pfsk/3zJdt8fE5n ttrImLbE6W/odyORHRSRgDJ+LA888xFHW7tJS4gmLSGao63dPPDMRyjjxxIUkeBdtsVd9uBalhyO L2JYJac/vcn5c/W4GN6dE0uXRUamwkpSuAJFQg47y808+eJGfv6PLVy3OYi/GS9E1r2DK6b0s6z/ 1yj0LW6yDWbnz10dbUzNjWdMmv3VHY+9uYn4MdNRJhTwz88OEZ+Rj9kiERWfgio0AplcwbH2PnaW 2V/9eGFRDt0dLX5n+hNzEshItN+l8q/P9hGbMYF/r93vfNIQGf/deIhuWwQT5lzmdlfpUD7cXIol JI5th+ydgFwuI1UTycScOEd5/167n9j0Cfx7XbHTtRabc1t0d7YzOT+enJRYJMmuZ1LeDN74fB8A hTmJ5CWFO8mw2dxfhQgQGhbp9FmTnEnBrEVu9hj6Z/UgyPUcnU5PqE3PRVNzAHh7fTHhcZlYJbnT eeXF27jrqplkJsVgsdp4afUu4tPz/crpbGtmXkEii2bk8eone/hqX62bTq2N9R71d1+ksB83mizY jANMzU9hc0kdClWIX58bKuqTHYexKSMpr28F7Aso7351EJ1NSUNLNwAZidFotVq3spSq0IBsqlI7 23XQXq7ywmMTTtTXpV1skt1eRoOBmEi143jPgAEUSvs1imB6B/SO72IjQ4d1rs3FRyTJ2Qau+qrC womNOiG/s0eHFWgqtf+23+DfH74/m6qDu5xs2NTRy3tfHSItIYqrF0xwrivuC1mDurhitUnIlCra urUAmC1Wegb0SPLgUfFZV983WyVMJhPhapVDB7PFaj/PcmIBMFKtwmgyjcp1w4njY/WVLJsUw7Z/ 3MUrD11LVFgIX+6t4Yt9tYTHJnn0uaHOtmZrBZaQOCqOadlf2YRcLuOKuQVO53jrl/z105PGJAy7 33T4nsEwLF873T7hqY+SJPdj3W3HiJDruXCy/c7VdbuqiIpP8SvHU3m+9HO1c1BIKBMyNX7HyWl5 CeSmarBYbby8Zg/9ehPvfWmfhH1jwQT03a1OweltjJw2Znhyho7JkZpUvzmB2uW1wZrkTFLzJjE1 N95nuYbuNgqzNX790GSxjihObFbvu6Xe2qp/oN/jGOav/UY6jvnLudqa6n2OoVFxKY7fd07WRLBk Vj5JsWF8suUgz7y7hZDwGJIV7U5x+eC3plFduueUxd5w4nrwr7O91aOersce+ta0gHxmKN76yJHa LBDfy1QPuNWFoRs/QKQmkbAo56c7bDb3nfPp+cl+/S8pezx///iwYzPe09/7ezqJT88TeZrI00Se JvI0kach8rTTmaf5w1scTRuT6LddUsZM5Pk1+zhU28rE3CTu/84CzBYrDz3/OSGaNL9ta+j2vz7m bdwUueHo5ob++lvhR2eXHyVkjPWZl51NfpQ2dopX+2qyJpKSXcCT/9lCaV0ry+aMY8Mzt3HVhROo bGjnsbc2o0nJICbixJgq2SSu/tUbvPDhTmZPyOCvK1dwrHIfRpPFo64Go97v9Y2Ve/yuzTZUlXqM XavFHFAceLO1Kjzar1x/eBvfhuItH0rMLvAZf2nB3W7zwUDG6KHBczKz+5feAAAgAElEQVT6mczW 8y52PflpIPntxJx4vznBqZxjtzcfHfEagj+bmfu7qWnTcrihHVWQkoumZNPdfpTFM+0/MffBplI0 SZnD3i+zesjVTSYD8dH2+W5Xnx6ZMgiTyex37A7E70IjnZ8Y1yRnkj52sls+pwl0XuHPH5vrA8oV LVY/co7Ve7SlTbL57L9lnFhjGcyPM8ZOYXp+kse2cq2f656sc92t9OuMHKpt5r6/fugo576/fsih 2mb6dUbMXuZifmWf5J8v2YP3Qnvag/b13XD0ttqcXV3yI9MxHpq966sE+yKO653vRovN6VhohZ5x Vb30TNZwNDKYiH49MkmC0ChCouOxFcTRtj+EZF03+3WZXGg9ytSp+XTveJLPw36GRXViEc7kItuo 15GUZP8NM73RTJ/WRHKw/U70uLR8LBaJltqDrJiWwNKblpMUG0Go6sQvEyTEhGEyGvBHUqy9AzCY LOiMVoJCIuhs0nk9v6NXhyo03ONTAUPp6tcTpFKjHXJHvFwuIzHmRHkGk42g0Ai6mp3Ls9qcnzow DGkLndGE0WxDGRJGV9+JRbGk2AhKaprd5LjiabHOX12GVMGB6zVtx+r4zsJCFHI5A3oT739VSvKE +U7nHSndyfcXjuU7i4owmi08+I/PaLPEEKuOcpznTU5vxzEijnfMNy2bzk3LnF9/8/HjN/HMe9tY d7gGTXKO3/pYrBJ9nW3MGp+GQiFny4F6gqLTSdLYF708+pxVcmrBngED8qBgx6KY1mDCZpMBJ+4i UshlWG0SPZ7KirWX5cumFc0DTroP2stV9/j8Cxxt6GlRxmKVQBFMT3+H43h0eAjNRhNBIRImo5Go 8BOvjuzq0zs9zeHvXJnceZHd1a9c9Q1PKaCr98RTLpooNfVGG7F5s5l92yoe/P7FXDFvvMf6ALzy 8R6WzRnLzcumU1J9wu8lSQKZ8zU2yT6ouraJTQIbckxW6NUa6Ok3EKRSO517Mj7rKa4kuZIBndHx OVipwGSxEKw84TN9OiMyuXMfM9LrhuIvjmNTxvDB/ipe+fg5spJjePjWxSyclktYaDAPvrKN6IR0 N5+DE69m7ezToVSpCQ5VO/w4MTYC117HU7/kj5H0m4PIlMF09Z4415+vnW6f8IRrE102K5/LZuVj Mltp7uznvQ0HeW9rHan5033K9Na/+9LPNVaDNVkkHR+qfY2TSRr7GKVUyNm46nan7xRyOUmaMOpb T/Rn3sbI4cpxjMkB5gSuN7zZJOd8w1e5gfjhQG/3qMTJULy1lWtZQ8cwX/WoaznxmtuAxzGrRGPV Ab/tm6Sx/26SpzEUSaKysoa1u6q4dEYe933nQgCsNhtvri3mtQ01pKefWKgZZHAMO5WxF4jsQYbT hwXiM654lj+y3GMo3n3PV2nHP3vYJPKkZiDxq9Ppkfy0obdcR+RpIk8TeZrI00SeJvK0U5mn+cNb HAXSLnq9gdjUfF79dA+P370Mmcz+2tOadj2xCXEB5XCD5XgbA32NmyI3HL3csKezRfiRB7lnqx+9 ub0MdXiM17zsbPIjqw2v9s1JjOZI6VZe+fk3yEyK4fkPd/LWumK+uaCQe66dy/MPXMUPHvkA5ZBX pG/YX0tQVAqrt5bz02/PJz46jHHpGlp7uwiLinNXWB5MZ5/O5/UFGfEBrc0eOb7Z6A1/ceDJ1v3d bV7lBYq38c0VT/mQzYd9EtLTgU63a4a753Ay+vX1dJ53sZuUeeInbzzhzY8Cm4efujm20aBz6h+G k18HMhb0EMuHm8v42XcXcPmccXT26oiLUtPc2c++6jbUkTauGOZ+madcXZKc76m32kAdGePTbq+s r2TGtBS/dWjqc5782CQwGPQkJo1gXiHhN880G40kxiT4ld12tJpvzE7zLsfs+UYdCe/9Q26y80MI g/mxrxz3ppedb0py3ZMdSnTaeH7zzw0AmI0n6tPZp+Onz3wGgCZrotfrfckGqN/zqdfvALKmL/X6 nS/Zg3Hhyfd8fReIbF1PG+a2Cp64ZwUZiTE0tA7eABPDYz9ewX1/W2335+gEj9e77lPDiTng8Y1z CdeyTRbnY73VfVj6rUzPiWJdTAzRHQbiB/pQBKmgz4hND5IJ4ns7aYmbxT93mrljtoyLppto2/A0 OzL+MKSyzrLlqlBaOu2DTqgqiMiwYAy6AZDL6Wk9ijoihgkpSu765hz0RjM/fOQ96pq7eOD6BXxz gT2hsUnuT3W4fm7psk/sQoKVqILk6LX9aCLVPq+x4fkVle4LjbjR2n2ivJBgOXrtALEu5dkkOFq5 n4GuFqIS0gmPTqCly94WalUwqiA5Wm0/sZGhTnJlyLDabMjlCoKUCkx9BuIiXX9HT+b0SlhpiJ2b qk6UmZhd6KSPK0NtZbNZMfQ0c+W8hQC8++UBlFHJIFc6zmss38X1F+Vy07LpGM0W7n/mY+q0YcSm ZDnO8SUnKiGTjXVHePe2VY5yC3MSeekX1wCw7P5XICIFTVqem9+62U+y69/f3cb8+QWU1rVisAUR qo7w6XPxGWPd2sGfD4DdD1zLUodGBGRTuUzh0V6u8lAGO+rtyQ+tEqjCoyk9WEKv1kBUWAgzCtJ5 9ctqgsOi6Ww+wqXz0gHsdynVtWO12QI+V+by25kSzj7iqm9cZDxlh8ro6NESFx3GRVNyePy9vaTk TyMyPtVNf9c6WRRhvPLxHu69bh5zJ2U5nasMDqGls5/89Dgiw1SYDHpMBj1R4Sd+G6enXw/KKKwS pBXM5rKf/BOAnCkXj5rPeoqruPR8SivLsdpsKORyEjURdPZ0kqQJd+hfWtdKaEaaUx8w0usCjWOz SU9Hw2FikrOJTs6mtb6U9buruO3KWUwbm4qurxNFkMrN54aK1ESqMdR2Y9BrHX7c2tUPMv/9kr84 CrTf9DReBqujKastCdjXTrdPJGYXeqz/0GOf76zkt/9ch0wuJ0gVSqQmlaS86TRWl/iV49om/vRz jdWwkHBauloc7e9tnBx8Ha3RbOGSe1502tAByJw4H9p2ubW3KyORYwP6utsCygkUMvcxUBEc6uiP vZWbmF1Ia3evox28+aGur5v5l04adpxIOE+GA8kndP3dzL+0yOO44qv9ZK07fJflXhQmg5aidJXP 9kUuo6XTbj9vY2hMSj4P/2szj721kdwUDXMnZnLDkqncsGQqr326lxpdCrOHjPPhMQmk5E/jSNmp iT0ILK6Hoo5OoLYHNz0jE9KdjoVGRDMx3T4J8uUzgeVuvm3kLfcIxPf2H9W51UXtspDmaRz2dCyQ +O1pquWeFeNYNucqr/V79ZM9vLOrCotJL/I0kaeJPA2RpznKFXmayNNOcZ4Gvv3dWxwF0i5BwSH0 1+zhJw9eDdifDJxflM0FYysobtLS0iXzKSM+a4LfPMvXWCZyw9HLDT2N8cKPzmY/epE+k4n588e7 5WWnatyAkfmR2WKhv7nSo30PNtUSHxFEZpL9zRzrdlehySrii72HuefauaQnRJMaE0pdax8tXf0k Hb9BVpKc55l6owlClR7HZBTB6E34vX59xYDftVlVuMYtduWKExtQXuPAj609zcOGyoWRrdXLAsiH LFarV/uU9RipReM2HyxMOzEfDHTPYaT6afu6mH/JxPMqds2pebTUHvSaT3nzo0ByU1dGc46tCA51 irFA1xBCwqOZnmt/ItqXzWJUIazdvZkfX3MBU/NTHatJH24uQxURS+EI9ssG97qGogxS0dajJTMp htjIUMp7TViR+R27AxnPFNrD7jlfUIhTXhvovEIbQJ6JTBaQXxRlqn3KkSuV1Brd+7ek3CJay7d4 7h9aj3psb185bv4s581o1z3ZoQSFx5JUuACAhiGb3JKE4zh4nov5kz0o56vn7vb43UV3rvJ5rS/Z g+aXJKjb7XlzXpKGr7fNbMLQUs7TK68gO0VDXVMnK5+yP4n/9E+uJDtFwxP3rGDl0x+hCAlDqQpz k+G6Tw32vXIY8hvnVpvk9Ge02Jw+pydbyc0JplGhAKON3YkJHEpIpTU8gmOh0WypUBBvNtGclkbr gJL6sAU8vzWaRl0cVinGp+yQiDj2VLdT3Wh3oAeuv5Deur1YW0u5fdkkutsaHXfxW20SZouNnBQN C6fmDmlcH5Y7zoHaNhpaewD47uLJ9DaW8t3FU3xeI9kCu1vI0yklNe00tvUeL2+KvbxLJzud095Q yUPXTWbHC3dz95Ix9He1sreyjfrmbmQyuGHJVLpr9/C9y6YCUFbXSvmxfoJDw2hotcueNT4dY9cR t7rIFUF099vvgkqOi6S/vZHGil0cq9zvVGZL7UGsNonOphqaKve51aNy56cYdP1YbRK9bY0smTmG yLAQ9EYz72w4QFRSjsOWHY01XDcvi1tWzMRssfKzVZ+wu6KRjqOHqdmz3nGePzkR8RnkzlhC7owl pBbMcdMpIiHdzWc93iUoSVitNnS9bVwwMZMtxfWoY5P8+lzbkQq3kdOTi7l1hpLkVpYqQhOQTZUh 4R7t5SpvaH1d/V7C7q825ESkjuUvb2zEZpO45uKJzMqJpPnQRqZkhHD9pZOxSRJPvr0ZdULusM7F JZnu72iicuenVO78lJo96930tSEjJn0CD7/2BSazlcvnjOM7F+UxULcLS387MRGhQ/R3X5ENVkfx 3y2HOdbei3zI7W8SEK5J4dMd9ju+p+SnkhMfTFvVLq5bWARAS2c/B+u7UIVHoxvoR9lV6ni9ykD9 bowG/aj5rGtctTccxqqK5b8b7b9Hc93FE9G3VfOtS+y6fbytnH7CaKuvGJXrAonjgd4OZL1Heej6 2UTqj9B4cBMapZ6F08YAsL+qidDwWI8+N5Tlc8ehMnYwPiWcKfkp2CSJNVsPExwS6rdf8kdxdavf ftNqcx+z7H4/PF873T7RUnvQc7/icixck0LOtMWkF84nKjmHpuoSv3Jc49Cvfh76xeDwWA7Wd/od J/ccbqXmWBeqICV3f3MOYaEqkuNiuHzuBJ766bV0Nla62dXTGDkSOZLN/hungeQEcmWwW5/a3VrP 3sp2n+UO9LRzoK7Drx8atN0jihOZ3PtPv3hrK6NLWarIOL/16GysHPE45q995Yogn2Noc00JCUF9 PHTjItISNFQcaWd7qf2VVzqDGZNVIjQ60THO585YQuKYqac09gKV7foXGhnvpqfrseSxswLyGaUq xH8fOUKbDcWb78WkjnGri6c8wu2YByX2VDT79b8AUnOH/iJPE3mayNNEnibyNJGnnc48zR/e4mhv pf92OVq+k19+bwGp8VF8ta+WB5+3PwH00A8WorZ2s9dP2+p6O/yOgW5jmcgNRz839BCHwo/Ofj/S 97W72exs9CNf9lUZWmnp1jr6yEumjaGjvsTRVn1aA0c7tcSk5vHiR/YbmC6ekoO57xjL59qf2q1s aKemVYcyNNLrPCcmzf/1Man5ftdmPc2XAomD3VWtPv3Tn9xA8BSyymCV33youeaAV/so+xtQBoe5 zQcDGaNHSz/DQOd5F7vNNQfd86khePOjklr/ey+nco4dHpcyojWElHGzArKZJFMgC41l/Z5qZDKY OjYVq83Gmq1lqMI1I9ovkzzk6qrwKEpr7a+vz8+IxzDQi26gx6/dAqmDp5yvq7nWJWYCm1cEkmfK FMqAcsVA2s6TLX3138r+Bjdvkmz4jFF/e7Le/uSqcLYeqGPrgTrkqvCArvEr28cijlU6CdnH5X71 3N0e//zJ9ya7v7uVeUXZjk3ze5/+CEVCAYqEAu59+iPqmjrJTtEwrygbbW9XwLIH+2bloBO6PpJu MDs/Hi+XgcmiILzLQFGDlvAoFftDI6m3RBBqstCvVTKus5H+bitBMUYsUihV6kt4vrgEQ0SSkyyT xf3R+7gxM7nrqTXccOlEFkzJ4b+P3EB9czd//+8uIhIy2FF9hLfXl3D5nLG89MurKa5qZmfZUS6b lX/cmb3a1YFak8l9f/+En333Qr67eAqXTM9jzdZyFs/MsxvI6j4ztkreXxPgdJ6H0S4yOY+f/v1j fv7dBVx/6WQWThvDB5tKHTrb9Xa+zgbEjpnJXU+t5qalU7hsZj7fWzyF9p4B3lxXzGufHyA+bzoW g46/vLmRB75zISvmFVCUl8JHm0u5dEaeQ1aoJpW3vzxEfnocMwvS2PqPO9lR2sB9z651LlOCrqZa VkwM565fO99VsuMF++dv/eZNDDET6Gk7wrd+eCVg/y0NsyoeSaZ0tFFXUzU/fOg2AIKUCv668gqH rF6tgaX3v076pIV+5fhrW4tVQpJ56PxdDlmtEgN93UzMiicqLIRNJXWoYgqw2nz7XEhkAn3tjS7t 5L88s1HvXpYkC8imVrPJo71e+2Svk7xAXwMYGpXM3uZabvvL+9ywZCoPXH8hEWEq+nUm9lQ08u/P 91M3EEp0ShZAwOf2tB5xlDf4usJBerUGfvHsp276qsLjqO408v0//YcbFk/lyvnj+eHyGVisNvp1 RvYePsaWAw2ERiXQ337UuU7IiEjO5+/vb+eRO5Y4tb0qMpG9R7t4+NUvuPqiiTx731UEKxV09ev5 fGclz3+0m+jsqVhtco9+ZLVKo+azbrEsgSZ9PM+u3kXvgJ7lFxTw6RM30dmr47VP9/La+nLixsyi o65k1K4LJI67FLGs3VHGj6+eRV5aHDZJoq17gFc/2cPbGyoIS8hlrLzFp89tKq7jtz+8hLHp8TS2 9fLc/3bQQSyxGTl++yV/hMVl+u037cmS5zgYjq+dCZ9wvddTkiSPx5xeC+tHjqc4XHr/6yiCg73q Zxjw3C/GZk/1O05Gpo/n7qdWc8PiScwvyuabFxXS2atjf1Uzz76/lYjkMeir9ji3q4e2jkgtGL4c SUIdFc+O6mN+c4KwhEyPfeovXt7ms9zI5DHIwK8fTsqOH1GcyGR9bm3hr60mZiW42UqTN9Nv++n6 XJ4EC2AcU6jU7Kju99u+8T7G0LCYVGo7eth5sIaV184mLy0Oq81GcVUTL3y0i+iMIuw31zoXfipj LyDZRQu9mcUvsdlT/fpMZEK23z7S34TdXj/Xc5w/e/O9yOAIr6+gGirbn3yAsIQcv/4XHBLOUx8e 4uFXvnAXcJzIpFxCIzVkh+tFnibyNLf2EnmayNNcEXmayNNGK0/zh7c40uQV+tRPoQpj6eQEFk7L pb1HyyP//gojat7bcJBrLp7IH2+7jB8/s9ZvHRXKYK9joDwo1KN/iNxwlHPD+16jKDdB+NE55Edh 8TlkqfvdbHa2+VF3yxGumJnp275/+5wfP7WaW1ZM57pLJnHLipn06wxsLqnjpdV7iM6YhCosmo2H DxH8xld8e1ERH//lRrr79Xy0pYwX1+wnNmeqx7gaJDQmZVjXD2dtdije4iA+r9Bnrj/cePOEx/Et gDnZlbOzfdrnnmfWE5s73emm+EDGaLc9hxHqdz6uDwx0uMwxApzjanLy/e+9uNTxVM+xAyUQm1ms EmFxGXywqZQVx29s2XKgHq0URnxsMjuqi4e9X+ZpryskMpEv91Vz4+XTmDU+ncf/s52YtAJq2zt8 2i1YHeG3DoDnnO+fWxwxE+i8QhVgnqkJYH1m++Fuv3Jc26m/vcFv/33HY/91a29fMfqT95x/msJ1 T9YbkWkFPPjilwDEZHp/PftwZNtsMPe2v3v93te1vmT7k+tPvjfZSnUM6/fuwWaT2LC3muCk8QRF xNtl2STufOx/XDw1ly/31xGe6fmntTztUw++OEGWOnWptPKJ99lRfszphIQIJW39FqdjHf0qrGYb zU0D5GaEUzMmiSC9ldSmNvpSkhlo1xLRVEdqRihyZbDXRtCEKejUWt2O26xm+lvr0Pe0YTUbCAoJ Iyp1HKrwGCQkeo8dRtfVBBKowmORKeTouppRhccQnzcTgKZDX2EzG4nNnIg6NsXtc19TJfrediwm PXJFEBOzYvnHA9/AJklc/tNXUOfOoaV8q9M1g/iTLdmsHCtZD0B8/kxUYTFYjFq6G8ow6XpRBocS FpdGT2OFvY3zZxMcFkVnXTH6nlbCNGnEZEywG8hipr+lGkNfO1azEXlQCKFRCUQm5TheTWPS9tB9 tAyLQYcyRE2YJo2exnIAkgrmoQwJw2wYoKv+IGbDAEg2QiLjiMud5rHM/tY6epvc7xwfKg8JWiq2 YDFoCU/IIjrV/VWZjcXr7LfTuCBXBJEy6fiidAByhmLS9tJWaX+lTPLEi1AoVR7Pay7dxPu/v5Yk TQQr/7qaHaUNhMVl8MOLM1gwOYtrf/8eKRMWOM735XMATQe+xGY1O2ys626mq/4AcoWSlEmXANBW tQvTQDcRiblIkpWbF6R5LCsQm7raSxkcyl1XTvMob5C2wzsw6XoJjUlGkzXJY9v1t9Zh1HZjs5hR KJUEhcUQkZiFKixmROe2VmzDrO93LQqZTM6Pr7nAq74Wg5a+1lpMA91YzQaQyZErlChVYahjkgiL S3eSH5GYS1SKfZDV97TSWVcMQGhUApqcE3dc6rqaGGhvwGwYQJJsKJRBqCI0RCXnowg+8TpQs36A 1oqtACQXLkARZP9utHzWU1whSfS11KLtOobVZEARpEIdm2Jf9Dn+ZNZoXuc3jlVh6HtbGWg7gsnQ hwwZiqAQQqISiUjMpK+l1qsPD/Z5EQnZmLQ9mAx9KIJCiErOIzQ6EQisX/LXlwbSb/ojUF87Ez4x 6N/q2GRiMyd5PRaoHK86+tCv59hhr3YOZJwE6G+pQ9/bdtw/g1FFxBKekEVQiP11tYGMkTaredhy 7E0fWE7gbQwMpFxffhgak8yti3JHHCfDySd8lRVQ+w1zHItKGRNw+/ocQyUJXU8L2vajx/saOUGh 4UQmjUEV4fy7T0M5lbEXkOyTIJC+K6A+cgQ2azr0FWseuZ7YSDW/e3k9X+xvxGIxuPmeJ7obStF2 NjqNre1VuzAOdDu1r6ufBuJ/geCrPxJ5msjTQORpIk8TeZrI00Y/T/Pm34HEkT/9Btob6GksRxGk InHcXOTKIHoayxlobyBYHUV83kwkyeq3jt7GQH1vm+9xU+SGo5IbqjWpfvtb4Udnlx/p+9q91uls 86NA7GsxaelrrsE00IPNZkamCCJYHUVUUi5B6khHOQMdjQy012M16ZErggmJjCMyZYzXdVNXhnN9 oGuzgc5N/OX63mQHEn++xjd/+ZChv9OvfTy9SW4kew7D1U+tSeWWhdnnVewOjgGu8RWoHwWSm57u OXagBDqnNul6aTtsj73QqEQ0Ofanp0e6X+aJ1vKtPHvvZUzMTeLWR9+nVZFJsDrKr90CqYO3nM9q 1NHdUIZR14MiKITwICufPflDAG7583u0KbPd5haB1tmfXwSFRQYkx5VA+u/msk0e29tTWyVNuNBJ vqc92dHifJRtMWgxDnSiCtfY9y6dvhvAONDl8btBPO1Tzy5I5en7rrZvnN/z+PtsL3V+aiMmTEG3 y0UWK/T1gzpYT6Qymp6IECSDBWtjP+MLItlR1k9igoGgEN+/1xilVtCrc984P9Vo249wzdwsWlpa 2FJcTaQ6iF/fuJCiMcl8uLmMp9dUEJ0+8bTrJRg92io2OzbOB7l05Uu8/OB1bDlQx0tfHiUyxfcm /cnQfngLb/366lEra7TlnWrONX0F7pwLNmw+sNbj8YjEXMITcz1+J3DGm53FOBkYpzNOzoWYFJx5 Wss2subPJyb1O44FERrjeUJ8tnEux9O5Fp/nmr4Cd84FG4o87eQRedrJcS7EyclwvtfvbOF8b+fz sX5nY53OtE5nakw+l+cmI+V0jdFn2qdOJ2faj850+acb00AXmUHNPHvfVXy1r5bfvbWXmMzJ/i8c JWwWM8aG7U4b583yLILV/m/KPZ/wtCcrZJ862Z72qedMSONv9x/fOL/7sffZdsj5lRjhIQoGDN4V 6myF2gYrMeEGEpOC6e80Ex1vRR0V4fUah2yVnAGj+914pxqbxYiy6zC3LC3kgokZqIKUHGvv5cPN ZXyyt5GIrOmAzK8cwdlNZ+VmbCaD47Om4CJ6anehCo8jLPnUJxRdVVtHtazRlneqOdf0FbhzNtuw /dA6xytNXXlp9W7e2tlh/41XgV882VmMk4FzOuPkbI5JwdlBZ8Ump0n9tsYgVNHJZ1qtgDmX4+lc i89zTV+BO2ezDUWeNnqIPO3kOJvjZDQ43+t3tnC+t/P5WL+zsU5nSqczOSaf63OTkXA6x+iz0c9P BWfaj850+WcCs7abnro9BEclEJVedFrLtlnNWI/ucNo4bySToK/Zxrm/PVkhe5Rle9invqAwnVUP HN84v+sv7/PF1j1eLj+/kKwWzH0tWPR9gA2ZQoUyLJag8FjEJFMgEAjOfrSNBzweD45MJCjy5F+V 9HVHjJMCwbmJrrkMyWpBFZOOMsz76w0FAoHgVCLytFOLyNMEAoFAEChnckz+Os5NxBg9+pxpPzrT 5X/dkGxWdE2lAIQmjEEerD7DGgm+jlwydzrP/uxqlIMH3rw970zqc5opONMKCAQCgWDEfJ3GqzOF GCcFgnMP0TcKBIKzAdEXnXpEniYQCASCQDiTY/LXNR8QY/Tocqb96EyX/3Vk3JlWQPA155+H7P/K z6waAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBCcWcTGuUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAg EAi+1oiNc4FAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBB8rREb5wKBQCAQCAQCgUAgEAgEAoFAIBAI BAKBQCD4WiM2zgUCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUDwtea0b5zfc98DfPr5utNdrEBwziJi RiAQCAQCgUAgEAgEAoFAIBAIBAKBQCA4tZzyjfNzadPvXNL164awjUAgEAgEAoFAIBAIBAKBQCAQ CAQCgUAgOFUoR0vQg7/5HXv27Xc6Nn3qFP72xGOjVcSI+e3Df3aEn7cAACAASURBVCIsLIyf/XSl 23cP/PIhMjMz+NEdt58VugbC4aoq3n7nPQ6VlaPT6UhMiGdSYSHXXfNNUpKTT6sujceaeOmV1ygt L8dqsVAwbizfue5aCieMD+j6u1f+lCuXL2Pxokt8HjtXbDOUB3/zO9LT0rjztlucjt9z3wPMmDaV G67/zhnSTCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQDGXUNs4BvnHFCrdNwrOBZUuX8PD//Zm7br+V 8LAwx/FjTU0cOFTKnbffega1Gx679+zld396hBXLlnLzD24gISGBzs5ODh4q5c3/vMv9K+85rfr8 6ne/p2DcOJ7761OEhakprzjM2+++xx8n/Oa06iEQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQjZVQ3 zj1xz30PsHTxYpZedqnH7/UGA6+8/i+2bd+JVqelcPx4fnTn7SQmJIyaDjOmTSUqKor1X27gqhXL Hcc/+WwtBWPHkpOV5VFXX7pt3rqNV17/Fy8//xwAr77xb958+x1ee+l5kpOSqDhcyS9+/Vvef+sN FArFqNRDkiT+9tw/WHLpIu645YeO4ynJyaQkJ3PZpYscx3p6ennuxZfYV1yCTAYzpk7ljltvISIi fFR0Aeju6aGpuYVf//IXxMVpAJg6ZTJTp0x2nOOrDf/06GNUVdfw+NN/4/Gn/8a4sfkkJiS4Hfvb E4+52eaOH69k9qwZlJaVU1lVjSY2hrvvuI1pU6YA0NHZyVPPrOJQaRnxcRqWX76UZ59/kXff/BdR kZF88NEa3v/wQ3p6esnLzeWu229hTG7uqLXNcBhuDNzx45XMnD6NQ6Vl1NTVkZqSzN2338aE8QWn WXOBQCAQCAQCgUAgEAgEAoFAIBAIBAKB4PzglP/GuT/+8sRTHGtq5vE//4l/v/JP0tPS+P2fHkGS pFErQyaTsfSyS/n087WOYxaLhbVffMnlSxaPSLcpRZM41tRMW3s7APuLS0hNSWF/cQkA+4pLKJpY OGqb5gANRxtpbW1j0cKL/Z77xz//Ba1Wyz+eeZpVTz9JW0cHjz7x5KjpAhAdFUVqSgr/evNtyisO YzKZ3M7x1YYP/fwB8sbkcv/Ke1i75kP+9sRjHo95Y/0XG7jlxh/wzhuvsWjhQh594imH3/zp0ccI U6t5/aXnefi3v+aLDV85rms81sQLL7/ML+77Ke+/9Qa33nwjGzZuHtW2GQ4jiYE1n37GD274Lm+9 9jIL5s/jod/9gd7e3tOotUAgEAgEAoFAIBAIBAKBQCAQCAQCgUBw/jCqG+f/+2g1i5df6fjbtmOH z/M7OjrZun0HP73nRyQlJqJWq7n15htpam6h/kjDaKrGksWX0nC0kYrDlQBs3b4Dq8XCgvnzRqRb eHg4eWNy2V9cgk6no+HoUb597dXs3V8MwP7iYqZMLhrVOvT22TdGB5/uBvhiw1dObQ7Q3NLCgUOH +PGdd6CJjSU+Lo67b7+VXXv20tXVPWr6yGQyHnvkj8TFxfLoE09x1XXfZuX9P2fLtu3AqbfvN65c wdj8PFQqFVcsW0pPTy+dXV00NTdTWlbO3XfcRlRUFMlJSfzwB993XKdUKlAqg1Cr1QQHB1Mwbiy3 3nzjSevjCdeYWLz8SocPwsjbaPnSJRRNLEStVvOta64mThPL1u2+400gEAgEAoFAIBAIBAKBQCAQ CAQCgUAgEHjmlP/G+dvvvu/1/JbWVgC+8/2b3L5rbWsjOytz1HTTxMYya8Z0Pv7sc8aNzefjzz5n 0cKLUalUI9Zt6uQi9hWXEBERwfhx45gxfRovvPwKeoOBsorD/PiuO0dNf4CoyCjAvtkaHxcHwCUX X8QlF1/EvuISfvEr+++Kt3d0oFAoSEw88arvlORkx3exsTGjplOcRsOP7rgdAJ1Ox/ovv+LhRx7l L//3RxRy+30Zp8q+0VFRjv8HBwcDYDKZ6OjsJDQkhKjISMf3yUlJjv8nJSby4M/u58WXX6G3r4+c rCy+ceUKcrKzT0ofT3iKiXvue8Dx/5HGwND6DH5u7+g8WXUFAoFAIBAIBAKBQCAQCAQCgUAgEAgE gq8lp/w3zn2RkBCPTCbj3Tf/RWRExCkvb9mSy3j4z3/hyuXLKDlwkLtcNjT/n737jI+iavs4/pst yaZR0gMCoVfpiGKXLmBFsaOCCmLvFUHFgoCIoijyUEQB5bZiAcGuFBFB6b0ngRASSNlsdneeF5us CekhEMr/+3ENmZk95zozO7ObveacU97Y2rVtwyuvjSMsLJT27doSXrMmEeERfPb5l1QLC6NunTMq Nf66dc4gJiaaRT/9RPNmTYvdLioyEo/Hw779+4mOigJgb0KCf92xEhwczGV9L+V/n3/BmrXr6HbJ RaXuQ4tReNCDopaVR2REBFlOJ2mHDvmT5wmJiQW2OfusTpx9VidM0+SHn37mocefYs4H04q9keJY qeg5kJdwz5OQmMg5nc+q7PBERERERERERERERERETgtVOsd5dFQU53TuzGuvv8HuPXvJzs5mw6ZN jHjxZXJyciq9vo4d2lO9WjWef+kVmjdrSny94ns8lyW2Vi1a+HtZ5w3L3r5tGz7+9DPaV/Iw7eAb Gv2+oUP4bsFCJv/fNHbv2UtOTg4HU1P5Z/Vq/3ZxsbGc2aolb77zLikpB9mfnMzEdyfTqWOHSu1t nnzgAM8+/yJ/r1pFeno6GRmZfP3tfBKTkmjWtEmZ9mF4eE22bt+Ox+Pxl1vUsvKoFRdHi2bNmDjp PdLS0khITGTK9Bn+9Sv+Xsn/Tf+AvQkJuN1uvF4vLlc23hLmFD9WKnoOzPv2W/5ZvZqsrCw++fQz 9icf4Nxzzj6OkYuIiIiIiIiIiIiIiIicOqq0xznA4w8/wMxZc3j6uZEcTE0lvl5drrumP3a7vdLr MgyD3j17MO2Dmdx8w3VHHZvdbqdlyxZs3baN+rlJ+Pbt2vLpF19W+vzmeTp17MDYV19i1py5PPjo 42RkZhIVGUmTxo2YMPY1/3ZPP/4okyZP4a577gPDoGP7dgy5Y1ClxhIZEUHf3r2YM/dTNm7ajNfr pXatOB558H7/jQOl7cNrr76KcRPe4ouvvqZxo4ZMGPtakcvK6+knHmX8mxO5ZfBdREZE0KtHNzZs 3ITdZqP1ma3YvHUrTw0fyYEDB6hduzbPPPEYQQ5Hpe6fsqrIOdCnV0+mzpjJ1q3bqFUrjlEjhlM9 39D1IiIiIiIiIiIiIiIiIlJ2Ru32vc27R/+PQa3SqjoWkWNm2fK/eGXMOD6d/WFVh3LUhtz7ANdc dQVdL76oqkMREREREREREREREREROalNWV2dtx+7uup7nIscCz//+hsWi4WO7duRkJjI+1Onc/EF 51d1WCIiIiIiIiIiIiIiIiJyAqqUxHmPvpcXuXzBvC8qo/ijVlx8+Z0osZakLO2A49eW0uKpyn3a rm0b3nx7Eq+/ORGHI5DzupzDoFsHHrf6T7RjJSIiIiIiIiIiIiIiIiLF01DtIiIiIiIiIiIiIiIi IiJyWsobqt1S1YGIiIiIiIiIiIiIiIiIiIhUJSXORURERERERERERERERETktKbEuYiIiIiIiIiI iIiIiIiInNZsRS1MSko63nGIiIiIiIiIiIiIiIiIiIgcczExMYWWFZk4L2pDERERERERERERERER ERGRU5GGahcRERERERERERERERERkdOaEuciIiIiIiIiIiIiIiIiInJaK3KodhERERERkfzS0lJJ SNhDVpazqkORU1RQkIO4uNpUr16jqkMRERERERERkdOQEuciIiIiIlKitLRUduzYQXR0NLGxjqoO R05RTqeTnTu3U7duvJLnIiIiIiIiInLcKXEuIiIiIiIlSkjYS3R0NEFBQVUdipzCgoKCiIyMJiEh QYlzERERERERETnuNMe5iIiIiIiUKCsrC4dDPc3l2AsKCiIrK7OqwxARERERERGR05B6nIuIiIiI SIlM06zqEOQ0UtrrLS0tlcTEvWRmZh2niEREShYcHERsbC2NliEiIiIicpKrcOI8MzOTTZs24fF4 it3GbrdTt249qlevVtFqTjpJSUnExMRUdRgiUoy0DBdeL9QMC6jqUE5IuoaduEzTi2EUHCjG40ol I+lXnAdX4zz4L1kH1wDgCG9NcHhrHDVbExzdBas9rCpClpNAbGwcAImJCVUciZwMDMOo6hDkNFDa 6ywtLZVdu3bRokULwsMjj1NUIiIlS0lJZu1a32dxJc9FRERERE5eFU6c//LLLwwceGux613Z2aQd OsT8+fOJjo6iTZs2Fa1KRKRSuHI8jP7gL9yGjRG3tiMoUINuyMkhef07HFg7HkeNM6nd5W1sjmgO 7fycxBVPUSM6m2o1bdRpWhdHSCcwLLicCaSnzObgtrdJ/DOMmA6vUK3OpVXdDDnB5CXN8/6t5LmI nAwSExNo2bIldnsABw+mVHU4IiIABAQE0qJFSzZt2qTEuYiIiIjISazCWaO8ngCZGRkFegV4PB5c LhfpGRns2rWLpk2bsmXTJlauXEnbtm2PPuLT2LodaXz1xx76nVuH5nXVe/BYMgwDryWIL5buoWPD EM6oqd7Jp4K35iwluGYIgY4gxn28lqdvbl3VIYmUSfI/r9G+9yD2bJrOtkVX46jeFLIW0bpLbQJC z8caGoPFYYKZBoDNaE5gVA41z0jBlfoTG1fdxaFdfYnrMAprYHgVt0ZOBPmT5vmXKXkuIie6zMxM DMOCy+Wq6lBERPxcLhcWi43MzIyqDkVERERERI6CpfRNCpv8/W6ee/8XIN9QeoaBYRhYrFYsFgtW i4XAgADWrFnDNddey8GUg6xatarSAj+deE2TDxdsYvjkZUSFB/PGR79XdUinPNM0+b/562kYF8p3 qw7w84ZUNLXnyW3pPztYsm4XXTo1pMOZtdiyL50Fy5UgkpOD15uFkb2cOg16cEbD/URE/E6LTt0I jOyDJSgQ05OKJyMNTya+R0YaeDOxBDkIjLmMFh27UDPgW7bM744nW73zTndFJc3Lsk5E5ERgmiYe jwfTNPXQQw89TqiHx+PGNPXFgYiIiIjIyaxCifPl6/fSqEED/++GxYIlN4Fu4EumWywWbDYbWVlZ WG02LrzgAvYlp3Ld41N5aMo/PPz+Sh5+fxWvf7GlUhpyqko5nM1DE37jrw37eeaubnRp15jlK9dW dViFDLn3ARb9+FNVh1Gpdu1PoUG9cK6+sBHObC9Tf97LYaenqsOqEllOJx98NJvs7OyqDqVC0tKz GPXud/Tt0Z5DaYc5lHaY7l1qM+mLDezen1nV4Z1yYmPj/I/i1h1v9z38KN/O//6411up3NkYAVFE RPYmKvYqcNTFm+3Ck4X/4c6y4nFaCizzZrswQloQVbcPMVHJ7P3zsSptxilxLE5yiYkJ/kdJy44X vSbkaD365LP88tsfVR3GSe2p555n0Y8/V3UYZVbVyTE9Sn4Mu/8hFv34c5XHoYcepT2SkpIqvUwR ERERETm5VShxnpWehtebm0A0DMj748AwfD3PLRYMiwWr1ervkR4SGsolF3RhUPd4sg/to058E+rE N2b15r04c7yV0phTzbL1Kdzx2m80jY/hpr6d8LjdZGRk4spIrurQTgsZh1LJznbjcnto17wWHRtH MP3nRDbvOzmTx6ezERM+p+WZ9cH0kpZ2iLS0Q+RkO+nYqhojpq3C7dEXHJUlLymel4ArKkl+sg4F XdXJPY/pwZ3twbRVw2ux4c724M4xcWU6ObhmBft++pq9/5tMwmdTSf55PumbtuLJMvFkefBkucEa QWydFriSvyNt+6dV1o7TSVW/Zk4n2tcicip48LEnmP/9wqoOQ0REREREROS0VaE5zjPSD0K+OeUM S27+PTeBbhgGVqsVe0AAAQG+uaEDAgMJMUO55PxzyXH9xJQfF9ChywVkpKeVWNeateuYOWsOa9ev x+PxULdOHa66vB/dLrm4IqGfFNweL5O/3swvK/dxY88WRNYIIT3LSd5M8u6MA3i8vpsNDP6bX95i MYoozeep4SNYvuLv3O0sREZE0K3rxQy88YYCc9Sfro68M9w04VDaQZyuHDxe37oaNYLpfVYtfl2d zNbkQLo2r4a1jLtu0Y8/sTchscCyWnGxdL34osoIX0rw+fd/si0xhW4tG3Mo7bDvnMm936eawwQz k0lfruOeK1uUucybb7+D/lddweV9+xRYPuCmgdx680307tm9sptxUsifNC9pfUXkv4YFBgRQq1Yc A/pfzSUXXVjhMksy7IGHuLxvH3p06+pfNmHsa8ekrjLzevC43GAxcm9UA9fhRA5tX4rXlUVopJuQ OmDBjSttJ4fWbCdrVz3CWnTBYrcDYNKK+CY72LTiSULjLip2vvMNGzfx0ZyPWbN2HdnZ2dSqFccl F13IFZf1IzD3fb2q5H8tBAQEEF6zJi2aN+Oqyy+jSeNGZS6nqGN8NE7I18xxcjqcn5Xxesm/n4Ic DurHx3P7rTfTulWrygqzXCr7HMjP7XYzf/4Cpk+fzscfzwHg2msHMHDgQHr16onVai1XeQkJicyc /THrN27E4/bQuHFDrrq8H82bNq302PM8/sxz9O7RjYsuOL/Sy87JyeGGWwcXu95isTDng6mVXm9l Opb7pyyK6tX57PMvUqd2be4cdNtRl3//I4/R79Lex/RvzqLqGPfqy0DR7asMzz7/Iiv+XllgWft2 bXlh+DMlPq+8+8PM/b9638qJTr3ERURERETkSBVKnGem7sfi8SXODcPANE2M3DnOAf8w7QGBgURH RwO+L7cdDgfVqtfglpuuJyTsa6b+/AfpqfuwFpPwXbb8L0aOepnrrrmaB+8bhsPhYOmfy5n47nsk Ju3jpusHVCT8E9reA1k8N/0fwgItXNe1Pna7hYzMbAyL4U+Su7NSaXHhbVgCQrAEhGENDKNG9WoM ve48ru/dvtiyr7ysH0PvHIzH42H9ho08PeJ5oqOiuLRnj+PVvBPS6q0HmLt4G0mHsnG7snA7M3Bn Z+J1O8l25c6fCGCaeE04t0UEWxPSmfLbfvq3r0l4SNlOo2ZNm9CpQ/HHRyrf7oQDvD71Gy7pdh4Z GU4sFkvudcrANL2YpkmDOBvzflxB+4bV6NL6jKoO+ZR3NL3N865h2dnZfLvge14d+zoN6scTX69e 5QV4AvOaHjxuN1gNsILHeZC0pN+xhXgIqeVl+0YvrkwrJhAQ6OaMVlbMbbs49O9PhDW/EAzfl4IB RnMCApaSkfQr1epeXqieP/9awYgXX+Lyvn244/bbiIqMICExkR9++oUlS5dx4fnnHeeWF5b3WnC7 3SQmJvHtgu+5/5HHeOaJxzj3nLOrOrwTTmxsXIXPvbI+93Q/P8sqbz9lZmYydcZMhj8/imnvTaJG jepVHVqlOHjwIHPmfMxHH80iKSmpwLpVq/7hoYce5tVXR3PDDdczYMC11KxZs0zljnptLE0bN2L0 qOcJDg5m06bNfP7l1zR/9Nglzo8lu93OJx9O9/8+9o03CQ4OYegdt1dhVCeXIhNdJpiVmKw1zWOX wD6edRSsEC7reyl33l7w5oKyxFDeWJWQlJOBXqciIiIiInKkCiXO3TnZeF1O3y+m6RuaHd+d5f75 za1WQkNCaNSwIQvmzyc1LQ2Xy4XH7cY0TerFx3PfZdUZNurPIhPnpmny5juT6N2zOzffcL1/efdL LsZiGIwZP4HuXS8mJjqaIfc+wFkdO7B6zVq2bNtG7VpxDLvrTlq2aA745meeOuMD/li8lIzMDFq1 aME9Q+8iJjepP+TeBzi7cyfWrF3Hxk2biQivybAhd9KhXbuK7J4KW7gikbc+W8dZjasTH1cNpyuH HI8Xi8WaL+EHo8e+gWmaeDwePB437pwcXK5s3pzxVYmJ8zxWq5WWLZrTrEljtu/Y4V/+7MgXWPrn cgzDIDo6it7du3P9gGv89WZmZjJt5ocsXrqMjPQMLjj/PIYMvh2Hw1Gg/OzsbF4aPQaPx8MzTzxW aP2JZtZP6xl8+Vm4PGbu6Am5iVXA5fZC/sS518RreomrGUBooMGsxSmc3yyU1mcEV7h+p9PJn3/9 TWJiIhgGteJi6dihvb9X57xvv6N2rVrs35/MgZQUGjdqyJ49e7m8n6+388p//uXf1Wu48rK+hIaG knzgAAt/+IkB/a/CMAx++OkX9uzdC5B7TjbgzFYt/fUfWf45nc8iJjqKxUv/ZN/+fQQHBdO0SeMK t6+qeDxeHnt5Gs1bNME0DVw5XixWA/8AC6aJx+vF4/bSsmENRr49j5kv30RUzdBKi6G0a9PppDLn NQ8MDOTyvn2YNHkK27bvIL5evVKv80cq6Xo36tXX2LR5C2PGT2DM+Ak0a9qECWNf476HH6V3jx70 7tmdL+Z9zXcLvuedCeP9ZSYmJTFw8F3MeP89YmKiyx1Tqdxu3Dgx8N2olu3agyUUbIaXjAyDnJww GvWdj80Rw6GdX7Ft+VPUb5ROzvpkMnasITC6AYZhAsE4gsGZsqpQ4tw0TSa8/Q69uncr0GMvvl49 bh94M+C7Znw57xvemzjBv37P3r0MGjKM6e+/S0x0dJnfL6D09+iS2Gw2zjijNnfcfiuHDh9m4qT3 6HJ2ZwzDKLHc4o5xabEU166xb7xZ6msGIDU1jXcmv8+KlaswDOjUvj1D7hhMWJjvunMsPo9UxrlX nsT7qXh+FldnacezJMHBwQy+bSBffv0Na9ev59v5C0r8DDbk3gfo3Kkja9auY9PmzTx43z10PqtT hT/fFtemitqwYQMzZnzAV1/NIzu75CltkpKSeP318bz99jv069eXgQNvoUmTJsVun5aWRlLSPh65 /14iwn2jZLQ+sxWtzyzYU39vQgIjR73Clq3bqFGzBoMG3kyb3G3SDh1i2gcf8s/qNRgYtG1zJrfe dCOhoSGAb4709u3asH7jJrZu207dOmewddt2Jr77PhPffZ/GjRry0sjhOJ1OZn08l2XLV5CZlUmz pk0YfOstREVG+svp0L4tGzZuKjKOsipLPa1aNmfz1m1s276DyMgIht05mPUbNzLvm/lkOZ2ce3Zn 7hx0q/819OiTz9KubWvWbdjIjh07iY2N4faBN9OsmM94L48Zx4q/V2EYBpGREXS96EKuurwfhmHw +ptvV2j/fDP/e+Z9+x2H0g5Rv348t91yIw3i48u1b/IUnegyff/lrrvv4Uc5q2NH1q1fz6YtWwmv WYO7Bt9OuzZtAPjq62/5fN480tIO0bBBfe68/TYaNqjP6HHj2bxlK+Pfmsj4tybStHFjxrwyivse fpROHdqzdv0GNm/Zyr1D7+L/pn/AA/cOo23rMwFIPnCA2+4cyuwZUwkJCSEzM4uZs2ez9M/lZGRk cn6Xcxh020AmTHynyDoeeeJpenS7xD8SRFpaGu/93zRW/fMvGAYd2rVl8G0DCQsNLVMbS9tHeZxO JzM+msWSpX+SmZlJi+bNGHLHIKKjoordH8W1zREYCJjs3rOXp4aPKGNcIlVDiXMRERERETlShRLn OS4XrswswJcoN3z/wGKaeEwTr2mCxcBuD6BGeASO4BByclx43Z7cRFUOmc5szm/XmqS7RvyXyMpn 567dJCXto9vFhYeDu/jCCxj7xpus+HuV/8voed9+x3NPP0njhg346ptveXrE80yfPInq1aszeuzr uHJyGPPKKKqFhTFz1hxGjnqZiePH+b9MWrjoR5598nHi69Xlf59/yatjX2fOB9OPyzDmTpeH1+eu 4881ezinSTVCgw3SM7Ox2b3YbHasVhOLxerrdZ7bw9/r9eLxeHDnuMlxucjKcnIwteRh7/N4PB42 btrMhk2b6NO7l3/5C889C4DX62Xrtu28+MpoYmNjueSiCwB4dezrHD6czovPDSciIpxffv2NVf/8 S+ezOvnLSDl4kOHPv0iTRo24Z+hdWPKG8a8Ec+b+jynTZpS4zc03XM/NN1xXrnL3Hc7kwKEsTMOC zWrDarVisRgYhgUDX9I87w9qr9eLx+vB4/FitZh0qBfAT6sPsGVfNn1a1yDAVv7Xyy+//YHNZqPv pb3wmiZ/LF7C738s8e93gC1btnLhBecRGRFBTk4O6zdsJCMjk5CQYBISEwkLCyMhMYnGjUJJSEwi Jiba/9rNK8c0TQ6mpvLLb78TGhpK/fh6RZZvGAbzFy7CEejgin59yXG7+fW3P8rdrtKsWbuOFStX lbhN6zNblfvL5jzvffQNBzPd1K5eA5cbbIaB1TR8N/oY4PVa8HpM3G6w2uxE1HDw1LjPePf5m7BU 4nlf0rWpMhyr86IyHJlsq6y5zfN6tBqG4R+auyzX+fxKut49/fij7E1IKHEI464XXch7U6ayZes2 GjaoD8CChYto0/pMYmKiKxRTadzOJDLT/sVePRJbWE0CqtUmoGY4bnMbwWl7iYhMZ8+Sh4i/5GOq x1+FYbGy+6+7qRVrx50OdncAeLIxCSQ0xMbBlH8K1eF/7y1hKNauF1/E+1Ons2btOv9NIF9/O58O 7dr6E3Zleb/IU1n7qetFFzL/+4Xs3rOHOmecUWK5xR3j0mIprl1lec0AvPjKaByOQCa9OR6v18vo ceN5dew4Xhwx3L9NZX4eqcwbVsqaPD8Vz8/i6izL8Syr0j6DAcz/fiHDn3qCZk2bYLFYGDnq5Qp/ vi3ra7Y0ixYtYvr0D1i6dKl/mdVqpV27tlxyySVcku9a8t1337Bo0Q8sWvQDK1euJDs7m7lz/8fc uf+jc+fODBx4M127Fo6lWrVqxMXG8Mmnn3N5vz7Ur1cXe+70E/n9/OvvPHz/PdSpcwZff/Mdb779 LpPfnoBhGIybMBFHYCBjXnoRr9fLW5Pe48133uXJRx/yP/+Hn3/hkfvvpXGjhlgsliKHIn/znffI yclh5LNPEhYayieffsFrr0/g1RdH+vd5SXGUVVnqWbr8b7uYfAAAIABJREFULx65/15qxcXyfzNm 8sLLozn3nLMZ+8ooDqenM/yFUbRe1pJzOp/lL3fBoh959MH7aBBfj/kLf+Cl0WN5a9xrVKsWViiG Jx/x7Ruv18uOnbsYN2EiMdFRnNflHB68924Sk5LKtX8SE5OY8eEsRjzzJA3rx7Ntx05+/2NJJSfO 8X9uz/PDTz/z+CMPUq9OHb6Y9zVj33iLGe+/y96ERKZMn8FLI5+jYcMGbNu2nZ9//Y0G9eN59MH7 SUhIpE/vnv5plfLK/H7Rjzz56MM0adwIi8XC/03/wHeTbe76/D9N02TshDdJP5zOc089QXjNmvz2 x2L++Xd1sXWY+f72AHhlzOs4HIG8MWY0Xq+X19+ayLg33mT4U0+U2sbiXnNH7iOAcRPewuVy8dLz zxEWFsbsT+Yy6tXXeH30K8XGWlzb8kbYKm9cIlUhf+J87mdfMOPDj0rc/vprr+H6a/sfj9BERERE RKSKlDuraQIet5us7Kz/FhoGmHA4M5tflq1m9hc/MvuLn/h43i98Pv8Pvvl5BfN/+4cFi/9l4eJ/ WbRsPb+t3MzH3y7G6XJR1J/OaYd8SeDIiIjCQVsshNesSWpaqn9Z3969aHNmK4KDgxnQ/2oiI8L5 ffESkpMP8PviJTx03z3ExsQQHBzMHbffyt6ERLbv2Ol//pWX96Npk8YEBgZyWZ/epKamcSAlpby7 p9z2pzq57aVf+GfNRprHmmS7XKRnZpOR5SLT6SYz20NWjhen2yTbDdk5vp8uN2Q4PSSmZLB6SyI/ LFmH1+0qsa7PvvyKHn0vp/flV3H/I4/RuVMnupzdudB2FouFRg0bcEW/vizO/SJ03/79LF66jEce vI96desQGhLCpb16FkiC7Ni5iwceeZzzz+3CfcOGVmrSHGBA/6sZdOstxa6vaHLQhocsZw45OV7c HtP38ILHS4GfObnrspweUtKcbN+byuJ/d5OclMCfa3cycdFeDmV5iq1n/YaNfPDRbP9j1+7dpKen k7RvH2d16kBQUBAhwcF06tCBPXv3kpX13znWtGkToiIjMQzDP6dvQmIiOTk5pKUdolWL5iQk+uZQ T0hMJC42plD9hmEQXrMmzZo0YfeePQXW5S//cHo6+/btp3OnDjgcDsJCQ2nftvJ7h7Rs0bzEco8m ab56w3amfryIeg0a4faAx2vgNS2Yhg0MOyZ2TGx4seLxWnB7DELDwvh3w3amzP2tok0qUnHXpspy rM6LishLqsXGxhVIslVW8i7vGtbv6mt5b8pURjzzFLVr1Srzdb4oRV3vyiI0NJQuZ3dm/sKFgO9L t+8X/Uiv7t0AjiqmotjD6nMwM4eQ0G0EmMsxDi3ESFuMJW0lgekHCbBBdC1wpq71PyfsjEvJybHi sTjBEYvbDMYTUBuPUQM7AThT/y1Uj/+9N7Lwe2+eIIeDbpdcxLxvvwN8c/UuWLiI3rnTfpTl/SJP Ze6nqChfj8ZDhw5XqNzSnlOedhUlITGRf1av5t6hQ4gIDycqMpJhd93BsuV/kZJy0L9dZX0eOfK8 yzsvj3yUdX1RZeZ3up2fZT2excnMzGTK9Bk4HA6aN/tvuPGS2nxZ3z60aN4Mi8Vywny+vfvue1i6 dCkhISH07NmT0aNfZfHi3/nww5kMGnQ79evX929bv359Bg8exKxZH/LHH7/x8ssv0b17N4KCgli6 dCl3331PkXUYhsGIZ54kvGZN3nz7XW4edBdPj/CNSpBfn149aNSwAYEBAfTs3pW0Q4c4mJpK0r79 rF23nsG33kLNmjWIiAjntoE3sWLlKg6m/ve3RO/u3WjapHGxn18PpKSwbPlfDM3thRsUFMTNNwwg MWkfu3b/97mquDjKqqz1XNqzBw3qx+NwOLjw/PNwZmdz6803EBoaQlxsDGe2bMHW7TsKlN2j68W0 bN6MoKAgrujXh/Dwmixb/leJ8VgsFurH16N3z+78+dffFY7barNis9kIDgrCbrfTpFHDo/p8kpfs KvDwrSiQCOvXpzeNGzYkICCA3j17kJbmOwesVgt2m42gIAd2m40mjRtx6803FijLPKIegD69e9K0 SWP/zcxHxpI7uTemabJv/36W/bmc+4YN4YzatQkODqZHt650bN+uxDry2pCQmMTqtWu5a/Dt/tfu HbfdyvIVf5OScrDUNha3j776+hsu6z/A/1iwcBGLly7jnqF3+Y6dw8GtN91IYmISO3buLDLW0tpW 7rj00OMEeFx9xWXccuN/ox0e6fpr+3PdNVeXWo6IiIiIiJzcyt3j3OvxknYohQPJKUya8Xmh9Z6I BoQ37ADg74mexzB8c6P5mGDAx19/zbyVu+jbtmCir3o1X2/M5AMHCn2B7/V6STl4kBrVa/iXxcXG FtgmLjaW/ckHSMydX/H6WwrO4waQtG+fv9dtjXy9PwNyh8h2uUpORFcOE9PrJDM9nZ17MwkNDSM4 NJTgYJNAh4HdbmCzg8XixcTA4zXJcXvJdLrIzMrGmZVFeoYbw2LD9JQcb968mqZpkpiUxJjxExj7 xps89tADAPzy2+/M/mQuu/fsxen0DcWf15swKWkfFoul0H7Ob/73C6lWrRqX9e1TSfumsAH9rwYo 1MP2aJKDVsNk8+5UalQLJSTYJDAgAKvVxDC8mIDXa+L2eMlx+xLs2a4cnNkuspw5eDEIdtg5lO3F 63aXWE9Rc5wn7duHYRiEhoT4l+UN8ZqRmUlQUBAAIcEFh4KPi40hITGJwMBAoiIjqV27Fiv+Xonb 7SZ5fzKdO3X0b7tj5y5Wr1nLocOHcefGGJ2bYMqTv/zMzExsNluBIZVDyzDsbEXkvb6O7Hl+NEnz LGc2D4yYSM3YeDKdHix2sNit2AgAww6Gbw5ot9eNM9tDerqb1NR0Ug+mYg0IZtJHC+l0ZgPaNqtd bB1WqxWPu/BNEjluNzZ7wctqcdemynQszouKKq5Hav7l+ZNv5emFnncNS0tLY8Lbk5j50Ww6dWhf 5ut8fiVd78qqR7euvDpmHHfefhv/rllDekY653Y5x9euCsRUklpnv8eev19iV+oaDPdhDLKArALv q1ZbGDFtHynwPNMEt8fAERoLtuqYHicelxOXNxuvN6hQPf733uQD/qF1i9Lv0ksZ9sBDDL1zMH8u /wur1crZZ/l6NZbl/SJPZe6n/fuTc9tQrULllvackODgMreryPiSk7Farf4ezwC14uL868LDfXM9 V93nkaNzup2fZT2eR/rsy6/47MuvcDgcxNery8hnnqJmjRplanP+9+4T7fOty+UiMzOTrKysMpXv 8Xhxu93k5OTg9XpL3T68Zk0G3eqbLiIrK4uff/udsW+8xXNPP0HL5s0AX8/0PPnbmpJyEKvV6r+5 BiAuxvd3x4EDKdSs4ft7oqQbhsB3UxDAnffcX+S6unXOKDGOsipzPWH/9RK32+0EBAQQGBiYb1lA oXqPnIogJjqq2BspFi9dxmdfzmNvQqJ/+P3ihnUvS9wd27fjgXuG8sFHszl0+DD16tbh0l49iK9b t9gyS1Jkcso8ste373jk/Z43UkF2djZxsbE8/MB9TJ0xk0OHDxNfrx79Lu1FfL28898s0JM8r7zI iIhCdZv55lXPX3fSPt/7YUx0dDHJtMJ15D3XNE2Sc68zUZGR/m1ic2+O3Z+cTI0a1UtsY3H7qN+l vQvcdLl23XoAbrtzaKHNk/btp26dOoViLa1t5Y5LpIocmey+6vLLME344KNZBba77pr+DOh/tV6/ IiIiIiKngXInzqf9sou3352A1+PBNPENy44vKW612khJyWDHrsP+Oc8Bf49yL/91cTcAD2CzWlmz 5Hf6tr2qQD1165xBTHQ0C3/8kWZNC857+OPPv+D1emnf7r/eqnlfIOZJSEzknM5nER0dhWEYfPLR BwW+YDpRRNUIYvqzPRj/4RI+Xfg31UOdhFXLJjjERXCIG0eQh8DAAALsdmw2GxaLb/5tq9WOI9D3 pUSOy4XNbi+1x3kewzCIi43l4gsvYPKUqfDQAxxMTeWl0WMY/tTjtGvTBofDwWdffsVPv/wKQExM NF6vl4TERP8Xw0cadOstLF/xN088M5xRI4YTGnpskq1HJgmPOjloeMl0eQh0ebHYwTRM7KaJxTD8 SSnTNACLr7eM14vNbcVusxISZGdXRjYdmsZwWcc47Nby9bIPCQ7GNE3/sOsAhw+n+9f9F2PB58XF xvLrH4sJDAwgLi6WIIeDoOAg1q3fQEBgINVzv7R1Op38+vsfXHj+ucTGxGK321i3fkPhHnX5yg8O DsbtduN0Ov3J8/T09HK1qzyOTJ4fTdIcYNrcBaTbQgnyWEk95MKNmxzTS44XAgIt2KwWMMDjseH2 ejGNAOwBQQQFu3C7cwgIszHtm2WMb3ZlsXXExcb6543Pk3boEOnp6YV6+xd3bapslX5eVJLieqzm 741e3iHcq1evzoP33cPAwXfy3YLv6dihfbmu86Vd7wAsRunncsf27QgICGDJsj/5ffESLrrgfAJz kySV/d4TEtGKJt3yDx1p5iYIPGDYKHSRANK2fYzN6sY0a2Ot0RzT7QQycbt2k+H2EhTeutBz6tY5 g5iYaBb99FOBXrBHqle3Ds2aNGHBwkX8vngJPbp1xWazAmV7v8hTmftp0U8/ExkZQe3atQgIDCi1 3COPcWmx7Nu/v8R2lfaaiYqMxOPxsG//fqKjogDfnMx56ypbYmJCmW5SOfKcLG59Sdvkd6qen0fW WdHjmXeDQXnbDBQY3rgyzp2y7MfSTJr0DtOnT2fx4iX8+uuv/Prrr4wYMZI2bVrTrVs3unXr6u91 vm3bNhYt+oGFCxeyatU//oS5YRicd9553FrC6Cn5BQUF0at7N+Z98x0bNmz0J86LExERgcfj8d2M mzuSVULue3NERHi+LQteR4+ctiVvZJ4pk97yzy99LBzLevKS23mS9u2nU/v2hbZLS0tj/Fvv8PD9 93Bmq5Y4AgP5Zv4Cfl/83ygIFdk/Hdu38/dI/vX3xQx//iUmvz3Bf26WR3HJq/xJ7NwN//s9X1Lb NM0C8fzy2+88NXwk//fu2wQGBmIYFv92JdUdEGAnO9vlX5Y3IpppmkRFRua+byQVMxpUEXWY/7Uh Ijzcf53Ju64k5F5nIsLDC7SruDaWZR9FRvqmapo++V3/DbxHtvfIWEtrW0XiEqkKRfUSv+ryfoDJ Bx/NBuC6a65mQP+r9NoVERERETlNlPsbs79W72TrtjQ2b0tly/ZUtu1IY8eONDZvT2PTphT2HcjG 9Pq+0PeaJkbuT3fuvz2mienN/WmaGKaB1yz8hb9hGAwbcifffLeADz6axf7kZA4fTmfhDz/y1qR3 uWHANQV6Tcz79lv+Wb2arKwsPvn0M/YnH+Dcc84mOiqKczp35rXX32D3nr1kZ2ezYdMmRrz4Mjk5 OUe39ypJoN3K47eey7iH+4DbSUZGBharFavNht1mI8DfiyQAhyMQh8NBkCMQhyOQwMAA7AEBWCwW goMKz/dYFNM0SUrax08//0qD3Lk/Xblf+IQEh2Cz2Vi3YQOffv6l/znRUVF0PqsTY8ZPYOeu3WRk ZPLN/AUsXfanfxur1cqTjz5MfL26PPLkM6SWcc71ihjQ/2puvuE6/+NotIiPIjTUQXCog+CQQIJD AggODiQ4OIAAuw273YbdZsVus2CzWrFarTiCbLi9bnYlp3HjRQ24unPtcifNwTecbEx0FMuWLycr K4uMzEz+/OsvateK8/c2L0pUdBQ5OTls3bbd/2VVXGwsa9atL/DlldvjwTRN7PYALFYL+5OTWbdh Q4kxhYWGEh0VybLlf+HMziY9PZ2/VxaeC7kytWzRnDa5CfOjSZoDOAMcBATAjnVLWLP0W5Yu+JAf /jeR4OAgQkODCQsLoVpoCGGhwYSEBPP9jOH88cWbrPnjc/ZuWUVOZgZNWseXWEevHt1Y+MOPLF66 DKfTyf7kZCZMfId6devSrEnBZGNx16ZjoTLPi8p05JDtlTHXeWhICNdcdSUfzfmE8Jo1y3WdL+16 BxAeXpOt27fj8RQ//YJhGHS75GI+/3Iev/2xmF7du/vXHfv3ntz3TdMEs2B5XncmKVvnsvfvEQSH WrBGXoURFIElKBwjKAqPzYkzyyQoovBUCYZhcN/dQ/luwUKmTJvBnr2+2Hfs3MnUGTP5+df/pjLo 16c3H//vU9auW0/vngXbXtr7RWXtJ7fbw+7de5g8dRoLf/iRYXfdiWEYZSr3yGNc2nNKa1dpr5m4 2FjObNWSN995l5SUg+xPTmbiu5Pp1LFDsb2Tj1ZlnGsVKetUPD+PrLMyj2dZ2nykyrjGlGU/lubi iy9i2rSpzJv3Fddc0x+Hw4FpmqxcuYoxY8bSq9el/m179bqU114bw99/r8Tr9RIU5OC66wbw9ddf MWXKZM4///wi60g5eJBXxrzOv2vWkpGRQWZmFt8v+pF9+5Np1KhhqTHGREfRollT3p86g4OpqRw4 kMLU6TNp16a1v7d5UWrUqMGOnbv8+ycyIoJOHdozcdJkEhISyXa52Lx1G6+9PoGcnJJHHSqPY1nP gkU/sHbderKcTr78+ltSDqRwVscOhbZzuXIwTZPg4GBsVhubNm9h3jfzC2xT3v3zz7+r+WjOJyQm JeF2e/CaXlwuF2YZRhwoSpFDJEPufWV5ibCih1A2TZOV//zDzFmz2Zvgm/rI4/GS7XLh9XoxTZOa NaqzfccO3G53ieXF16vHoh9/Ij09g3379zP9w1n+OiIjIujYvh1vvTOJXbt3k5GRwYKFP/DnXytK qAN/wjk6OooWzZvx3pSppBz0XWcmT51O+7Ztcnubl9zGsuyjvDjP6tiBCW+/w569e3E6s9m0eQuv jBnnO0ZFxFpa28odlx56VNmj6NfllZf1Y0D/qxjQ/yquvfqqcpUpIiIiIiInt3L3ODdNcHtNPF4D C75e43m9cn19oSHHBGvu724DPCbYgRx8mXoXEGj6frosXjzeov+4OPusTrz64vN8OHsOcz/9HLfH Q726dRh6x2B6dOtaYNs+vXoydcZMtm7dRq1acYwaMZzqucNTPv7wA8ycNYennxvJwdRU4uvV5bpr +vuHjDtRnNuuPnPG3c5zEz7jny3raX5mB6xW33yAvuS5HZvNypiHL8ewBmLYgjDsDgxrEOGREXQ/ r+R5qPOGBzUMg+rVq9G6VSvuHOQb4jMmJprBtw3kpdFjOJyeTuNGDTmvyzmsXb/e//wnHn6I/5vx AU8++xzObCcXnHculwy6vUAdhmHw4L33MOn9KTz0xJOMfvGFUoe+rKibbyh+/rHyOKNGCB8s/BVM E4/LidflxOPK5Iy46gweOBSP14vFMDBNsFlNTIeV1et3EBxg8mT/toSW8YaF4px/3rks/2sFX33z HQa+oV47dmhX4nOsFgvRUVEcTE31f+kbFxvDuvUbCgwjHBoSQod2bfn19z9wuVyEh9ekbp06/iGN i43p3HNZsmwZn3/5FcFBwTRt0pjkA5U7vPiRWh9lwjzPg9d25/7+Xcnfc6zp+TcQFOQgJDiYgAA7 hmGQk+PGarVicdRgzW8f+3vLgm//luTC88/D5XIxfeZHvPzaWIKDg2jdqhWjRg4vUA6UfG06Firr vKgMlTW3eXEu79eX/332BfO/X1Su63xZrnfXXn0V4ya8xRdffU3jRg2ZMPa1ImPo2b0rsz+ZS726 dWl6xBC2x/a9J3e20dxrk2H4xnTZv/1H9m+dh+lOw1bjTGw1WxFSqzt4ssAdhOHOxuXaidvlKbLH OUCnDu0Z+8pLfDh7Dvc9/CiubBe1asXR9eKLODvfaAnnnnMO77z3Pm1an1moB3ZZ3i+OZj/lvZ/Z 7XbCw2vSsnlz3hgzmiaNG5W53KKOcWnPKaldZXnNPP34o0yaPIW77rkPDIOO7dsx5I5BxbazMhzZ 87yiZZTXqXZ+FlVnZR3PsrS5KEd7jSnrfiyLxo0b8eKLL/DIIw8ze/YcPvpoFklHjLiSJzY2lhtv vIEBA64t0/theM2a9Oh6CZ9/9TVbtm7D6/USFxvDsLvuoHWrlmWK78F7hzFt5kc8/MQzGAa0bX0m t950Q4nPubxfHyZNnsK3CxbSoH48L40czj1D72Tup58zavQYUtMOUbfOGVx5WV/s9nL/SVWiY1VP t0suZtbHc9m+cxexMdE8+dhDVKtWeMSCqKhIbrp+AOPfeoeMjAwaxNejc6eObNy82b9NefdPi+bN 2LZjB6NeHUvKwYPUio3lofuGFZgaqDyKvOHD9N2w7V9n+qZcyvs976fX66FZkyZs2bqNF15+NV88 92C32/F4PFzWtw+TJr/PN/MX5LbvuULlAdx43bVMnDSZwUOHERMdTc/uXfnn39V4vB48Hg/3Dr2L jz7+hJEvvUJ2djbndD6LgTfeUGwdJiZer9dfx4P3DGPazA954NEn8r12byxTG8u0j3ING+I7di+8 PJrUtLTcY9cPi8VSbKwlta3ccYlUkZJek/2vvAIo5nojIiIiIiKnLKN2+97m3aP/x6BWZesdPOSN XzirXXs8Hg9mvrlVLbn/9gBWfCkr0wDDBDdgN8Cbuz5vUFk3EGi1sXLpfN549KqiKyxLTPc+wDVX XUHXiy+qcBmVJSkpiZiYYoarK4dPvl3KG1O/oUX786gT35AghwOHIxC73cao+y9n5+qfjj5YKdHQ 16Yz9ObBeDxeXG4POaaXlLSD/LZkBZee3ZSL2lRsTkY5/pqcfwuDHhhFWFgoQY5ADMMg2+UiPSOT yWOf5t9Fk7EfkfCuDCfStamsKusaBoWHYS+qx3lFhmoX+G8yFCBvchTTy57NC/DmpGGzWgmpUZ+Q sGhf0tyTg+nO5nDiYg4mfEy2M5QmPWdjDahWXAWlysnJ4bpbbuXeoUO46IKie4rKia8yR4KQU9uK Fctp2LBR6RsCbreb776bz4wZM/j44zkAXHvtAAYOHEivXj2xWiv/PVdK9uiTz9KvT28uOK9LVYdS Jlu2bKZ9+45FrluxYjkNGpQ+2oCISGn2799PVO6UK5Vl69YtxV6/RERERETkxDVldXXefuzqCvQ4 J6/HeW5Pc3yJco83t/9b7jIPYHh9v1uBnNz1FgPcZr5Eu2FiaDSrQq7p3ZlOZ8bz8Mh3OJCwlS4X 98VmsxEYEIBhObF6yp+yAgN9vYcN3xTC6/9Zx7at23iw//nERRz9nMVy/BgWBzablcCAAEKCg7BY LGAYZGe7sAYdmyGST3dl6eGqpHllMP77aViIrnc+OdmHCQ6NxPS4ML1OMKxgZOPxmmTkpOF2XEzt tlcfVdLcNE2+/PobAgMCOa/LyZGEEZHjx2az0bdvH/r27eNflpdAF6kM3goO8S4ikp/X69X1RERE RERECih34tyCbxhji2GS4/V9ZW8FMMCLb0j2vJ7mXuO/3ueW3IR6AOC1gtubu8xiwVZ4inMB4s+I YfY7z/DWlLn8b9o4+t1wF6F16vuSIHLMWQODwG7lkCuT+V99R/N6kYwc3AtbBeYylyqWN39d7tDW Ru6dO6YJVkd1DEMXoWPhyKR43pDR6uFaGYp6zRrY7cHY7EGYgGG1Y2JiGBa8WMjxphEUcQ4htWKo FlW24Y2L0+/qawkNCeHh++8tND2BiIjIsaZEl4hUhoiICF1PRERERESkgHInzpMOpvPrqo14vb5J zE3TNwx7tglBBriKGD2W3GHa84Zrz1vnMcFmsbFvZ+JRNWLSm+OP6vknMrvNxoN3XccFZ7fhkefH 0+SCnsQ0aFDVYZ0W2rZtzqLff2HT2k0MufpCWtQ/tvM1y7ETGByIKycHpzMbwzCwGAbO7GxcLhfB 1Y9dj/NT+dpUmuKS4kqWH2OGBSN3GHfTBIs1ANNrwRpgIySgMSGRoZVSzbxPP6mUcqRqFDUiRP5l Ok9FTj2vvfxCVYdQaQzDwOPx6sZHETnhmKapa5OIiIiIyEmu3InzBrXDada8CVavB9P09TK3kvsz N3GeNwy7DcjB1wvdC9jyrfeYvt7nHquNLeyqzDadkjq0ac5XM8by/ux5RHVpX9XhnBZCszKxerJ5 5Z6rCHYEVHU4chSuHtCT6RNfxMSKYQ3AYrNjsQYQVK06V1zXTaMIyCnG92WdYVjABIvVgukf/0Xk v9EfilsnInIiCwpykJ3tJDAwsKpDEREpwOl04nAEVXUYIiIiIiJyFMqdOE/PzOZQWgZe0wTTxGJY sOJLiJtAgAFOwGGAywuBFsj0giv3+XbAZfh6pyd7oFqAhYOHDldik05doSFBPDDomqoO47Rx3UVt qzoEqSTP3daPp2+5tIg1hpLmcgozwLBilr6hnIaKSp4raS4iJ4Pw8EjWrPmXM86oQ2hoWFWHIyIC QHr6YXbv3kWrVq2rOhQRERERETkK5U6c39+3AXMX/AKYGKaJ1zTxeLzkTiBMmunFMOEw3txh2g0M w/DNc26xgMXAahi4DAMMC6kG3HfduZXeMBGR/GxWzcMsIpJf/uS5kuYicrKIjo7B7XazevUq0tLS qjocEREAqlWrTuvWbYiKiq7qUERERERE5CiUO3HevGEdnh1a51jEckqIiYmp6hBERCpM1zCR04sS 5lIemrtVjgfTLH2slFq1alOrVu3jEI2IiIiIiIiInE40RrGIiIiIiJRICXM5nvR6ExEREREREZGq oMS5iIiIiIiUKCjIgdPprOow5DSQlZWFwxFU1WGIiIiIiIiIyGmo3EO1i4iIiIjI6SUurjY7d+4g MjKKoCAlNeXYyMrKIjl5P/XqxVd1KCIiIiIiIiJyGlLiXERERERESlS9eg3q1oW9e/eSmJhQ1eHI KSow0EG9evFUq1a9qkMRERERERERkdOQEuciIiIiIlKq6tVrUL16jaoOQ0RERERERERE5JjQHOci IiIiIiIiIiIiIiIiInJaU+JcRERERERERERERETQfg/rAAAgAElEQVREREROa0qci4iIiIiIiIiI iIiIiIjIaU2Jc5FTTExMbFWHICIiIiIiIiIiIiIiInJSUeJc5BSTlJToT54riS4iIiIiIiIiIiIi IiJSOiXORU5BSUmJBX6KiIiIiIiIiIiIiIiISPGUOBc5xaiXuYiIiIiIiIiIiIiIiEj5KHEucorR UO0iIiIiIiIiIiIiIiIi5XNUifP7Hn6Ub+d/X1mxHDNer5exb7zJZf0HcMfd9xZaf7K0Q6SsNFS7 iIiIiIiIiIiIiIiISNnZqjqA42Hpn8tZt349s6ZPJSQkmI2bNvPgY0/w9Wdzqzo0OUW9+PyIUrd5 ZnjJ21S0jJiYWCXMRURERERERERERERERMqh1MT5U8NHsHzF3wWWdWzfjpfKkNQ70rAHHuLyvn3o 0a1rmeoLcjioHx/P7bfeTOtWrcpdX56NmzbTrGlTQkKCAWjSuJGS5nLMvPj8CK659jqaNmtW7DYb 1q/nxedHFJs8P5oy8oZqz/9TRERERERERERERERERIpXph7nV17Wj6F3Dj7WsRSqLzMzk6kzZjL8 +VFMe28SNWpUr1B56enp2O2nRed6OUHkT3jPnvURmzdt9P/eqHETrrv+hjKVsWH9ej75eHaB5HhZ kuoaqr1oA24ayMHUVB5/+EG6XnzRaVd/ZTvV2iMiIiIiIiIiIiIiIqevSs0mPzvyBZb+uRzDMIiO jqJ39+5cP+AaDMNg1KuvsWnzFsaMn8CY8RNo1rQJE8a+VmJ5wcHBDL5tIF9+/Q1r16+ny9mdGXLv A3Tu1JE1a9exafNmHrzvHtq2bs07k99nxcpVGAZ0at+eIXcMJiws1B8TwNffzveXbbfbi+11nuV0 MnXGB/yxeCkZmRm0atGCe4beRUx0dOXtLDltbN60sVDiu6w++Xi2/znPDB/hf+6RyfT8Tode5nnn 9WV9L+WeIXcdt3o3btrMp198wV9/r8KZlUV0dDS9unej/1VXYBjGMamzqtoqIiIiIiIiIiIiIiJy OqnUxPkLzz0LgNfrZeu27bz4ymhiY2O55KILePrxR9mbkFDqUO1lMf/7hQx/6gmaNW2CxWLhkSee xuEIZNKb4/F6vYweN55Xx47jxRHDeeG5Z3lr0rt4PB7uH3Y3gH+O8+KMHvs6rpwcxrwyimphYcyc NYeRo15m4vhxxyw5Jqee/D3NX3x+RJl7mueXP1meP+Fe0vzoGqr92Jn2wUyuuKwf9w4dyu69e3jy meeYPHUaOW43Nwy4ptTnz5k5/ThEKSIiIiIiIiIiIiIiIuVVpsT5Z19+xWdffuX/fcQzT9Ll7LOL 3d5isdCoYQOu6NeXxUuXcslFF1QouMzMTKbN/BCHw0HzZk39yy/r24cWzX3DVCckJvLP6tV8MGUy EeHhAAy76w7uHHYfKSkHCQ+vWa46k5MP8PviJcyaMdVf3h2338qVA25g+46d1I+vV6G2yOnnaHqa 55c/eZ73e2nKM1R73nDb/a+8gk2bN7Nx02aGDbmTLmd3ZuasOSxZ9icHUlKIiY6id88eXHlZPywW S6nl9r/+Jg4dPswNA67h3zVr2bhpM7ExMdw1+HaWLV/OwkU/gmFwXpdzeOCeu/1lDrn3AbZu2waA zWYlNiaGS3v1pP+VVwBwx933smPnTgC+nPcNX877hmphYcydNZP0jAzmfPI/fl+yhOTkA9SrU4c7 B93Gma1aFohtx86dPPnsCNZt2EBIcDA3Xj+AS3v2KLVNL+U7Dk0bN6ZD+3b8/Otv/LFkSZkS50cO bZ73+3XXXM2mzVsLxVNiW9PTSz0+xR3bKdNmlFhvWY6DiIiIiIiIiIiIiIjIqaRS5zj/5bffmf3J XHbv2YvT6QSgZYvm5Q4qL1HvcDiIr1eXkc88Rc0aNfzro6Mi/f/en5yM1WolJua/YdRrxcX515U3 cZ6YlATA9bfcVmhd0r59SpzLUalI8vzI5+QN216civYy/+2PxTw//Gni69XD7fYw7IEH2bZ9B9dd 058B/a/m7fcm8+77/0dCYmK5hgxftvwvXn5+BDNnzeGLeV/z1PAR3DnoNqa8+zZ33n0v3y34nrat z+SSiy4EYNKb4wEwTZPEpCSeHfkC702ZSmxMDOd1OYfJb79Z5PDlbreHRx5/iq3bt3PBeecy7pWX Sc/IYMHCRYUS578tXsKrLz7Pv6vX8sqYsUyY+A7ndD6rwHWmNHkjawCEhYaV+XlFKS6ektr68BNP lfn45D+2AFOmzSh1P5R2HERERERERERERERERE4lpXcbLaODqam8NHoMN10/gDkfTGP+V58z5I5B eDye/yozylbdlZf1Y8G8L/hy7hwmjH2Ntm1aF1iff7j0qMhIPB4P+/bv9y/bm5DgX1de0dFRGIbB 3FkzWTDviwKPs8/qVO7y5P/Zu++oqK4tDODf0Jv0jg2xi4LYC2rsIhbsvRAURRQbGsBYIs/eoibW qFFsMbG3IBbsJgZ7N1a6goB0Zeb9QRhBBmYGBgbx+601D+eeO+fse+6deWtl37Mv5TZrduFJ788V tNK8sAR8Tol2AOK/sujh0k2cWP0nLAzPX7yEmpoqhg4eCF1dHfRy7Q4AOHbiT6Smpsrcb8f238DA wAA1a9YAkP397eXaHUaGhqhY0QYAEB4Rke9zAoEAVpaWaNSwIQDgytVrhY7zT1gYnr14AQCYON4T hoYGqGhjDfeRw/Pt69KlM8xMTdG0sROA7CR4VLR8Nxts3LIVr8PDoaamiuFDBsn12eLGI+/5yX1u 5R1X3vNARERERERERERERET0JVLYM84zMzIhEomgq6MLNTU1PHj0CPsPHs6z4tvY2AjPXrxAVlYW VFVVFTKulaUl6tvXw5p1GzDFewKyhFn4acMmNGncSO7V5gBgbmaGFs2aYenKH+H5rTvMTE3w4tUr 7N77OwJmToe6urpC4qbyr3qNmkUuz56j/4BB2PfbHnHSPKdse/8BhSdq5SnVniP39yUmNvtGlI8f s9CjT94S5Dk3qkhKxEpioK8PAFBXy/650dHRzvc9EgqFALJXN+/9fT9Onz2L2Ng3SPuvcgUAvImL K3ScnJi1tLRgYGBQ6L45K8tV1T79BObEIIttQTux/+BhaGpoYJbfTPGjI4pK3njkPT8F/RYWNG5x zgMREREREREREREREdGXSGGJcwsLc3iMHokFS5bhfXIyalS3Q+uWLXD/4UPxPgP69sGK1Wtx6Mgx 1Khuh9XLlypk7ICZvli/6Rd4ek8CBAI0dmqIcWO+LXJ/M6dNRtDuvQiYMw/vEhJQtUplDOrfj0lz ktmjhw8xaPCQQttl6aNW7dr5VqjnvC+oj6KWas/N3NwMAKCpoYEDv+2BmppibnSR5trf17Hl1+3Q 1tLC6hVLUblSJaxdtwFHjp+AMCtXIjlX1YkcFv/FnJ6ejsTERKnJ86LasWsPdu35DZoaGvhhziw0 dHAokXHEJBxrSZ8fmc8DERERERERERERERFROSE1cb6gkBWznye++/dxQ/8+bgXuX69uHfyy/qci jwd8ev5xbsZGRvCfMb3Az3z+vN+aNarj2IHfxe8/Pw5tbW2McR+FMe6jCo2FSJKcVeGy7FcSfeSU as/9V16NnZxQtUoVvHj5Er9s+xXDhwxCamoabt+9iwuXLmNOgJ/cfcriw4cPAAAVVRWoqanh5atX OH/pcr79DP9LisfExIorWDRyckK1qlXx7MULrFm3Ad7jPJGaloZjJ04q7Lu8+7d92LFrN9TV1TH3 e/+ST5pD8rGW9PmR9TwQERERERERERERERGVFwpbcU5En8jzHPOS6KMopdpzU1NTxYrFC7D7t99x 5do1HD1+AkZGRnCob49Rw4cWOS5pWrdsgT69euLUmTPwmTYD9vXqoVFDR5w5F5pnv35uvfDvs+cI u3kL3Xr1QWOnhljww1wsW7wAe/f9gUtXrmD4t2NQuVJFeHq4Kyy+oN17AWQnlv2+nyverl+hAn7f HaSwcXIr6FhL8vzIeh6IiIiIiIiIiIiIiIjKC4GNUzeR15I/8K19orJjISIFUESpdiIiIiIiIiIi IiIiIqKvwS93DfDzjL5QUXYgRKRYOSXaAYj/EhEREREREREREREREVHBWKqdqBwqbql2WXR27SVx +/AhgzB8yOASG7ckFfeYyuOcEBERERERERERERERfQ2YOCcqZ0qrVHvw0UMlPkZpK+4xlcc5ISIi IiIiIiIiIiIi+hqwVDtROcNS7URERERERERERERERETyYeKcqBwqjVLtREREREREREREREREROUF E+dE5QxXmRMRERERERERERERERHJh4lzonKGpdqJiIiIiIiIiIiIiIiI5MPEOVE5xFLtRERERERE RERERERERLJj4pyonOEqcyIiIiIiIiIiIiIiIiL5qCk7AGVLSkpCdHQkUlNTlR2KTHR0dGBpaQ19 fX1lh0JlVE6p9tx/vyZJSYmIjo5CWlqaskMpEdra2rC0tIK+voGyQyEiIiIiIiIiIiIiIio3vurE eVJSEiIiwlG/fgMYGRkrOxyZvHsXjzt3bgGoJFPyPDEx4b8bA8pnEvFrpKOjDUtLaxgYGBa4z9da qj0pKRERERFf1HdaXp9+A8DkORERERERERERERERkYJ81Ynz6OhI1K/fACYmpsoORWYmJqawt2+A Bw/uS02cJyYm4PXr16hbty6Mjb+cY6TCxce/xf379wBAYvL8a1xlniM6OuqL+07LK+9vABPnRERE REREREREREREivBVJ85TU1NhbGyi7DDkZmJiitTUFKn7RUdHoV69elBX18C7d/GlEBmVBg0NTdSt Ww9PnjyRmDiXt1R7eShtrqWlBSsra6SlpZXblea5GRubIC0ttVycO2XJuWYAcA4VjHOrPDlzz5tq iIiIiIiIiIiIiOT3VSfOhUIhBAKBssOQm0AggFAolLpfamoqVFRUkZmZWQpRUWnJzMyEqqpaoTdP yFqqPSkpEeHh4ahevQYqVJBe+r+sev8+CU+fPoZIJFJ2KKVGJBKVi3OnLO/fJ+Hx44cQCFRQo0ZN zqECcW6VJ+e3sGJFPsqBiIiIiIiIiIiISF5fdeK8vBOJRPj48aOyw6AS8PFjVoFJYnlKtUdFRaJ6 9RqFPi/9S2BgYAg7uxp48OCeskMpVeXh3CmLgYEh1NTUUK1adc6hgnFulSfnt/DlyxdMnBMRERER ERERERHJSUXZARB9DWJjYxXcY8Erq3NKtAMQ/y1Ienp6uVkN+jUmicrLuVOWjIwM6OlVUHYY5RLn Vnn09Q2Qlpaq7DCIiIiIiIiIiIiIvjhfZOJ83MTJOH32nLLD+CKIRCKJr1u372Cy78wC2/mS//X9 vEBcuHS51MYrjKyl2omIiIiIiIiIiIiIiIjoC02ck+wKSrpu3RGEAX37KD3ZrMzXlBnf4WRwiML6 G9DXDb8G7YJQKFRq4lzaKnMqnmGj3bH/4KEC3xMREREREREREREREdGXR6bEeXhEJOYGLkT/oSPQ Z+AQBMyZh7v37pd0bKQAkhKuT589Q2RUNBo5NRRv+35eILq79cM/N27k2ddn+gz8cfBQsRK8j588 QeCiJRgy0h29BwzG2AkTsfrn9YiMjFJq4nz5ogXo3LG9wvqrW6c2Pn78gBu3bis1cS5PqXYiT++J OHr8RIHvy8uYyvS1HS8VXXx8PJw7dEJiYqKyQyEiIiIiIiIiIiL66qjJstOsufNQp3ZtrPtxJXR1 dfDg4SPs2fc7AuvNLun4qARcuXoNjg3qQ01VNc/2ChUqYMuvO+DYoAFUVBRTjOB62A38b/FSdO/a BSOHDYG5mRni4uJx9/597P3jD0z2nqCQccqKho4OuHz1Gho6NFBqHCzVXrC79+5h05atuHnrNtLS 01G5UkW4dO2KoYMGQlNTU9nhERERERERERERERERkRJITZy/S0hAZFQ0vvf7DqamJgAAp4aOcGro KN4nLT0dW7fvwOUr15CSmgL7unXhPd4TFubmAIDv583Htb+vQyAQwNzcDN06dcLggf0hEAgAZD+z vFmTxrh3/wGePH2KKZO80bRxI2wL2okr1/5CSnIK2ji3xjgPd2hpaQEAXkdEwNd/Fh4/eQoTYyNM GDcWjRo2BADs2fcHTgYHY9umDYqdrS+QpJXJDx89RoP69p+1idDxm3a4dOUqTp0+g84dO+RuEu+b mJiIjVu24dbtO4BAgEYNHeExeiQq6OlJHPvnjZvQqf03+HbUCPF2S0sLWFpaoGP7b8T9TprmiyaN nHD/4SM8/fcZJo73hEN9+0LHGjVmHCZPnADHBvUBAG/j4jB67Hjs2b4Vurq6mDTNF42dnHDvwQM8 f/ESVpaWGOfhjjq1awEApn8XgM4d24uPddI0XzRt3BgPHj7Ek3+fwdjIEJ4e7mjo4AAAiIuPx5p1 G3D/wUOYmhijW5fO2PjLVuzc+gv09SsAAOxsbXEi+FS+eZe2SlyRLCwsi50wz8zMRIdu3QtsV1FR QeipP4s1hjJcunIFk6fPwKAB/THVZxIszM0RHhGB4yf/ROiFC+jcsaOyQywRvwbtxOat2xAwcwa6 du5U7P4ePHyI7Tt34c7de0jPyICNtTU6d+yAfm69y+XNB1/a8U77zg9//X0dM6dNhatLN/H2Z8+f Y6THWGhpaeHUsSNKjDDb6/BwrNu4GXfu3cXHj1moV6cOhg8dDIf69ZUdmsy+tGuDiIiIiIiIiIiI iAomNXFuaGAAG2tr7Ni1BwP79YFdNVtoaGjk2WfJ8pXI/PAByxb9D/oVKiBo917M+99C/LRqBQQC AebP+R4AIBQK8ez5CwQuWgJLS0u0b9dG3Mefp0Iw2/871K5VEyoqKpgz/394/z4ZgXNmw8TEGOcv XMSt23fQrGkTAEDI6bP43m8mqlapjD8OHsbi5Suxd8ev4mQ8ZZOUrI2Lj4e+vn6+NnV1dQwfMghb ft0B51Yts29SEAEifEr6Llq2Elpamvhx2RIIhUKsXPsTVvy4BrP9v8s3zuvwcMTGvsE3bdvIlDQ+ dfos/HynoWaN6lBRUYH/7HnSx8qVkM79N+ffJ/4Mht+M6bCrZosTfwZjbuACbPhpNQz09bOP67M5 OnMuFDOnT0GVSpVw6OgxLP9xLbZv3gCBQIDFy1fC1MQEG39ajbS0NCxbuTp7vFzzo6+vj7j4d4Um zn8/cAjbd+4qdC4GD+iPwQP6SZ0zSXJKtef+Ky8NDQ1cOH1K/H7WvB9QQVcPM6dPLVJMZYFIJELg wsXo3bMHpvlMEm+vbmeHSRO8xO+9p0zFhYuXIBAIYGVpCbdePTHGfbTMvy2pqWlYs24dzp4Lxfvk ZDR0dEDAjBmwssoumz9gyDA4t26Fm7du4/7DB5gTEID4+Hjs2LUb8e/eoU7tWpg5bZr4Bo/iEopE OHriBFy7dcOho8eKnTi/9vff8Pt+Dvr27gUvz7EwMzNDZGQUQs6cwaUrV9G+XVuFxF1WfKnHa1et Gg4cPpIncX7g8BHYVauGiMhIJUb2ia9fAOrVrYMt69dBV1cX9x48wM7de76YxPmXem0QERERERER ERERkWRSE+cCgQBLFwZiz77fsXj5SsS+iUXN6jXQr09vtG7ZAm/fxuHSlavYvX0rTIyNAQBj3EfB beAQvHj5CrZVq4j7UlFRQXW7aujdwxVXrl3Lkzjv6doddevUBgDEvnmDK9f+wrZN62FtZQUAcOna JU9cbr16oFbNGtmf7d4N23YEIS4+HqYmJhjUvy8G9e9bzKkpHyQlrEXZ2eI8bTkJZOdWLXH42An8 cfAQhgwc8N/27LbomFjcvX8fm35eAyMjQwDAmNGjMGmaL+Lj34m35Uj47xmtxsZG4rHOnb+AlWt+ Eu9zaN8e8b+7d+siPqdR0TEyjZVnJXfOn1zbunbuBPu6dQAAfXr1xOmzobhy7S90yVlR/9k89Oje DTXs7AAA3bp0RtDuvYiLj0dmZiYePHyEHVs2Qb9CBehXqIDhQwfj+3nzJawmz7+6PPc+fXv3BCDC 9p27850bABg8oB8G9e9brBXqJVmq/eCRozhw6BB+3bxJvC08IgJDR7ljb9B2WFpYYPRYT7Ro1gy3 bt/B02fPYGNtjSkTvVHfvh4AIC0tDRu3bMWFi5eQnJKCBvXtMXXSRFhaWAAAft9/AHv/+AMJ7xJQ s0YN+Hh7oWaNGsWK+/mLF4iMikIPF5dC91u7cgWA7Bt9Hj95Al8/f1S0scn3G1SQgDlzkZmZiV82 rIOhgQHWb/4Fk31nYPf2beJHIBw8fATLlyxCA3t7vA4PR5+Bg/HL+p9Rp04dPHr0GCf+/FNhifO/ /v4b+hX0MXXyJPQfMhTPnr9ANduqRepLJBJh2aof0b1bV0wY5yneXs22KsZ+6y5+PyNgFq5cvQaB QAALC3O4duuGEUOHyHzzgbTrI+f6unPvHh49foKZ06bg3bsEhV8zZeV4pbVL0rJ5MwSHnMaDhw9R p3ZtpKWlIeTMWYx1H42fN3767kqLXdp3uaji371DRGQk5s+ZDTMzMwBAk0aN0KRRI/E+7xISsPqn n3E9LAwCCNCsaRNM9BoP/QrZFT76DBwM/5nZlUUA4M2bN+gzaAhOHDoAPT09iddJ82bNsHnrNly8 fBnJySlo364tJo4fBy0tLbnmWdZrQ9oxxMXFY/GKFbh1+w7MTE3Rp3evPOMU5dwTERERERERERER UdHI9CBrUxMTeI/zxLZN6/H7riC0b9cW8xcuxq07dxEdEwMAGDxiNDq79kJn117o0qM3UlNTERMb CwA4f/ESvHymoGe/gejs2gs/b9yEt3FxecYwNzMV/zsmJhYqKiqwsrQsMCZDAwPxv3NWwGdmZsp4 2F83E2MjJCYlSWwTCARwHzkMB48cQ1x8fJ62t3FvoaqqCvP/khwAxKto38a9zdeXgb4+gOzEQI52 bZxxaN8e/PB9QL79TU0/XQPyjlUQSwvzfO/jPrv2JMUM5L2u4uLjoaWlJU52SOobyC5lb2xkLDWu vr17YcTQwfm2ZyfNi7bSPIeFRcHfG0Xo0rEDYmJicefuPfG2Q0eOokmjRnmSOQePHIGH+yjs37sb Hb5pB18/fyQkZN9MEbhoMcLDI7Bm5XL8sWcXqlSqBP/ZcyEUifA6PBw/bdiI2X5+OHZwP7w8xyLk zNlixx3/7h0AwNzcTMqe2VRUVFC7Vi0MHjAA585fkOkzMbGxOHPuHObOCoCNtTV0dXUxZaI3XoeH 499nz8X7DRrQH44NGkBFRQVqampQV1eHrq4eNDU0shNjuVbEF9eho8cwsF9fqKupoU+vXjh87FiR +3r56hWio2PQtVPhq9aX/C8QF06fwrngk1gwby5OBgfLdQ4Luz5yHDv5Jzy/dcfJwwdRs0aNErlm ysrxyjIfnxMIBOjp2h0HDmWXZP/zVAgc6tvD4rPfLVliL+y7XFRGhoaoaGODrdt34N79BxL//3v2 D/ORkpKCrRs3YPP6nxEb+waBCxfJNU7u66TDN98gcOEiPH78BEsX/A/7du5ArRo1EHbzJgD55lnW a0PaMcyZHwgNDQ3s2fErFv9vPk78mfcRGEU590RERERERERERERUNDIlznPT0dFBT1cXWFpY4N79 BzA3N4NAIMDvu4MQfPRQnlfzpk3wLiEBC5Ysw7DBA7F3xzb8eeQgxo35FllZWXn6zb0yz8LCHEKh EFHRil8t+7URCoX5XjVqVMez5y/ybIMou3C5UChE7Zo10dChAXbs2oPs1dPZ+5gYGSMrKwsxsbHi z0X+V/LX2Mg43zjWVlYwNzPD2fMX8sfx33/0z3mfswo+570sY2loqCM9I0Pc/i7h3X99isR9RsfE 5Bk3OiZW/HmIsstY545BlPu9UCjuz8jQCOnp6UhITBS3R0VF55vjp8+eoWZ1O4nz/vnLrWcPDB8y SHyuBvXviwF9+8j0WeF/sUmSU6IdKJkkura2Nrp06oiDR7ITch8+fMCJP4PRo3veldy9e/RAQwcH 6OroYOiggTA1NcX5ixfx5s0bnL94CTOnT4WVpSV0dXQw3nMsIiMj8eLFC6ipqUFNTQ26ujrQ0NBA vbp14OU5tthxGxsZAQBiY98Uul9wyGkMHDYCzdu0g0OTZli8fIX4JiBpIiKyr9GOLt3h0KQZHJo0 Q8NmLZCSkoLIqE/lsXPfFGRjbY3F/5uPFatXY/CIkZjzw3w8evJE3sOT6G1cHB4/fiIuGd2rhytC z19ARkZGkfrLSZaa5brRqTAqKiqoUb06+vbujUuXr8j0GWnXR46+vXvBvl498c0HJXHNlIXjlXU+ JOnR3QXnL11C0vv3OHjkKNx69SxS7AV9l4tDIBBg9YplMDM1QeCiRejSoxfGT/RB6IXsfiOjonDz 1m1MnTQJpiYmMDczg4/3BFy59leem7GkyX2dxMTG4uLlK/Cb4YuqVapAT08PPV27o2Xz5nLPsyzX hrRjiIiMxK07dzDNZxKMDA1hY22NcR4e4s8X59wTERERERERERERkfyklmp/GxeHH39ahz69eqCG nR0EAhWcO38B0TExqF2rJszNzNCiWTMsXfkjPL91h5mpCV68eoXde39HwMzpyMzIhEgkgq6OLtTU 1PDg0SPsP3gYxsZGBY5pbmaGZk2bYNmq1ZjsPQEmxsYIvXgRJkZG4mecF2bPvj9wMjgY2zZtkG82 yiFJ5b6bNW6M+QsX4+PHj1BVVc3e77//ydl/+JDBmOw7E5qamuJ+zM3NULdObWz8ZSvGj/VAVlYW Nm39FU6ODjA0NJA41thvR2Px8pXQUFdHpw7fwMzUFCmpqbh3//5n8YnylDOXZayqVarg9NlzqFOr FlLTUvHrf6XPP/UjwslTp+FQvz6q2doi+PRpxMXHoVmTRrnKu4sKjCH3XytLC9SqWQObtmyDx6gR SEtPx47dez4bD7h1+w48Pb6VUKpd8rlw6/hfI6EAACAASURBVNlDvNJyQN8+xSrPnltJlmoHALde PfHtOC9MmuCFa3/9DVVVVbRq0TzPPjmPWRC/t7bCm7dvEfnfDTFuAwbhc1HRMWjVojnmzgrATxs2 IjExEXbVqqF/nz6obletWDHbVq0KaysrHDtxAg3q20vcJy4+HjMDZmH54kVo1rQJdLS1sXPPXpwM DpZpDCsrS6ioqOBs8Mk8VTE+93kF77bOzmjr7AyhUIgTf/6J0WM8cebkcWhpacl8fJIcPX4CsW/e 4Jsu3fJsP3MuFN26dJa7P0PD7GN68+ZtnmoQnzsbeh47du3G6/BwpKenA4DMpb2lXR/VbG0BABbm n1ZOW1lalsg1UxaO971ecqHtOfMhiZGhIZo3bYolK1YiPT0dTRs3xpVr1+SOvaDvcnGZmZpiyqSJ AICU1FT8eSoEs+f9gFXLl0IAAVRVVWFp+amKRUUbawBA7JtYmJhIr+wB5L1OoqNjoKKiAhtrq3z7 yXrd5ZDl2oiNfVPoMWRkZEJLSwtGhp8ec2JjbV3kmIiIiIiIiIiIiIioeKQmzk1NTODarSv2/r4f j588hVAohI21FaZP8YGTowMAYOa0yQjavRcBc+bhXUICqlapjEH9+0FdXR0WFubwGD0SC5Ysw/vk ZNSobofWLVvg/sOHhY773bSp2LJ9B/y+n4P0jHS0ad0K7XM9N5RkI2llsm3VKrCwMMf1sBto0ij7 2bA5CeSc/S3MzdClYwccPXESIuGn7VMnemPrjiBM9v0OAgHg2KABRg8fWuAKaMcG9TF/9izsP3QY frPnIS0tDSbGxrCrZouFP8zN87nc48sy1rDBA7F2/UZ4eE2Ahbk5unTqiNt37kIo+rQiu1P7b7Bz z2948eoVLC0s4O87HXp6etkryiHKN2bu9zl/c1bcT5k4ARs2b8H4SVNgbGyMDu3a4snTf6GqogKh UIiHjx5DRUUV9evVzTcfIlHBq8T793Er8FwVhYWFZYklzHNUrVIFdevUxok/g3H+4kV069IZamp5 f04io6Lyvo+MQusWLWBpYQEVgQCH9/+epzR+bq1aNEerFs0hFIkQcvoMvCdPwcHff4PWfzdyFIVA IMAsv5mYMn0GdHR04NarJ8zNzBARGYnjJ/9ErZo1YF+vHkQiESro6UFdTQ23795F0K7dMDU1kWkM K0tLtGvjjO/n/YDpk31gYW6Of589w+at27D4f4Hi8v+5Xbn2F/6+fh29e/aEpYU5srKEyMjIgFBY vJsohCIRjh4/gR1bNqNqlSri7dfDwvDL1l+LlDivUrkyLC0tEBwSgnp160jcJ/7dO8wN/B8C585G o4YNoa2tjX37D+D0WdlKl8tyfQDI9/zwkrhmysLxxsTGyjQfBXHr1QPek6fCy3NsvjmTNfaCvsuK pKujgz69emLvvt9x5+49dGz/jbjqSE7yO/y/ig7mZtnvNTU1kJHxqcT7u4SEfP3mPmZLSwsIhUJE REaJE9jiNhmvuxyyXBvm5maFHkN6RjrS09PxLiFBnDzPPdfyxkRERERERERERERExSM1cQ4AzZo0 RrMmjQts19bWxhj3URjjPkpie/8+buLkoCTr16zKt01XVwcTx3ti4nhPqftraGgg+Ogh8ftB/fti UP++BY73NSloBfOQAf2x67d9aOzUEAAQMNM33/4jhw3ByGFD8mw3MNDHZG8vmccBALtqtvCd4lNo fEsXBObrR9pY5mZm+Z6V3rlD+0/7iICKNjYYMrC/xM8vmDen0BjU1NSwb+d28TYTY2P4z5gu7ifs 5i3o6upCS0sLIpEI+w8dxuAB/STOR+5V6SUtp1R77r8lwa1nT6xasxYJiYnwnzEjX/uhI0fRtHFj 1KxRHYeOHsObt2/RpnVrGBoaoFXLlliweCm8x3vCzMwMz1+8wI6duzHv+wDcvH0bN27egkvXrrAw N0OWMAsZmZni0vnF0apFC2zZuB4bf9mKYaPckZ6RgcqVKqJ7t25o6+wMTU1NTJk0ETMDZiHp/XvU qV0LHb5ph1t37sg8RuC8udiwaTO8Jk1GXHw8qttVw7ejRklMmgNAY6eGePjoESb4+CAm9g2qVq6M pQsXQEdHu1jHeu2vvwEgT9IcABwaNMC/z5/j2fPncq9YFQgEmD7ZB/6z50JbWxuuLt1gamqKqKgo nDp9BtXt7FC3du3sKiO6ulBXV8e9Bw/w2+9/yLVCuLDrQ11dPd9n/v7nnxK5ZsrC8RZlPnJzqF8f F06fktgmrggjJfaCvsvF8ebtWyxb+SMG9O2DmjVqQEVFgJCzZxEdHY26dWrD2soKDg3qY8WPazBj 6hRkCbPw49qf0LxpU3F81e2q4/jJk3Cob4/klBSs27i50DEtzM3RsnlzLFq6DL5TJ8PUxARnzoXC xMQYLZs3l2ueZbk22rdrK/UY6tvXw8rVazB10iSkpqVi/eZf8sRbnHNPRERERERERERERPKRKXFO Xy6hMEvi9rp1aiFwzqwC28sDkfj57Io5xstX/4Kqqgoa1LdHbOwbBO3eg1bNm4r7nzltMgDJcy4U ZpXqXJd0qXYAaNO6FX786Wc0dHTIt3oTAHq6dsfGLVvw9N9nqGhjjSULAsXljWd9NwPbdgRh+nf+ iH/3DtVsq2L44MFQV1eHo4MDnjx9Cl8/P7x5G4dKFW3ww+xZ0NYuXiI5h329eli9YlmB7SOHDcXI YUMLbA/auqXQ97o6OpjqMwlTfSZJ/Pxvu4LyvFdXV8foEcMxesRwaaHL5fDRo2jetGm+7epqamjU 0BGHjhwVl8mWR7MmTbB25XL8GrQTnhMmIiMzEzbW1ujSqQNatWgOTU1NjB87BvMCF+D9+/eoWbMG 2jq3xt3/Hs8gi8KuD0lK8popC8cr73zIytLSQqbYC/suF5WZqSl693DFzj178fDxIwizhKhY0QZ+ M3zR2Cm7EsoP38/C6p/XY+SYsRAIgKaNG2OS13hxH+PHemDB4qVwGzAI1tZWcOvZE9fDwgodd7b/ d9jwyxZMnfEd0tPT8U3btvD+7wY9eedZ2rUhyzHM+34WlixfiYHDR8DM1BR9evfCg1wVeUrq3BMR ERERERERERFRfgIbp24iryV/4Fv7RIk7dHbtVWgHuVd6f2nCwq6jWzdXZYdRJCdOHIWTU8FVAIDs 46tS5et9Bup338+Ba7euaN1SMSWFk5OTsWV7EG7fvQdNTQ00bdQIgwf0K3AlcW5v3ryBWSHPSC6K ly+fS7wG5FllfuvWDTRt2gIqKipyj//hwwf07j8QU30mosM33+RpGz3WE4MHDEDnjh3k7reohEIh rl27jE6duhbpeL4kQqEQp06dRLNmLcv9sZakq1cvoUmT5lBVVVV2KGVWUb/LnFvlEQqF+OuvK3Bw aKjsUIiIiIiIiIiIiIi+CL/cNcDPM/pKX3H+JSfGKfvZ2l+rhT/klGJXzBxkPz5gbL7tsvRvampS aueiNEq1Z5emPwRNTU20dXZWeP9EREREREREREREREREpYml2ssxgUCArCwhBAKBskMhBROJRIWe 15Iu1d7RxRV6enrw850GNTX+jBAREREREREREREREdGX7avOeKmoqEhNQJZFIpFIpvLM2tpayMhI h6amZilERaUpPT0dWlqSn99cUqvMczt94lih7Vs3bijR8YmodPC7TERERERERERERERfi686ca6j o4P4+DiYmJgqOxS5xMW9hY6OrtT9jI1Nce/eHVSsWAl6ehVKITIqDcnJ7xEe/hr29g0ktpdGqXYi IiIiIiIiIiIiIiKi8uSrTpxbWlrjzp1bsLdvAGNjE2WHI5P4+DjcvXsbNjaVpO5rbm6Bjx8/4u7d W0hMTCyF6Kg06OsboEEDB5iZmRe4T0mXaiciIiIiIiIiIiIiIiIqT77qxLm+vj6ASnjw4D5SU1OU HY5MdHR0YWNT6b/YpbO2toG1tU0JR0VlCVeZExEREREREREREREREcnnq06cA9nJc1mT0ERfApZq JyIiIiIiIiIiIiIiIpKPirIDICLFY6l2IiIiIiIiIiIiIiIiItl99SvOicobeVaZp6VlIDT0XMkG VIo0NdUhEokgEomUHUqJyjnG8nTulOX8+VBlh1BucW6VKyzsurJDICIiIiIiIiIiIlI6J6fGMu/L xDlROSNPqXYNDTV06+ZaitGRIqiqqqJr1+7KDoOIiIiIiIiIiIiIiKjMOnHiqFz7M3FOVA7JW6p9 587tJRkOERERERERERERERERUakZOnSE3J9h4pyonJGnVHtuRfkBoS9HVFQUrKyslB1GmcN5ISIi IiIiIiIiIiIqP4rz3/1VFBwLESlZTol2AOK/RERERERERERERERERFQwqSvOQ0KCSyMOIiqijh07 59smb6l2IiIiIiIiIiIiIiIioq+ZTKXaWcKZqOSdOHEUFfSN5PpM61at8iXHi1qqnYiIiIiIiIiI iIiIiOhrxVLtROUMS7UTERERERERERERERERyYeJc6JyiKXaiYiIiIiIiIiIiIiIiGTHxDlROcNV 5kRlw7DR7th/8FCB74mIiIiIiIiIiIiIqOxg4pyonGGpdiIiIiIiIiIiIiIiIiL5qCk7ACJSPEWV ah8/yQe2VapgxrSpigiLyqi79+5h05atuHnrNtLS01G5UkW4dO2KoYMGQlNTs8THHzxiJAYN6I9e rq4lPpY8lD0vRERERERERERERERUesrEinOWryVSHK4yJ3lcunIFo8eOQ+XKlbF9y2acDwnGosD5 SE5ORuiFC8oOT2k4L0REREREREREREREX5cykTgnIsUpyVLtA4YMw5qf1+Fbz/Fo0bYdTgafUmj/ VLpEIhECFy5G7549MM1nEqpUrgwtLS1Ut7PDpAle6NyxIwAgPv4dvpv1Pdp17opvunTFrLnzkJiU JO6nk4srrv71l/h9TGwsHJo0w/v37wFkXzc/rd8Aj/FeaNn2G/Ts2x9Xrl4DAMzwn4X7Dx5i9rz5 cGjSDMNGu5fiDEgm67x4T5kKhybN4Ni0Obr17I2Nv2yBSCSSeZzU1DQsXr4CXXv0QqtvOsB7ylRE RX2qEsHvGxERERERERERERFR6SlyqXaWcCYquxRVql2Sg4ePYPmSRWhgbw8VFd578yV7/uIFIqOi 0MPFpdD9fP38oa2thX07g5AlzMKsufMQMHsO1q5aKfNYR44dx7JFC1Ddzg47du2G/5w5OHPyBJYs CMTr8NdlqlS7rPOyduUKAIBQKMTjJ0/g6+ePijY2cOnaRaZxAubMRWZmJn7ZsA6GBgZYv/kXTPad gd3bt4m/W/y+ERERERERERERERGVDv5XeKJypqRLtQ8a0B+ODRowiVcOxL97BwAwNzcrcJ/wiAhc DwuD/8wZMDMzhaWFBb6bPg0XLl3G27dvZR5r6KCBsK9XD1paWhjYrx/i49/hjRyfL02yzEtuKioq qF2rFgYPGIBz52Ur4x4TG4sz585h7qwA2FhbQ1dXF1MmeuN1eDj+ffZcvB+/b0RERERERERERERE paPIK84/N2DIMLRt44wbt27h/v0HMDU1hZ/vdLRo3gwAkJKSgrXrN+Bc6Hm8T05Gl44dMH3KZGhr aysqBCLCp1Ltuf8qkpUln6FeXhgbGQEAYmPfwNLCQuI+0TExUFVVhbWVlXhbpUqVxG2mpqayjWVs JP63ppYmACA9PaNIcZc0WeYFAIJDTuOXbb/i5atXSEtLAwA4OjjINEZERCQAoKNL93xtkVGRqFHd DgC/b0REREREREREREREpUVhiXOg4FK8AoEA/rPnIDEpCT/9uBJmpqb4M+Q0/r7+D9o4t1ZkCESE ki3VLhAovEtSEtuqVWFtZYVjJ06gQX17iftYWlggKysLUdHR4iTu69evxW0AoKWliYyMT0nw+Ph3 csUhEJSt1dSyzEtcfDxmBszC8sWL0KxpE+hoa2Pnnr04GRws0xhWVpZQUVHB2eCTMDQwKHA/ft+I iIiIiIiIiIiIiEqHQrMVBZXijYqOxrnzF/DD7NmoZmuLChUqoJ9bbybNiUpASZdqp/JDIBBglt9M HDh0GD+u/QmvXr9Geno6/n32DGt+XofgkBBUtLFBo4YNsWDJUrx9+xbRMTFYtGw5WrdsKV5tXqtm TRw8fBTv379HVFQ0Vq1ZK1ccZqYmePLkKbKyskriMOUmy7xkZGRAJBKhgp4e1NXUcPvuXQTt2i3z GFaWlmjXxhnfz/sBL1+9Qnp6Ou7dv48pvjOQmZlZgkdHRERERERERERERESSKDRxXlAp3sioKKio qKBSRRtFDkdEEuSUaAeYRCfpWrVogS0b1+PfZ88xbJQ72nTsjJkBs6Cnp4e2zs4AgCUL/wcdbW30 HTwUg4aPhLmZOf43b464j8kTvZGQmICOLq7wnjIVHb5pJ1cMo0cMx8XLV9CklTOGjXZX5OEVmbR5 sbaywpRJEzEzYBZatmuPZStXyX3cgfPmwrZKFXhNmox2nbti4dJl6OnqCg0NjZI5KCIiIiIiIiIi IiIiKpBCS7UXxNrKCkKhEK/DI1C5UsXSGJLoq6aoUu3rVv+Y5/1vu4KK1R+VTfb16mH1imUFtpua mGDx/wILbK9oY4OtGzfk2TagX1/xvz+/bjQ1NHDr72vi944ODji4b6+8YZc4afMycthQjBw2tMD2 oK1bCn2vq6ODqT6TMNVnksTP8/tGRERERERERERERFR6SuXBslaWlmjj3Bpz5s/Hs+cvkJycjD8O HsT5Cxcl7j838H8Y6+VdGqERlTtcZU5EREREREREREREREQkn1JJnAPAwh/moYZddYyfOAkuvdxw /8FDNGncqLSGJ/riCIVCPHj0GCFnzyHk7Dk8ePwYQqFQ6udYqp2IiIiIiIiIiIiIiIhIPkUu1S6t hPPnpXj19PTgP9MX/jN98/X1efnaubMCihoWUbnx6MlTPHv+XPz+2bPnEIiA2rVqSv2sokq1ExER EREREREREREREX0NSm3FORHJJyIiIt+2cAnbPsdV5kRERERERERERERERETyYeKcqIzKyMyUadvn WKqdiIiIiIiIiIiIiIiISD5MnBOVQyzVTkRERERERERERERERCS7Ij/jnIjKJgsLyyIlzKOiokog GipLeI4l47wQERERERERERERERET50TlTE6p9tx/ZWFlZVXCkRERERERERERERERERGVTSzVTlQO sVQ7ERERERERERERERERkexkWnHOMrZEX46ilmonIiIiIiIiIiIiIiIi+lrJlDj3+O19ScdB9NXz rqmYfopaqp2IlKd58+bw8PCAh4eHskNRKkdHR0yfPh3Dhg0rlfHOnj0LPz8/XL16tVTGK29cXFzg 7u6Ofv36KTsUIiIiIiIiIiIiomJjqXaicqi4pdq9vAp+CQR+Uj//9OlTDBkyBGZmZjAzM8PAgQMR ERGRbz+RSIS2bdtCIBDg5s2bBfaXlZUFX19fmJmZQVdXF25uboiJiRG3h4aGomvXrjAwMICNjQ28 vLyQlJQkc/vnxo0bB4FAkOe1atUqcbuhoWG+doFAgPDwcABAbGys+Pj19fXRtm1bXL9+vcDxvL29 xX2oqeW/n6m4xy+NrOcBAM6fP4/WrVtDR0cHDRo0wJkzZxTaLs940s6DtHmVZDwWSn3ZjK4jU19U 9vn5+cHPT/pvGknm5+eHgIAAiEQiZYdCREREREREREREVGxMnBOVMxYWlgrpZ926RIkv2T67Dv37 98eTJ0/wzz//IDk5GYMGDcq336pVq6CtrS21v4ULF2Lv3r0ICQnB06dPkZGRkae/wMBATJs2Da9f v0ZwcDDOnz+PiRMnytwuyYQJEyASicSvyZMni9sSEhLytHl5eaFNmzaoWLEigOyE7atXr/DPP/8g PDwcDg4O6N69O7KysiSOtXbtWohEIhw5cqREjl8aWc/D5cuX4eLiguHDhyMiIgIHDhzA/v37FdYu 73jSzoO0eS3IP6F/F/qiskneG0hu3LiBp0+fwsXFpRSjLFnS5kDazSby9ufs7IzMzEyEhISU+LER ERERERERERERlTQmzonKmZwS7YDikujyWr58Odzc3GBoaIjKlSvDw8Mj34rrR48eYc2aNVi5cqXU /tavXw9fX184ODjAysoKy5cvx7lz5/Do0SMAwKlTp9CpUyfo6+ujXr16GDNmDC5cuCD+vLT24khJ SUFQUBA8PT3F227fvo3BgwejcuXK0NfXh5eXF2JjYxEVFVWkMYp7/IWR5zwEBATA3d0dnp6eMDIy gp2dHdauXauwdnnHy03SeaCvi7w3kOzfvx8dOnSAurp6KUZZsqTNgbSbTeTtDwA6d+5c6A0wRERE RERERERERF8KuRPn5hE2Bb6ubwrBnJ42JREnEcmhuKXaFSkyMhLbtm1Dr169xNuysrIwcuRIrFix AkZGRoV+Pi4uDhEREWjSpIl4W506daCjo4Nbt25J/ExoaCgcHR0L7FNaOwBs374dWlpaqFy5Mry9 vZGYKHm1/a5du6ChoYG+ffuKt/Xt2xd79+5FeHg4kpKSsH79erRs2RI2NvL/PpbE8eeQ5zx8+PAB Fy9ehKmpKezt7aGrq4umTZsiNDRUIe3yjvc5SedBWRwdHREQEIB27dqhQoUK2LNnDxwdHeHv7w9n Z2fo6+vDyckJly5dUlj/ycnJ8PHxQZUqVWBoaAhXV1e8fPlSpv5Wr14NW1tb6OrqwtnZGWFhYeI2 af26urpCIBBARUUFtra2CAwMzFO2W1KsSUlJ8PHxga2tLYyMjODp6YmUlBTxZx49eoT27dtDX18f tWrVQnBwsEzHIe8NJFevXs33PZF2vI6Ojpg6dSqcnZ2hp6eHunXr4tq1a1i+fDkqVqwIAwMDjB07 FkKhUOY5Kmw+Cjs3xZ0DWW42kaU/JycnPiOeiIiIiIiIiIiIyoUirTg/fjxF4ouIlE9Zq8w/t23b NggEAtjY2ODFixdYvny5uG3RokWoWrUqevfuLbWfnLLABgYGebYbGhpKLMO8Zs0ahIaGYunSpRL7 k9YOZK/wTkpKQnJyMg4cOIBLly5hxIgREvfdsGEDRo8eDU1NTfE2Pz8/aGhooFKlSjAwMMDBgwex adMmCAQCqcf7OUUff27ynIfExER8/PgRmzZtwq+//oro6Gj06tULrq6uCA8PL3a7vON9TtJ5UKYt W7ZgwYIFSEhIEJfVX79+PebPn4/w8HAMHDgQLi4uePPmjUL6HzFiBJ48eYJz587h1atXqF27Ntzc 3PIkcCV5/Pgxpk+fjqCgIMTFxWHp0qXYvXu3uF1av0ePHoVIJMKHDx+wf/9+/Prrr3k+LynW4cOH IywsDMeOHcPz58/RqFEjnD17Vrz/9u3bsWjRIkRHR2PEiBEYPnx4kZ6hLe0GkoiICJiZmeXZJss8 HjhwAKtWrUJ0dDSaN2+OTp064dGjR7h9+zauX7+OI0eO4I8//hDvL22OCpoPaeemuHNQlJtNJPVn bm6OyMhIueIiIiIiIiIiIiIiKotYqp2onCkLpdoBYNSoURAKhYiMjETr1q3RqlUrpKam4v79+1i3 bh3WrFkjUz/6+voAkG/Fd0JCgrgtx5o1azB//nyEhITAzs4uX1/S2j+npqaGRo0aYdWqVThy5Aje v3+fp/369esICwvD2LFj82zv2LGjOJn0/v17+Pj4oFWrVkVKLiny+HOT9zzo6upCIBDg22+/RaNG jVChQgUEBARAS0sLZ86cKXa7vOPlVtB5UCZvb2+0bNkSqqqq4m3jxo1Du3btoK+vj5kzZ8LGxgYH Dhwodv/h4eE4cOAANm/eDFtbW+jr62PJkiX4999/ce/evUL7UVdXh4aGBvT19aGlpYXmzZuLb7qQ p19VVVU0bNgQEydOxOHDhwuM9dWrVzh8+DC2bt2KunXrwtDQEGPHjoWrq6t4fx8fHzRt2hQ6Ojri xxzI+92R5waSHLIe76RJk9CoUSPo6elhxIgRSE5OxsqVK2FsbIwaNWqgQ4cOEleGS5qjwuajsHOj iDmQ92aToswpERERERERERER0ZeEiXOicqislGoXCASwsrKCv78/Xr58iadPnyIsLAwREREwNzcX twNAw4YNMX369Hx9mJiYwMbGBn///bd424MHD5CamgoHBwfxtoULF2LBggU4e/YsGjZsmK8fae1F sW7dOnTo0AHVq1cXb3v79i2uXbuGiRMnwsrKCnp6epgyZQoyMzNx5coVucdQ1PF/Tt7zoK2tjVq1 auXZlvOcZBUVlWK3yztebpLOg7JVrlw537Zq1arley9p9by8/T9//hwAYGNjA4FAAIFAAFVVVSQl JeHFixeF9mNra4vdu3fD19cXjRs3hru7u/gRALL0u2/fPjg5OUFPTw8CgQA+Pj75jil3rC9evICq qmqhN3aYm5uL/62trQ0ASEtLkzIjn8h6A4m1tXWeFf+yzmPuVepaWlrQ0dGBrq5unm254y1sjgqb j8LOTVBQkDhGgUCAhIQEueZA3ptNCusvNjYW1tbWMvVDREREREREREREVJYxcU5Uzii7VHtWVhYG DBiAmzdvIj09HS9fvsScOXNgaWmJWrVqYdiwYeIEqEgkQlRUFADgxo0bWLZsmcQ+x40bh6VLl+LW rVuIjo7GtGnT0LZtW3FiNSAgAOvXr8f58+dRr169fJ+X1v45Nzc3hIWFITU1FTdu3MDUqVPh4uKC ChUqiPdJTEzEnj17MG7cuDyfNTU1RdWqVfHTTz8hJiYGKSkpWL16NT58+JAn0S2P4h6/JEU5D15e Xti0aRP++ecfJCcnY8GCBcjKykKHDh0U0i7veEDB50HZJJXlz0nM5nj27BkqVqxY7P6rVKkCFRUV vH37Ns85FYlE6NGjh9S+evTogZMnT+Kvv/5C+/bt0aZNG6SmpkrtNyYmBoMHD8bs2bMRFRUFoVCI lStX4uPHjwXGWrVqVWRlZeHff/8tFXhAyQAAIABJREFU0nFLI88NJM2bN8fNmzfF74s7j5JImyNp 81HQufn8+2toaCjXHMhzs4m0/sLCwtCsWTNZpoOIiIiIiIiIiIioTGPinKicUXapdlVVVQwfPhzj x4+HsbExWrRogaSkJJw9e7bIz5/28/PDgAED0KFDB1SrVg0aGhrYu3cvAIgTqq9evULNmjXFKzC1 tLRkapfEw8MDEyZMgJmZGdzc3NC6dWvs2LEjzz47duyAvr4+evXqle/zR44cQVxcHOrUqQMLCwts 374d+/btKzBJtXnzZggEAvTo0QNZWVniGN++fVvs41ekiRMnYvz48ejRowcsLCxw/PhxHD9+XLxa vbjt8o4HFH4epM1raVu/fj1CQ0Px/v17LFu2DOHh4XBzcyt2v5UrV0bPnj0xatQoPH78GKmpqfj7 77/h5uaGjIyMQj976tQp+Pv74+nTp/jw4QOysrKQlpYGoVAotd+c/QwMDKChoYGrV69i5cqVUmN1 dXWFu7s7Hjx4gMTERGzatAlHjx4t9jwU5QaZM2fOiJPYxZnHgkibo8Lmo7BzU5w5KOxmEw8PD3Ts 2FGu/k6dOoU+ffrIOiVEREREREREREREZZaasgMgIsVTTKn2RUX+ZI8ePWReoWlpaQmRSFToPqqq qli2bJnEldB6enqFfl5auyTdu3dH9+7dC93H29sb3t7eEtvs7e1x4sQJmcfz8PCAh4dHge3FOX5Z yXIeAGDWrFmYNWtWibXLu39h50HavEpyePR2ufaXx9ixYxEQEIBbt26hevXqOHbsWJ6y38Wxfft2 /PDDD+jWrRtiYmJgb28PPz8/qTertG3bFjdu3EC3bt0QERGBmjVr4rfffoOenp7UfqtWrYolS5Zg 8ODBePfuHZycnNCnTx+pjyQICgqCv78/unTpgpSUFPTv3x/Lly8v1vHn3EACADVr1hRv19TURHp6 usTPNGrUCHZ2djh+/Dh69uwp9XiLQpY5Kmg+1NXVCz03RZ2Dwm42kbe/ixcvQk1NLU+ynYiIiIiI iIiIiOhLJbBx6ibyWvIHvrVPlLhDSEgwdr1tLn5vHmGD48dTCujudxw5MhLzDkeUQKhE5Zt3zceo oG8kfn/s5J8S9+vetYv4361btcqXHLewsJQ5YR4Wdh3durli587tGDp0RBGiJiJZODo6Yvr06Rg2 bJiyQ6Fczpw5A39/f1y9elXZoXyRunfvjlGjRqF///7KDoWIiIiIiIiIiIgonxMnjsLJqbHU/X65 a4CfZ/TlinOi8ianVHvuv0RElF/79u2ZNC+GY8eOKTsEIiIiIiIiIiIiIoUp4jPOfy/gRURlgWJK tRNRaXvx4oX4Weyfv0aNGqX0/pSlvBwHEREREREREREREZVdcq84j7WJQOMxBT/LkmXaiZSLq8yJ yp6bN2/KtF/VqlUV8sz6kupPWcrLcRARERERERERERFR2VXEFedEVFbllGgHIP5LRERERERERERE RERERAVj4pyoHGKpdiIiIiIiIiIiIiIiIiLZMXFOVM5wlTkRERERERERERERERGRfJg4JypnWKqd iIiIiIiIiIiIiIiISD5qsux0zKdmScdB9NU7ceKxwvpiqXaiL0vz5s3h4eEBDw8PZYeiFI6Ojpg+ fTqGDRtWKuOdPXsWfn5+uHr1aqmMV964uLjA3d0d/fr1U3YoRERERERERERERArDFedE5Ux5XGUe GhqKrl27wsDAADY2NvDy8kJSUpLM7ePGjYNAIMjzWrVqVYHjRUVFYfDgwTAzM4OBgQFGjBgh13hZ WVnw9fWFmZkZdHV14ebmhpiYGKnHKRKJ0LZtWwgEAty8eVO83dDQMF/8AoEA4eHhMrUrirTjBoDz 58+jdevW0NHRQYMGDXDmzBlxm7e3tzg2NTXp921Jm0dZzmth8Uh0dLjU1+g2FjLMFpVlfn5+8PPz U3YYXyw/Pz8EBARAJBIpOxQiIiIiIiIiIiIihWHinKicKY+l2gMDAzFt2jS8fv0awcHBOH/+PCZO nChzOwBMmDABIpFI/Jo8eXKB4/Xr1w9JSUm4c+cO7t+/j4iICIwePVrm8RYuXIi9e/ciJCQET58+ RUZGBgYNGiT1OFetWgVtbe182xMSEvLE7uXlhTZt2qBixYoytSuKtOO+fPkyXFxcMHz4cERERODA gQPYv3+/uH3t2rUQiUQ4cuSITOPJMo+FnVdp8RQk9OrNQl8kXePGjbFt27ZSGUuWGzpyu3HjBp4+ fQoXF5dSia80SJsDeW+ukdafs7MzMjMzERISUuLHRkRERERERERERFRamDgnKofKW6n2U6dOoVOn TtDX10e9evUwZswYXLhwQeZ2eURGRuLy5csIDAyEpaUlbGxsEBgYiAMHDiAyMlKm8davXw9fX184 ODjAysoKy5cvx7lz5/Do0aMCx3306BHWrFmDlStXFhpfSkoKgoKC4OnpWaT24pB23AEBAXB3d4en pyeMjIxgZ2eHtWvXFnm8osxjboqOh8omWW6cyW3//v3o0KED1NXVSzHKkiVtDuS9uUaWOe3cubNM N6IQERERERERERERfSnkTpx7eX16CQQsc0pU1pSXVeaFCQ0NhaOjo1zt27dvh5aWFipXrgxvb28k JiZK/GxO6WGBQJBve+7y6QWNFxcXh4iICDRp0kTcXqdOHejo6ODWrVsSP5+VlYWRI0dixYoVMDIy KvC4AGDXrl3Q0NBA3759i9SuSLmP+8OHD7h48SJMTU1hb28PXV1dNG3aFKGhoUXqW9Z5LOi8Kjoe eTg6OiIgIADt2rVDhQoVsGfPHjg6OsLf3x/Ozs7Q19eHk5MTLl26pLD+k5OT4ePjgypVqsDQ0BCu rq54+fKlzP1NnToVzs7O0NPTQ926dXHt2jUsX74cFStWhIGBAcaOHQuhUCj+jKurKwQCAVRUVGBr a4vAwEDxd2fQoEH4559/MHr0aAgEAjRv3hwAkJSUBB8fH9ja2sLIyAienp5ISUkR9/no0SO0b98e +vr6qFWrFoKDg2WKX94bZ65evZrv90Ha/Cl6jqTNx+rVq2FrawtdXV04OzsjLCxMYXMgy801svTn 5OTEZ8QTEREREf2fvfuOj6pY/zj+3fReICSBUELoRUITqYKA0rvtKiAoehHBingFVCwXuTS58ruA XRALIqLSESlSpSSAgPQmhISakEbq/v7ArAlpm7rJ4fN+vY7Jzpmdec6cNezuc2YOAAAADKVQM87n zo3R3Lk5J50A2JYRl2rPbPbs2dq0aZOmTZtm9f558+bp+vXriouL09KlS7V161YNHTo0x+cHBQWp RYsWeu211xQZGamIiAi9/vrrMplMOS7/fGt/GXW8vb2z1PPx8cl1+egpU6YoODhY/fv3z/f4P/jg Aw0fPlzOzs6F2l9cbj3umJgYpaam6qOPPtL8+fMVGRmpfv36qXfv3oW617o145jXeS3ueArq008/ 1eTJkxUdHW1ZXn7evHl6++23de7cOT300EPq2bOnLl26VCztDx06VMeOHdPGjRt19uxZ1a9fXwMG DMiSyM3L0qVLNWvWLEVGRqp169a69957deTIEe3fv1+7d+/WsmXLtGTJEkv95cuXy2w2KyUlRd9/ /73mz5+vr7/+WpL0zTffqEWLFvrss89kNpstydUhQ4YoLCxMK1as0KlTp9SiRQtt2LDB0uaCBQs0 ZcoURUZGaujQoRoyZEih7qGd34U158+fV6VKlbKUWTN+xTlGeY3H0aNHNXbsWC1cuFBXrlzRtGnT sjyvqGNQmItrcmrP39/fsgoHAAAAAAAAABgBS7UDBmS0pdozzJ49W2+//bbWrVunWrVqFXi/g4OD WrRooVmzZmnZsmWKjY3NsZ/vvvtOJpNJ9evXV7NmzSwzR/38/PLtz8vLS5KyzWiPjo627Mvs0KFD mjt3rmbPnp3v8e/evVthYWF66qmnCrW/uOR03O7u7jKZTHriiSfUokULeXp6asKECXJxcdH69esL 3EdBxjGn81rc8RTU6NGj1bZtW9nb21vKRo4cqU6dOsnLy0uvvPKKgoKCtHTp0iK3f+7cOS1dulQf f/yxatasKS8vL02dOlUnTpzQwYMHrWrv2WefVYsWLeTh4aGhQ4cqLi5O7733nipUqKA6deqoS5cu Oc56tre3V7NmzTRmzBj99NNPubZ/9uxZ/fTTT/rss8/UsGFD+fj46KmnnlLv3r0tdZ577jm1atVK bm5uGjVqlC5evFjgxGx+F9bkxNrxK84xyms8HB0d5eTkJC8vL7m4uKh169YFOp78xqCgF9cUZkwB AAAAAAAAoDwicQ4YjBFnmUvSu+++q8mTJ2vDhg1q1qxZgfcXRHBwsH766SdFR0crKipKISEhcnFx UatWrfLtr2LFigoKCtKuXbssZX/88YcSEhIUGhqara+wsDCdP39e/v7+MplMqly5siSpWbNmGjt2 bJa6c+fOVZcuXVS7du0c485vf3HI7bhdXV1Vr169LHUz7qdsZ1fwf2oKOo63Ku54Cqp69erZykJC QrI9Luzs98ztnzp1StLN1RJMJpNMJpPs7e11/fp1nT592qr2Ms/AdnFxkZubm9zd3bOUJSYmWh4v XrxYzZs3l4eHh0wmk5577rk8j+X06dOyt7fP8YKWDP7+/pbfXV1dJSlLn/nJ78KZDFWqVMky09/a 8SvOMcprPGrWrKmvv/5aL7/8slq2bKnHH3/ccnuChQsXWmI0mUyKjo4u0BgU9OKavNq7ePGiqlSp YlU7AAAAAAAAAFAekDgHDMaIS7VPmDBB8+bN06+//qpGjRoVeP+AAQMUFhamhIQEhYeH68UXX1TP nj3l6emZY38zZ87U+vXrFRcXp/Xr12vMmDEaP368ZaZzfv2NHDlS06ZN0759+xQZGamXXnpJHTt2 zJbIlaTBgwdbErpms1kXLlyQJIWHh2v69OmWejExMfrmm280cuTIHGPOb39xyO+4R40apY8++kh7 9uxRXFycJk+erLS0NHXp0qVQ/eU3jvmd1+KOpyBMJlO2sowEbYaTJ0+qatWqRW6/Ro0asrOz0+XL l7O8lsxms/r06VOo9vMSFRWlf/zjH3r99dd14cIFpaen67333lNqaqqlzq0XJwQHBystLU0nTpwo 9nikgl0407p1a+3du9fyuCTGL78xym88+vTpo9WrV2vnzp3q3Lmz7r77biUkJGT7e+Hj41OgMSjI xTX5tRcWFqa77rrLmuEAAAAAAAAAgHKBxDlgQEZaqj0j4Xn27FnVrVvXMtPSxcXFqv2SNGLECD3z zDOqVKmSBgwYoPbt2+uLL77Itc9BgwZp+vTp8vf318iRI/XSSy9pwoQJVvf36quv6sEHH1SXLl0U EhIiJycnLVq0qEjj8MUXX8jLy0v9+vUr1P6isua4x4wZo6efflp9+vRRQECAVq5cqZUrV1pm0X/8 8ccymUzq06eP0tLSLG1cvnw5xz7zG8f8zmt+8ZS2efPmadOmTYqNjdX06dN17tw5DRgwoMjtVq9e XX379tWwYcN09OhRJSQkaNeuXRowYICSkpKKIfKsEhMTlZ6eLm9vbzk5OWnHjh167733stSpXLmy 9u/fb0kUV69eXb1799bjjz+uP/74QzExMfroo4+0fPnyIseT3wUdtxowYIDWr1+fJbbiHr/8xiiv 8fj55581fvx4HT9+XCkpKUpLS7O0V5QxyOvimhEjRqhr164Fau/nn3/WwIEDrR0SAAAAAAAAACjz HGwdAIDiFRAQaIiEeQYPDw+ZzeZC75ekXr16qVevXlb3WaNGDa1cubLQ/dnb22v69OlZZoxbKzAw MMf2R48erdGjR+f6vPz2F5U1xy1JEydO1MSJE3PcN2LECI0YMcLqPvMbR2vOa17x5GT41LVW1y2o p556ShMmTNC+fftUu3ZtrVixIsvy30WxYMECvfXWW+rRo4eioqLUuHFjvfrqq1bfx7oggoODNXXq VP3jH//QtWvX1Lx5cw0cOFDbt2+31Bk3bpxGjBih2bNnq0WLFtqxY4cWLlyo8ePHq1u3boqPj9cD DzygGTNmFCmWjAs6JKlu3bqWcmdnZ924cSPH57Ro0UK1atXSypUr1bdvX0nFP37WjFFu4+Ho6Kjw 8HD16NFD58+fV926dfXtt9/Kw8OjSGNg7cU11rS3ZcsWOTg4ZEm2AwAAAAAAAEB5Zwpq3sM8auoS PdE4JscK69at1aOPDrU8HjVKmjs3RtIUSZLZ/G5pxAkY3qpVy+Xp5Wt5vGL1mhzr9erezfJ7+3bt ckySZyTP80uih4XtVo8evfXllwuy/H8OoHg1bdpUY8eO1eDBg20dCiStX79e48eP144dO2wdSrnU q1cvDRs2TA888ICtQwEAAAAAAACAXK1atVzNm7fMt94nB7w1Z9ygos04J2kOlE1GWqodAIpb586d SZoXwYoVK2wdAgAAAAAAAAAUu0Le43xK8UYBoNgEBATaOgQAhXT69GnLvd9v3YYNG2bz9kpbeY8f AAAAAAAAAFB+FHjG+Zw50pw5zDQHyqrMS7Qb7X7nQHm1d+9eq+oFBwdbdS95axV3e6WtvMcPAAAA AAAAACg/CjnjHEBZxlLtAAAAAAAAAAAAgPVInAMGw1LtAAAAAAAAAAAAQMGQOAcMJmOJdokkOgAA AAAAAAAAAGANEueAAbFUOwAAAAAAAAAAAGA9EueAwTDLHAAAAAAAAAAAACgYEueAwbBUOwAAAAAA AAAAAFAwJM4BA2KpdgAAAAAAAAAAAMB6JM4Bg2GWOQAAAAAAAAAAAFAwJM4Bg2GpdgAAAAAAAAAA AKBgSJwDBsRS7QAAAAAAAAAAAID1SJwDBsMscwAAAAAAAAAAAKBgSJwDBsNS7QAAAAAAAAAAAEDB kDgHDIil2gEAAAAAAAAAAADrkTgHDIZZ5gAAAAAAAAAAAEDBkDgHDIal2gEAAAAAAAAAAICCIXEO GBBLtQMAAAAAAAAAAADWI3EOGAyzzAEAAAAAAAAAAICCIXEOGAxLtQMAAAAAAAAAAAAFQ+IcMCCW agcAAAAAAAAAAACsR+IcMBhmmQMAAAAAAAAAAAAFQ+IcMBiWagcAAAAAAAAAAAAKhsQ5YEAs1Q4A AAAAAAAAAABYj8Q5YDDMMgcAAAAAAAAAAAAKhsQ5YDAs1Q4AAAAAAAAAAAAUDIlzwIBYqh0AAAAA AAAAAACwHolzwGCYZQ4AAAAAAAAAAAAUDIlzwGBYqh0AAAAAAAAAAAAomAInzkeNurmZTK+WRDwA igFLtQMAAAAAAAAAAADWK9SM87lzY4o7DgDFhFnmAAAAAAAAAAAAQMEUcqn2KcUbBYBiU5il2h99 dGhJhgQAAAAAAAAAAACUaQ6FfaLZ/G5xxgGgGBVkqfZVq5aXdDgAAAAAAAAAAABAmVboxDmAsikg INDqe5s3b96yhKMBAAAAAAAAAAAAyr5CLtUOoKwq6FLtudWhnHLKKaeccsopp5xyyimnnHLKKaec csopp5xyyimnnHIjleeFxDlgQAVZqj23RDvllFNOOeWUU0455ZRTTjnllFNOOeWUU0455ZRTTjnl lJfX8oIyBTXvYR41dYmeaByTY4V169bq0UeHWh6PGiXNnfsq9zgHitmqVcvl6eVrebxi9Zoc6/Xq 3s3ye/t27bL9jx8QYP1S7TnJ7fmUU0455ZRTTjnllFNOOeWUU0455ZRTTjnllFNOOeWUU14ey/Py yQFvzRk3iBnngNFEReV8ZU1ubq2T8ceEcsopp5xyyimnnHLKKaeccsopp5xyyimnnHLKKaeccsqN UG4NZpwDZURxzTgHAAAAAAAAAAAAYJ2MGecOBX3inDnSnDkkzYGyKiDA+iUowsJ2l3A0AAAAAAAA AAAAgG00b97S6roFTpwDKNuioiItyXNrkug9evQupcgAAAAAAAAAAACA0rFq1fIC1SdxDhhQRrLc 2pnnX365oCTDAQAAAAAAAAAAAEpN5luRW4vEOWAwBVmqPbPExGQ9+eST2covXbokPz+/bOUHDhzQ yy+/rN9++03JycmqX7++XnvtNfXr189S55133tGcOXMUExOjpk2bavr06WrTpo3Vz8+wYcMG9evX T9u3b1ejRo0sbX/55ZfavXu33N3dC3y8AGzn0qVLuu+++xQeHm7rUAxtypQp2rlzp7766iu5uLjY OpxSYTKZSrwPs9mc5XFe/9YtW7ZMkydP1r59++Tj46P27dvrrbfeUv369bO1y791AACgtMycOVNm s1kvvfSSrUMBsti4caOWLFmipUuXatCgQbr//vvVoUMHW4dVakrz80xcXJw8PT2z7Xd2dtaNGzfy bScyMlKVK1dWeHi4mjZtKin/zz8rVqzQO++8o/3796tSpUrq16+fJk2aJF9f32zt366fj9auXatu 3bpZHr/88suaOnWqDSMCgLJh1arl8vTK/u9FXtq3a1eovkxBzXuYR01doicax+RYYd26tYXKyAMo mFv/x1+xek2O9Xp1//vNU/t27XJMklu7VHtY2G716NFbX365gP/PAZSqevXqKSwszLAfdm3p0qVL Gjx4sPr06aPRo0fbOhwAAACUMSTOUR4sWbJE3333nQ4dOqT7779fAwcOtCRQASNKS0tT06ZNdeDA AUmSn5+fjh07Jh8fHxtHBgC2V5TE+apVy626x/knB7w1Z9wg2RUqQgBlWkGXageA0lazZk2dOnXK 1mEYzqJFi3Tfffdp5syZJM0BAAAAlFuDBg3S119/rfXr18vf318vvviiunTpojlz5igqKsrW4QHF 7tNPP7UkzSVp0qRJJM0BwAZInAMGExAQaOsQACBfISEhOnHihK3DMJSRI0dq586dCg8PZyYGAAAA AEOoWLGi/vnPf2rNmjWaM2eOoqOj1bNnTz300ENatGiR0tLSbB0iUGSxsbGaOHGi5XH9+vX11FNP 2TAiALh9kTgHDCZjiXaJJDqAsqtWrVo6efKkrcMwhF27dqlu3brq3bu3ZsyYYetwAAAAAKBE1KtX T+PHj9eePXv07LPPaufOnQoJCdGoUaP0yy+/2Do8oND+85//6OLFi5bH06dPl6Ojow0jAoDbF4lz wIBYqh1AWcdS7cXjP//5jyZPnqy9e/eqd+/etg4HAAAAAEpFu3btNGPGDJ05c0bdu3fXggUL1LBh Q7322mvau3evrcMDrHb27NksF8F36dJFPXv2tGFEAHB7I3EOGAyzzAGUByEhIcw4L4IrV66oW7du cnNz09KlS+Xm5mbrkAAAAADAJvr27av58+drx44dCgkJ0cSJE3X33Xdr1qxZOnfunK3DA/I0ceJE 3bhxQ5JkMpk0Y8YMmUwmG0cFALcvEueAwbBUO4DygMR54S1evFidO3fWjBkzNGbMGFuHAwAAAABl gpeXl4YPH67ly5fr888/V2pqqu6//371799fCxcuVGJioq1DBLI4ePCgFi5caHn84IMPKjQ01IYR AQBInAMGxFLtAMo6Ly8vOTg46OrVq7YOpVwZNWqUtm3bpn379qlx48a2DgcAAAAAyqSQkBCNHTtW O3bs0IQJE3TgwAE1adJEI0aM0KpVq2wdHiBJ+te//iWz2SxJcnJy0tSpU20cEQCAxDlgMMwyB1Be MOvcert371b9+vXVvXt3vffee7YOBwAAAADKjTvvvFNTpkzRsWPHdP/99+v7779X7dq19corr2jX rl22Dg+3qZ9//lnLly+3PH766adVvXp1G0YEAJAkB1sHAKB4ZSzVnvknAJRFGYnzli1b2jqUMm3a tGnaunWrdu/eLQ8PD1uHAwAAAADlVvfu3dW9e3fduHFDS5Ys0eTJk3XhwgUNGjRIgwYNUkhIiK1D xG0gKSlJzz77rOWxj4+PXnvtNRtGBADIwIxzwIBYqh1AeRAaGqorV67YOowy6+rVq+rRo4ecnJz0 ww8/kDQHAAAAgGLi4uKiRx99VEuXLtV3330nJycnDRs2TL169dJnn32mmJgYW4cIA5s6daoOHz5s efzWW2+pYsWKNowIAJCBxDlgMCzVDqC8CA4O1pYtW2wdRpn03XffqVOnTpo6daqee+45W4cDAAAA AIZVtWpVPffcc/r11181efJknTx5Um3bttVjjz2mH3/80dbhwWAOHDigt99+2/K4adOmevrpp20Y EQAgMxLngMFkLNEukUQHULY1btxYBw4csHUYZc6oUaO0ZcsW7d+/X3fccYetwwEAAACA20ZoaKje fvttHTx4UEOHDtWaNWtUo0YNvfjii9q6dautw0M5l5ycrCFDhiglJUWSZGdnpw8//FAODtxRFwDK ChLngAGxVDuA8qBixYpycHBQVFSUrUMpE8LCwtSwYUN169ZNs2bNsnU4AAAAAHBb69Kli+bMmaOT J0+qdevWev/999W8eXP9+9//zrLMNpCbM2fOZHn8+uuva+/evZbHY8eO1Z133lnaYQEA8kDiHDAY ZpkDKE+YdX7TjBkzNGnSJO3YsUP9+vWzdTgAAAAAgL/Y29vrwQcf1KJFi7R69Wr5+vpq9OjRuu++ +zRv3jxdvnzZ1iGiDBo2bJjq1aunjz76SJL0yy+/aOrUqZb9jRs31ltvvWWr8AAAuSBxDhgMS7UD KE9u98T5tWvX1KtXL9nZ2emnn36Sl5eXrUMCAAAAAOTC399fo0aN0rp16zRr1ixdvnxZXbt21cMP P6zvvvvO1uGhDNm1a5eSkpI0btw49ezZU48++qjMZrMkycnJSV9++aWcnZ1tHCUA4FYkzgEDYql2 AOWF0RPnjRo1kre3d477vv/+e3Xo0EGTJ0/WCy+8UMqRAQAAAACKomHDhpo4caL27t2rZ555Rlu2 bFHVqlU1evRobdy40dbhwcaOHz8uSYqOjtaaNWuy3KZu+vTpatKkia1CAwDkgcQ5YDDMMgdQnhg5 cb5p0yZFREToxo0b6t+/f5YGNMlIAAAgAElEQVR9GV+kHDhwQKGhoTaKEAAAAABQHDp06KBZs2bp 3Llz6tq1qz7++GM1btxYkyZN0u+//27r8FDKTp48KScnJ8vj9PR0y++hoaEaPXq0LcICAFiBxDlg MCzVDqA8qVatmqKjoxUbG2vrUIrd888/r+joaCUnJ2vTpk368MMPFR4erkaNGqlr1656//33bR0i AAAAAKCY9e/fXwsXLtTmzZtVtWpVjRs3Tp06ddLs2bMVERFRoLZiYmJKKEqUpH379snOLufUy+nT pzVw4MBSjggAYC0S54ABsVQ7gPLEiLPON23apNOnT1seR0dH6/nnn9fYsWO1bdu2bDPQAQAAAADG 4uvrqxEjRmjVqlX6+OOPlZCQoH79+mnQoEH6+uuvlZSUlOfzH3jgAfn5+Sk8PLyUIkZxCQ8PV1xc XI77YmJitHLlSvn4+JRyVAAAa5A4BwyGWeYAyhsjJs4zZptnlpiYqH379uV6z3MAAAAAgDHVrl1b r7zyinbt2qVx48YpLCxMDRs21D//+U+tXbs2x+ds3LhRqampuueee7R48eJSjhhFsXXr1izLs9/K zc1NVapUKcWIAADWInEOGAxLtQMob+644w5D3fPt1tnmmcXGxjLbHAAAAABuY3fddZemTZumEydO qG/fvvrmm29Ur149jR8/Xnv27JEknTlzRjdu3JB0c4byyJEjNXnyZFuGjQLIbXKAj4+PQkNDtXTp Uh06dKiUowIAWIPEOWBALNUOoDwx2ozznGabZ8h8v3MAAAAAwO2tV69e+vTTTxUWFqb69evrrbfe Urt27fSvf/1LZrPZUu/q1auaNm2ahg8fbsNoYY34+Hhdu3YtS1nmhPnevXvVqVMn2wQHAMgXiXPA YJhlDqC8qVu3rk6ePKnU1FRbh1Jkec02zxAdHa1nn30233oAAAAAgNuDu7u7hg4dqh9//FFfffWV Dh06pPj4+Cx1oqOjtXjxYnXs2NFGUcIa+/btk7u7uyQS5gBQHpE4BwyGpdoBlEdGmXWe02xze3t7 eXt7y8PDQ05OTmrYsKEefvhhBQcH2yZIAAAAAECZVaNGDUVEROS4Lz4+Xjt27FBISEgpRwVr7d+/ X0lJSSTMAaCccrB1AACKH0u1AyhvMhLnTZs2tXUohbZp0yYdOXJEPj4+io+Pl6+vrxo3bqx27dqp WbNmCg0N5csNAAAAAECeMt/fPCfJyck6ffq0nJyclJycXIqRwRojR45U/fr1SZYDQDlF4hwwmICA QBLmAMqdRx99VFFRUbYOo0g6duyomTNnqkmTJgoNDbUszQYAAAAAgLU2btyolJQUeXp6yt7eXmlp abpx44bs7OxUoUIF+fv7q1q1agoKCrJ1qMgFSXMAKL9InAMGk7FUe+afgDVMJpOtQwCAcs1sNts6 BNyCf9uAvPF3CwCAklPU96JJSUnZyi5cuKALFy5o3759kqQPPvigSH0A5Q3vXwGUNBLngAGxVDsK a/qvvPkEgIL6eNJwHV7/ua3DQC7MiyfZOgSgzBk+4wt9vuOErcMAAMDw1u3kexagOLz+r+Haxudu AKWAxDlgMMwyR1Ft3/qrrUMAAKBYrd+8zdYhAAAA4Da1avV6W4cAAACsROIcMBiWakdxcHWyt3UI AFAuJCan2ToEWCkhOdXWIQBlgpsTXwMAAFDakpMSbB0CUG45ObvZOgQAtxE+MQMGxFLtKA5ODna2 DgEAyrTk1HRbh4ACSk7jnOH25mTP+zsAAGwlLTXZ1iEA5Y69g5OtQwBwmyFxDhgMs8xRnOzt+HLV GgnXr+jLCb005N3VcvHwKfH+fpzxhOq16af6bfvm+BjGVdqvtbzc7q+7tHQSsOVVajr3mbRGWrpZ 8zYf0c4zl+Xn4aIZA1vaOqQiM+IxFYSDncnWIQAAcNtLT2cVpNKQEB+tBXP+qWGjP5aLq2eedc3m dG1a86GOH94mL+9KenD4jCz7v184QQ2adFGDJp1LMmTkwM6O9BWA0sdfHsBgWKodxY3vWPOXMUZ2 ptIbr1v7Ks2+YTu2eK3lpazEUdrIu5Z/6ZzEfO08fVknLsfqfw/eJTcnB0OMmRGPyVp2t+MfawAA yqh0MxfhlrSMMU43p+c73mdO7FFkxFENHjlHTs5uirpwXD99PUlPvLDAUscsM+etlNmZmMwDwDZI nAMGxFLtKG4mE1+25iVjfEwmU+mNlemW83LrYxiSTV5recn0uvtp1tNq3PEBhTS7eRV+xLEwha+Z r6hTv8vR2VXBTTrqrv7PyMnF3ZYRF5nZfPsk2oyurJ7JKWt/1/7z17KUNQny1b/uu6NI7U74KUzd GgTp7joBVtU/fTVOtSp5ytXJodjGqqAxFHd75eGYSkIZ+NcCAADcqox+rli5ZIrOnd6fpaxqcBP1 HPQvG0VUSBnjazbnO9aXLpyQf2AtOTm5SmazKgXU1BPPz8/6PCvaQTEqC993ALhtkTgHDIZZ5igx vGfNnSnTz9Icp1v74hwZn61ea3kx3fL7X4/DVn+mpvcOkX/NRoq7FqV1H0/Qlm+nq/Njb9giyuLB 9yTGU0a//OreMEhDW4VkLSyWWK3/wi8hOVWOdnYlMEbF/aWjEY+pGPGlIwAAZVYZffegxs27q809 Q7OUldVYc2PO9DO/2JOS4mVv75hnPWvaQfHg3SsAWyNxDhgMS7WjRJXDTwmLJw9WjcbtFHlyvy6d /UMdH52gGo3ba+dPc3Vq/yYlJ8apcq1QtX9onDwrBEqSVs19UWcObJVMJnlWCFT9tn3Vottwy5fP CTGXtemryYo4Hi4PH381uvuBm5399UkqJSkx1/YPbFqsw9t+0v2vfmGJMfZKhL56Y5AeefN7eVas nG//Freej78eJ8Ze09bvZur84V2SSarWsI3aDXpBzu5eVu1fPHmwqjduqwvH9+rK+WPyrlRN7R98 SYEhofmOd17Hbs3Yxkdf0qavJuvCib03x7bDIG1ZPEPD/rNGLh4++baf0/mu3eLeQsUbH3NZ3707 WG0GPqe6rXpIkjYufEfXL59Xn2f/J5OdXb5jld/xLp48WMF3dFDkyX26ePYPuXn5qf2DY1WtwV1W vdYKey5K7HWYKa7eY2ZbiisEhqhBu/7av+Gbcvl3RBKf3o2srJ7bHOJafShCqw6e1/UbyQqu6KGh d9VSzYoekqQbKWn6Nuy0dp+5ooSUNNUL8NLw1rXl5+Gs2RsP69SVOM3bclTzthxV7Uqeeqt301y7 nrbuoML/vCpJ+uXIBfUPraYHmwfr+o0ULfjthA5EREuSQqv6akirWvJwvvmx8tUfw9S8WkUduXhd Jy/HytfVSY+1rqUmQb65xmDEYyozyuvfWwAAbiPl5a1oSsoN7dryrU4f363kpAQFBtVT+y7D5eHl p4S4a1ryxatq3Wmw6jRoL0natOZDxcZcVK8HxstkstOSBa+qWkhTRZ47rCuXzsjbJ1BtOw9TYFBd SdLqpdN09mS4JJM8vfxU745Oat66vyWSJQteVY1azRV5/oguRZ2Um7uv2nV+TFWDm0i6eU/zX9d+ pAvn/pC7R0U1anav5TjyGuO/+5X+2P+Lpdze3vHmrPNM45HRTl5jkZ/8jsOacahSvZEuRZ7Q5Yun 5eHpp07d/6nI80f0+55VSklOVEj9NurQ9QnL6nBFibe08fYVQFlA4hwwIJZqB7I6vH2Z7ntyigKC G8tkZ6c1H76itNRk9Xt+rpzdvbVn5Sda8+E4DXrlc5lMdurx9ExJkjk9XVfOH9PPn4yXV8Ug1bmz myTp508nyNXDV49M+l4pSfH6+ZOJWfpbP39Sru3XubO7tn//vi6fOyq/qjc/IB7esVxV6jaXZ8XK kpRv//n5+ZPxcnBy0f3jF8qcnqYNC97UL/PfUM9R71m1X5IObf5e3Z6aKr9q9XTw1yVa+b8X9I83 l8jVwzfPvvM6dqvG9pMJ8vD11yNvfq+UGwla99lrBWo/p/Nd2Hjdvf3UZdhbWvPRK6pUvYEunTmk Mwe26oHxC7O0m9dYWXMuj+xcqfuemKwKVWpp//qvtX7+G3rs3VWSyZTva62wx1Yar8NbRRwLs/QF oOAuXE/Ul7tO6rUeTVSzoofOXI3X9pOXLEnmuZuPKCUtXa/1aCIPF0d9v/esZq4/pH/3aaYxneor 8nqiujWoYtWS4i93baTPd5xQWrpZT7StbSn/74Y/5Oxgr3f7NVe62ay5m49qzq9HNO7eRpY6m49H 6bl7Gqiqr7tWHTyvOb8e0dx/tM4xBiMeEwAAgBFtWDVXaakp6vPga3J29VDY9u+19seZGjD433Lz 8FXnnqO19qeZqhRQUxcjT+rsyXANGvqu5XO6JP2xb53u7fuC/AJq6tDedVr9/X/08Ij35OLqpe4D XpYkmc3punLprNYt+6+8vP1Vu0E7y/OPHtqsrn2eU4WKVfV72CptWDVHQ56eK8mkdcvfl6urlx5+ YpZSkhP1y/LZtx5CjroPeFlbf/lc6elp6nDvE5KkS1En9dPXbxZqLKy5pVpex2HNOJw+tkv39n1e 3hUqa9v6+Vrx3WTVqt9W9z82RTcS47Rs0Vs6VeMOhdS9q1jiBYDbTd7fJgModwICAm0dAlDmNO74 gAJDmshkZ6f46Is6tW+jOj46QZ4Vq8jJxV2tB4zW9UvndO3CqSzPM9nZya9aPTXu9KBO/75ZknT9 8jldOL5XHR5+Ra6evvLyq6rW/Z+xPCe/9p3dPBXc5G4d2b785hPMZh3dsUL12/TJFndO/efn+uXz ijgWpg4PjZO7t588fAPU7oGXdPbgNiXEXM53f4aGHQaqSp3mcnJxV7P7hsrdp5JO7d2UZ99FHduY S+cUeXKf2j84Vq4evvLyC9JdfUcVuP3M57uo8Vat30qhnR/R6g/GavO309R1+Nty86qYpR1rxiqv c9mk00PyD24kBycXNbr7fiXGXlN8zOV8X2tFObaSeB32fX6u5f7mtzqw8VtFHA9Tm4FjrIofsA1T Gdmk1YfO65HPNlu23WevysFkJwc7O7k6OsjR3l61K3npkTtDJJl0NT5Zu85c0ZPt6qmSp6tcHR30 SMsQRV1P1LnoBEu7BY0j83Muxibpj8gYDW9TW75uzqro7qLH7qqlveeuKjohxfKc7o2CVKuSl5wd 7HVvgyq6fiNF1xKSc4zBiMdUNjYAAIDCOxC2Wh/OeMSyHf59g04f26WO9z0pT+9KcnJy1V13P6Lr 0VG6duWcJCmoRmM1adFLa36Yoa2/fKYuvUbLzd0nS7sNQruqSrWGcnJyVdNWfeTmUUGnju3OUsdk spOff7AaN+umMyfCsuxr3Ly7/ANrycHRWQ1D71ViwnXFx13T9egoRZ47rPZdH5erm5e8fALU6u6H S2Rs4mOv5jsW+cntODLLexy6yS+gphwdXVSnYQelJCepbachcnbxkLdvoKpUb6TLUaeKLV4AuN0w 4xwwGJZqR2kxl6MFlNwrBFjijbl8XpL0xfhe2epdvxIh3yohOhn2i8LXzld01J9KTU6UJAWGNJFZ ZsVduygHJ1e5ePpY2vT0C5J0c0ysab9em95a//kbaj1gtC6c2KukxDgFN+1kaS+v/jPL6XHctSjZ 2dnLo2KgZb9XpaqSpNhrUUpLScpzv6v3zaSwl19QlvY9/YIUFx2V53kv6tjGR1+Uo7OrnD28M41t lQKNrZT1fOfF2vYadBigsLXzFRDcWFXqtcjWdl5jZc25dPH0tTy2d3SSdHMptYToS3m+1op6Lkrq dXirAxsXa8+qT9R7zP/J85axKutMJKBuO2XljPdoGKShd9XKVv5sp/r6ctdJxd5IUY0KHureMEg1 KrjrUtwNSdIzi3Zke87luBuq7utueVzQY8yofzU+SfZ2Jvl7uFj2VfZytezzdbv598vbxcnyHGf7 mxcwpaSmZ0tbS5K/p4vhjsnWys9fWAAAkF3ZeEfRuHkPtc10j/PIc4clSQs/yH4hd2zMZVXwqy7p ZmI8fOePCqhcR1WqN85W18s7QJmP0cvHX/GxVyWZdPLoDu397UdFX7ug1JQkSVJgUL0s9V3dvC2P HRycJUlpqSmKj7smB0fnv/ZntJ0xsaggFxaacvn5dzuxMZck5T8WecntOKwdB5csz3eSg6OTHBz/ fj/r4OCk1L/aK454Sx7vYAGULSTOAQNiqXYgq8zJL88KgTKZ7DT0P6vk4u6drW5i7FWt++w13Tfi XQXVu1OOzq76feMiHd/9syTJ3ddfqcmJSoy9JlfPm8uWX/8rSWlN+5JUtUEr2Ts66cyBrTq1b6Nq t7hXDo7OVvWfH3dff6WnpynuaqQ8/rrvd8ylPyVJHr7+Sk1JynN/huuXI7K0G3v5vILv6JBn30Ud WzefSkpJStSNuGi5ePj8FUfBxlayPtlpTXtmc7o2LHhLNRq3U9SpAzq8fVm2Wdm5jVVxnMu8XmtF PbaSfB1mCF8zXwc2fqu+z8+Rb+WQAj0XQHbNq1VU82oVZTZLW09e1Jsr92ruw23k5+Eik0n68B9t 5OHsmONz7Yq4DGNFd2elpZt1OT5Jfu43/1ZEXk+07LNGTjEY8ZgAAACMxMPLTyaTSUOe/lAurh45 1jGbzdq4eq5qhDRXVMRRHTmwUfUad8pSJzbmYpbH16MvqkatFkpMiNEvy2fr3r4vKKh6Izk6uej3 Pat14sg2q+Jz96ig1JQkJSZcl6ub182+oi/m86zCsWYsCquo45CTkowXAIyKpdoBg2GpdpQ2s7ls b9LNa1czHrv7BqrGHR20YcHbio46q5SkG7p4+pDWfPCKUlNSlJKUJLPZLEcXD5nsHRV56oD2//KN 5Vg9KwYpMKSJtiyarsTYaMVcOq+dP86x7M+v/Zsx2alOq576feMindq7UXXb9LHEl1//lmO69RjN f8dXuXYzbV40XfHRlxV7NUpbF89UtYZt5Orll+/+jPYObf5eEUfDlZyYoH3rvlRc9EUFh3bKc6yL OrZeflUVUPMObfl2RhHGNuv5Lkq8ZrMUtuozxV2L0j1D31DnYW9p23fv6cr5E1nGPrexsvpc5nA+ ZcVrrajHVtyvw1u3nT/N06HNS9XnhXnyCQyx+d+Cgv7dwO3NZLLhJkk5lB+IuKZFYacUFZuoNHO6 0s1mJaelSzKrkoezWlavqLmbjyjyeqKS09J18kqsZq4/qNT0dJlMko+bk85ei1O62WxVHLeOQ4CX ixoEeuuz7ccUk5isqwlJmv/bCTWtWkG+7k6W59wae+Z2bo3BiMdkqw0AABiHyWSy3fbXpeiZyzy9 K6lGrZbatGaurkdHKi01WZejTmrtjzOVnp4qk8mk8N+WKj72ijr3fEZdej+rbRsW6NqVc5Y2JOnQ vnWKPPeHUlNuaP/uFYqPu6qQOq2Ulpois9ksZ2c32Ts46uKF4/o9bGWWsZCULa6/KsjbN1CBQfW0 df1nSkqMVez1S9q55Rurx/Lme72sY5Ct77/qWDMWefaVx3EUZhxkMmU7zsx1ihpvSW4AUFYx4xww GJZqB/J3z9A3tGfVJ1o15wUlXL+qClVC1PS+x2Tv4CjPipXVuv9o/fLZa0pKiJVf9Xqq2bSTok79 bnl+l8f/rV+/mqyvJw2Uu4+/Gt19vy6eOWRV+xnqtemtvWvny7dyiPxrNLSUW9N/fro8/o62L5ml 794dLEmq1qC12gx63ur9ktSgfX/tWjZXV84fk1elaurx9EzLLPCSHdt3tPnrd2+OrXcl1W/bVxfP HJLdX2NnzdgWRF7tRRzdo32/fKn+L30sBydXVanTXKFdh2jdJ+M18JXP5eDkmudYuXj4FMO5zPu1 Vthjy1BSr8OUpESFr/lckrTozQcs5fYOjnpiVu73SQeQuwaVfXTqapymrD2gq/FJquztqufvaSgX R3tJ0qi762vJ3jN6d+3viklMUTVfN/UPrS7Hv5YW73tHNX2w5ajW/LFFNSt66J0+zQocw3P3NNCC 307o5R/2yCQpNMg3xyXlc3NrDJN6NTXcMRUmBgAAgLKuc89R2rN9iVZ+964SEmJUwa+amt3VX/b2 joo4e1D7di3XgEfeloOjs6pUa6imrfro55/e06Ah71pWNmsQ2kU7tyzSlYtn5OUbqB4DX5GLm5dc JLXu+KjWLX9fSUnxquRfUzXrtFJUxFGr4+va5zltWvOhvvr4OXl4VlCjpt108cLxUh+LovD0rlTk cSjNeAHAqExBzXuYR01doicax+RYYd26tXr00aE57gNQfFatWi5PL1/L4xWr1+RYr1f3bpbf27dr V6TEeFjYbvXo0VtffrmA/88hk8mk6b+atX3rr3J1speTg53s7exk99dVtTJJmW87lHGf4swzT2EM 308ZoiZdHlXtO7vbOhT9eXCbNix4Q0P/U7AlwktLWRorFF2mi/1v/sy87P9ffwPNZrPSzVJaerqS U9OVmJymgz9/psPrP5eZP4RljslkknnxJK3fvE0JyalKTktXarpZ6el//StmNuvv0/z3Gc/xNQCU Qdnej2X6r8ySTDdfxXZ2JjnYmeRkbyc3Jwd9sfOEPt9xgr9bwG1q5syZMpvNeumll2wdCmBoJpNJ 63aatWr1eiUnJSgtNVnp6alKN6dL5pv/imd9t/n37OG/finliEvOd/PHKfTOPqrTMO9bwOE2YM54 /5ppyb1Mv91cgcskO5Od7OwcZO/gJCdnN23f+IW28bkbuG3dmj+zRvt27SzPbd68Zb71PzngrTnj BjHjHDAaZpnDlszizasRmHXzXNrifJ4MWyeTnb2qNrhLsZfP67cf/08hLe4ts68tW44VihcJUuTG QN9XwmD4zhAAAOMz1ucUk8GOBwXFdycAygMS54DBsFQ7bI0vcY0hp3s9x129oEWTBuZYv06rnrp7 8GtF7rdK3Tu1bfF0bfn6XTk4uSo4tJPu7DuqUK+r0ohXss19sUvr2G4XJEaRH6O9Ri7F3tCoRb/l uK9TnQA907F+KUdUdEY8przwfgsAgNuHMe4H/fe900tTbMwlLfxgVI776jXupM49nymXfZVHzBQH UF6QOAcMKCNZTtIctsKb4fKt/7j5krKfR3ffQD3+3225Pq84zruTm5c6PfZWsbRdGvHmNlYlrTSO 7XZhjC+hUBrsDPRaCfBy1ZInO9k6jGJlxGPKTTp/4wEAuO2YTHa2DqFIHho+wyb9evkEaNQrSwzX V3ljNqfbOgQAsBqJc8BgmGWOsiKd73QBlHF2xsmDopQYKXmO8omkOQAAty+TXflOnuP2ZE4naQ6g fCFxDhgMS7WjLGHWK4CyipnmKCxeObAV3lUBAADejaJ84R0sgPKHxDlgQCzVDgAAUIL4vhKlje8c AaDASuNCSS4Why3wVhTlAX8dAZRXrO8CGExAQKCtQwCyMbOxsbGVkQ0oLiY2tlLaAACF9YbeeMMs s7lktluNHj1aJpNJJpNJDg7Z5yodP35cjzzyiCpVqqRKlSrpoYce0vnz53ON/uLFi5b6Xl5e6tix o3bv3p2tntlsVseOHWUymbR3716r40E5ZzKxsZXdDQDKMRLngMFkLNEukURHGWPrbBkbGxsbUOxM bGwlvAEAyov/+7//k9ls1rJly3LcP3fuXD3wwAM6duyY9uzZo7i4OD388MO5tjd69GidPXtWe/bs 0blz5xQaGqpevXopLS0tS71Zs2bJ1dW1wPEAAAAgOy43BAyIpdpRVpG3AmArpJ9QUphQgZLC6r8A YCwzZsyw/O7j46MRI0bokUceybX+/v37NWbMGFWvXl2SNGrUKM2ePVsXLlxQ1apVJUlHjhzR7Nmz tWLFCjVs2LDQsUVERKhZs2aaMWOGBg8eLEl64okndPLkSa1bt0729vaFbhslqzRuSQBYi9tXADAC EueAwQQEBJIwR5nGm2gApY0vk1DSeIWhuPFuCQCMLSIiQp9//rn69euXa51BgwZp0aJF6tevn7y8 vDRv3jy1bdtWQUFBkqS0tDQ99thjmjlzpnx9fYsUT5UqVfTll19q4MCBatGihXbt2qUVK1Zo7969 JM3LBd6NoizgHSwAYyBxDhhMxlLtmX8CAAAAAADAtj7//HMNHz5cktSkSROtXLky17qvvvqqfvvt N1WrVk2SVKNGDa1cudJyUeiUKVMUHBys/v37KzKy6N/9dO3aVS+++KL69eunyMhI/fDDDwoM5BaA AADg9kLiHDAglmoHAAAofSxugKJiYR4AMLZhw4bpscceU2RkpN555x21a9dOhw4dkpubW7a6Xbt2 VUhIiCIiIuTp6amPPvpI7dq108GDBxUdHa25c+cqPDy8WOMbOXKk3n33XbVu3VqdO3cu1rZR8lhp C7bAypIAjMbO1gEAKF4BAVwNjPLDzMbGxlZCG2A7Jja2Qm4AgNuByWRS5cqVNX78eJ05c0bHjx/P Vufy5cv67bffNGbMGFWuXFkeHh564YUXlJycrO3btyssLEznz5+Xv7+/pT1JatasmcaOHVuouNLT 0/XYY4+pd+/eOnbsmD799NMiHScAAEB5ROIcMJiMJdolkugo+2z99TQbG5txN8B2bH3ZCFv53QAA xe3NNyfJZJpk6zCUlpamBx98UHv37tWNGzd05swZvfHGGwoMDFS9evWy1ffz81NwcLD+97//KSoq SvHx8Xr//feVkpKi0NBQDR48WGaz2bJduHBBkhQeHq7p06cXKsZ33nlHf/75pxYsWKCvvvpKzz// vA4cOFCk4wYAAChvWKodMCCWagcAACh9rFIIAEBZ8qblN5PpzTzqFY+PP/5YTz75ZKY+b17OeenS Jfn5+WnIkCF6+umntW/fPvn4+Kh9+/basGGDnJ2dc2xv2bJlevnll9WgQQMlJyerfv36Wrx4sWrX rl0s8WS2YcMGTZ8+Xdu3b5e7u7s6deqkcePG6YEHHtDu3bvl7u5eoLGAbbBkNgAARUfiHCijnJ2d lZSUlKXMxcUl3+cFBJ3l6LUAACAASURBVASSMAcAAAAAALe10k4ijhgxQiNGjMh1f58+fdSnTx+r 22vcuLFWrVplVd3AwMBsx5tfPJndc889un79epayiRMnauLEidYFCwAAYBAkzoEyKiioik6ePJWl rGqVyvk+L2Op9sw/gbIk4yp3AACMgrk9AAAAsB3ejQIAUFxInANlVL2/lt6KOB8hSQqqUkV1rFyO i6XaUVaRMgcAGA0rYgIAAMBWWJ4dAIDiReIcKKPs7OzUoG5dNahbt0DPY5Y5yiyy5gAAw+GLSgAA AAAAAKMgcQ4YDEu1oywiZw4AMBpS5gAAALAZZpoDAFAiSJwDBsRS7QAAACWI7ykBAABgI7wVBQCg 5JA4BwyGWeYoS0wm5poDAIyFLyoBAABgO7wbBQCgJJE4BwyGpdpRVtiRMwcAGEw6S2ICAADARszp 6bYOAQAAwyNxDhgQS7XD1phpDgAwGpLmAAAAsBWzmaQ5AAClgcQ5YDDMMoetkTMHABgNOXMAAADY ipk3owAAlBoS54DBsFQ7bMkksuZlwUdjWpd4H0/O3lHifQBAWWCr7ykf+nRTifex6PGOJd4HAAAA Cs9cSvc0/2DaQyXexz9fXlTifQAAUFQkzgEDYql22AIzzcuSN/TGG5M0aVLJtG4ymXI+32azlv13 lC4cD9egfy1Qxap1rdqfGHtN25e8p3OHdyotNVl+Veup9cBnVal6gxz7v37pnHav+FDnDu+UJFWp 20JtBj4vd59KljoXjodr109zdfnPI/KqVFVt739BVeq2LFR/F46FK3ztfF089bscnF0V3ORuter3 jJxc3K3an188AMqu0vqiMmcl/7c88/FFXk/U4rAz2h9xTZLUuLKPhtwVogpuzpY6f0TG6Js9p3Tq cpwCvVz1WOtaalTZR5L08bZjWnf4QpY+ht5VSz0bBeUaQ17tpZvN+mr3KW06FqXk1DQ1CfLViLZ1 5O3qVKj+8ju+/PY/vnCbEpJTs7U756G7VMHdOVs5AABAkZXyFZxvvJFzf2++OUlm86QitW0ymbIc T0x0pHZvWaxzZ/ZLkoKqN1abe4bI3aOCJGnLL5/qYPjav55rp6de+irP9s3mdP3261c6cmCTUlOT VbVGE9193wi5unlLkhLio7V9wwKdO/O70tNSFVy7pdp1fVxOTq6SpM0/f6xD+9ZlabPtPUN1R4ue OfaXX/384snv+G914c9DCv/tR0VFHJWjk4tq1G6pu+5+xBJ/YsJ1bVs/X+fO7FdaWqr8/IPVptMQ VQoMuXWk9NM3b+nCuT90/9ApqugfnOe4AsDtiMQ5YDDMMgdgK79v+Eb2jrknD3Lbv/Xb6UqIuaSB r3wuJ1dP7V42T6vnvqjB/14hk51dtvqHNi9RSLPOav/Qy0q+Ea8t30zVL59NVN8XPpAkRZ38Xavm vKg2A59Vt5EzlJRwXb+v/9qSqC5of2GrP1XovUPkH9xI8deitO7Tidq2eIY6DXndqv35xQMAZcHP hy+odU0/Pd62thKT0/TJtmN6f8NhTeoVKkk6evG6pqw9oCGtQjSua2PFJadoxYHzlkS3JN3XoIoe b1Pbqv7ya++HfX9q+8lLmti9ibxdHDVvy1H9d+Nhvd6jSaH6y+/48tv/6eC2Wdr7dPtx/XktnqQ5 AAAwlDffLJ1+Du39WSH1WqvDvY8rOSlRm9d9onXL3le/f0ySJLXv8rjad3lcZ06Eac0P0/NtL/y3 H3Ti8Hb1fnCiXN28tXH1PK1b9l/1eejm5/K1P86Us4u7Hhg2TWZzujas/J82rpqr+/q9aGmjUbP7 1L7L41YfQ17184snv+O/1Z4dS9W0VV/5V66t+OtX9PPyWdr6y2e6p8coSTcvNEiIu6ZBQ96Vk4u7 dm1ZpFXfT9GQp+fJZPr7e479e1bJwcHJ6mMEgNtR9m+HAZRrGUu0S7L8BEqSycRW1jZbnPeYi2d0 YNNitb3/+QLvvxpxXLVb3ifPCoFydnVXo473KzH2mhJjL+d4fG0GPaeaTTvJ2c1TnhUCVb9dX106 +4dl/65lc1W/bW817DBALu6e8q4UpPYPjS10f72fna1qDVrJ2dVdFaqEqEG7frpwfK/V+/OLh63s bYDZbPuttI9z8J0halndT26ODqro7qx76gbqxOVYy/5vdp9WpzqB6lKvstycHOTv4arhrWtni9na 48uvvXWHL6jPHVVV3ddd3q5OGnxniA5diNb56MRC9Zff8eW3P/N2IyVNm49HqUu9yjZ/nZTm6wUA AJQOs9lc6ltpH1frjoMVXLulHJ3c5O5ZUfUb36NLUSdyiMts1Zgc2rtOTe7sowp+1eXq5q02nQYr 4s9DunblvOJjryoq4qhatntQrm7ecnP3Vct2D+nUsV2Kj736d1/mgo19XvXziqcgx5+x9bp/vIKq N5ajo4t8KgapwR2ddeHcYcv+q5fOqlb9tnL3rChHRxc1DL1XiQnXFR97zVLn2pXzOhC2Wm3uGfLX mNrmtVaarzkAKAxmnAMGxFLtAEqTOT1dGxa8pbaDnpOzm2eB99dseo9OhK1TcOjdcnRx16HN3ysg 5A65e1fKVvdW8TGXdXTHCgU3uVuSlJ6WqsgT+1Slbgt9+84jir0SId/KIWozYIwq12lW5P6km0uz +926DH0u+62JBwDKmmsJydp0PEotq1eUJKWlm3XkYowaVvbWy0t361LcDVX1cdejd4aoQaC35Xmb j0dpw9FIebk4qkX1inqoebDcnLJ/5MyvvbikFF1NSFKI39//ZgT5uMnZwU5nr8apirdrgfrL7/gK un/ryYtysLdTqxp++fYFAACAvCXEXdORg5sUXKtwq7LdSIxTfNxV+WdaltynQpAcHJ119dJZBQTd /Hxu0q1XSZt1+dIZVffwlSQdPbRZh3/fIFc3L9Wo1UJ3tn9ITs5uufabW/384vGpUKXIxx9x7g9V 9K9heVyzTiudOLJdwbVaytHZVYf2rVNAlbpy97x5bGZzujaunqs2nYbIydk9t2YBACJxDhgOS7Wj tGT/wIHbSebzH752gTwrVlHN0E5KuH4lUw2TVfubdxum1R+8rIUT+kqSPCsEqueoWcq8nNitjuxY rg1fvC1JqhhU+2Z9mZSSGK/09DT9sfVHdf/nNPn4V9fvGxdp1dwX9fDr38rdx79Q/WU4sPFbRRwP 06Bxn+X4/8Ct+62JB0DZcbvNe7j1eH89FqV5W45Ikqr7umvcfY1llhSfnKq0dLPWH43US10aqbKX q1YfOq+p6w5o+oCWquDurCfa1tETbesoLd2ss9fi9eGWo5qz+Yhe6tIoW7/5tZeWfjMyV0eHLDG6 OTkoISVNZqlA/eV3fNbuz7Du8AV1rBMgB3u72+41AwAASpLR31lkPb6jB3/VxtXzJEkVKlVXj4Hj stXJ7bmZpSQnSJKcnF2z1HNydlNycoLcPXzlF1BTu7Yu0t33PSmZzdq97VtJJqUkJUgyq8O9T6jD vU8oPT1NVy+d1aa1H2rDqjnq1v+lHPvMq35+8WSUFez4/3YgfI0u/PmHBjz6tqV+07v66uIPx/Xl h89Ikjy8/NRj4CuWsdu780d5elVScO0WSoiPzjSmRn/NAUDBsVT7/7N33/FRVfn/x993kknvJCQh kNCkCAQExEJVQIpUURGSqFi+q7iurKi7qLvCriv8vipfyy6wFmpCEXsBVKS5gtJEkCJdWugkIaRO 5v7+QGYp6UxmksnruY9syJxz7/mcO5PrzXzmfC7gYSjVDsCVzqTv09ZvP1CXu4v/Y7Ksdkn67I3H 5B8crntf+kIPTl6hNrfco49ffVjnMk+WuE3zGwfokX9+r3tf+kIxTdrp41cfkq0gT96+/pJhqOXN gxQV30JWvwC17ztKXlZfHf5lfaXHk84nxTcsnq6Bj/9TIZH1y9VenngAVBdmNftyhUvH7HZNXaWN 6qopw29Q8+gQjf9ik/JtRfK1WmRIuuWaaDWqEyg/q0VD2jaQ1cuirekZl+zDyyI1qhOoe29orI0H Timv0HbFOGXtz9/n/J+puZdtm1Ngk7/VUuHxyppfedslU3tPntX+U9nq2SymxHHc/wUAAOAs46ts z81addP/jE1T8iNTFBPXXJ/MGy9bYX6F92P1OV+NqCA/95LHC/Jz5PNbW+9BY2QYht6b8ZQ+mDNO CY3byzAkP/9Lq+JZLF6KjG6km2+5V7/u2ajCgrxSxy6uf3niqez8f/7xS21c85Fuv+tZhYRFOx7/ YuFL8g8IUfIjUzTqD9PVpn1ffTLvBeVkn9GZU4e1bdNSde55X6n7BgCcR+Ic8ECUagfgKicO7tC5 jBOa9ae+mvbYDZo9rr8k6f2JKVrz4RtltudlZ+j4/q1q0+NuBYRGyurrr8RbR6ioqFDH9m0pfXDD UEBopNr3uV9nTx9V5olD8rb6KuyicmWSLty4SzKMSo/345eztPHLmRo4ZooiGzQvd3tZ8QBAdWNI Cgvw0eC28TqZna9jZ3Pl42VRbOilZSpNVf5UVtb+gnytigjw0Z6TZx3thzNylG+zKyEiqOIDXqS4 +VWkfemOI2pVL0zRIf4CAACoDUxzfBXu3VBAYJiuu2GwsrNOKivjWIX34OcfpMCgCB0/usfxWMbp w7IV5isi6vzf48EhUeoz5Cnd//t3lPLoNAWH1pWXt4+iYps4bSYViee/yj//TT98ok0/fKKBw59X ZN2Gjsfzcs/qePputbqujwICw2S1+qlNh/6y24t0LH2XTh7fp3PZpzV7yiN669WRSp02WpL0wZxx +n5lmjOnDgAegVLtgIehVDuqFHm+GmPChPGaMKEK/8D97bXQ7IZ+anZDP8fDOVmnNPvP/XXns3Mc 9/kuqz24Tqx+XvW+QiLjZPXz1/bvPpW9yKY69a+54jVn2u1aOv15Xdf3foVHN1TO2dPasOhdBYTU UVhMvGRIrbsP049fzlJCYleFRSdoy/L5Mu121W9xvfyCwyo0niSt/XSqdq5dosFP/luhdRtUuL20 ePidAqqBarxAt8rP5b/N3W6aenPlDg1JjFe9UH9l5hbqw58OKMzfR7HB/pIp9W4Rq0+3HFT7BnXO l1bffkR201Tr2DDJlCYv26ahbeNVLzRA6Vk5Sl27V+3qR8jP26vYY1zW/no2j9XnWw6pRd1Qhfpb lbZ2r1rGhCo2xL/C45U1P7u97PlLUk6BTWv2ndCjXZtX69cNAACoOarfJcX4Ktvzhbmapl3LPn9T 7W4YorCIesrNydTG7z9UQGCYQiJiLzkm5mXfS9KybU/9tO5zxdRvIf+AUK1ZkabY+i0V+tv+tmxY pDpRCYqKbaIT6Xv03bKZanfDYFl9/GVK+vqTybruxqEKi6inzDPpWrMiVfGN28nbx6/YscvqX1o8 9grM/4J1/1mg3du/04Dhf1VoeMwlfXz9gxUcEqWtm75ScFhdWa1+2rFluexFNkVEJSgkLFpNW3Zx 9M85l6G0aaN1R8pE1ambUA1fgwDgXiTOAQ9zoVT7xd8Bp+BKugaZ4PiXYUwopd9VKOn1cPFftcX1 Kaa93yOvas1Hb2r+3+5Wkc2m8JgE3fbQRIVG1r9iH4ZhUbNO/fTtvP+nU4d2yScgWLFN2mrQmCny 8vKRTKl197uVn5utxVPHqiA3W5H1m6n/Y/+ngJBIyazYeIX5udq4ZKYkad74Ox2Pe3n76OHXvy2z XSo7HgBuVK0rP7jgXP7b/C2Goa5No/Xumt06cDpbAb7eal43VM/3S5TV20uS1OfaOOUUFunlb7Yq t8CmhIgg/al3a4UF+EqSbmkWqxnf79HBM9kK9vNRx/g6GnZdQonHuKz9DW4br5zCIv3jyy0qsBWp TVy4/tC1uWN/FRmvPPMrq12S/rP3hPyt3uoQH1nNXzsAAKAmqG5XExMmFB+Rs65FL+zdMCy65tqu +s/Sd3X6xAH5+AYoJq65Btz9vLy9rJKkHVuWa9VXbzu2ffvVkZKke0f/+4ry6pJ03Q2DVZCfo0UL /yFbYYHqN2yjHn3/4Biz8TWd9O3S6Uo/uE2BwRFK7Hi7Wl/Xx7F9iza36LtvZuj0yYPy8w9Ww6Yd 1eGmYSU+R2X1Ly2e8sz/YoWFedr0wyeSpPemP+l43MvLqgfHzJIk9Rn6lH5YOVcLZzyloiKbwiLq qdfAMQq9qJz7Fc+Dqt9rEACqAyOufT9z9P9+oAdbZxbbYenSr5SUdK+LwwJqn8WLP1dwSHiFtunS ufNVJcY3blyvfv0GKC1tNr/nkGEYemWVqTXfrZK/j5d8vC3yslhk4SoaAC5hN6Uiu10FNrtyC4q0 9esZ2rFspkyTT0JUN4ZhyFw4Xsu+Xa2cApsKiuyy2U3Z7TxXqF0sFkPeFkM+XhYF+Hhrzto9mvn9 Hs5bQC01efJkmaapsWPHujsUwKMZhqGla00tXrJMBfk5KrIVyG63yW7a3R0aUO1ZDIssFm95efvI xzdAa1bM0Wr+7gZqrcrmzy5s2759xzL7v/tzqKY8M4wV54CnYZU5nI3cAgDA01j4VBgAAADcxGJY 3B0CAAAoQYUT56NHn/8+deo4meZEZ8cD4CpRqh3OVGTnU9AAAM/iTdIcAAAAbmKxsI4NAIDqrFL/ pZ46tfiy7gCqhwvJcpLmuBoFNpLmAADP4uPF6h4AAAC4h5e3j7tDAAAAZajkR9wmOTcKAE7DKnM4 Q25BkbtDAADAqQJ8WN0DAAAA9/DxDXB3CAAAoBwq/e4RZdqB6olS7bga74wf5e4QAABwqlGvznF3 CAAAAKil/vpn3mcBAKAmYdkF4IEo1Y7K2rFsprtDAADAqWZ+v8fdIQAAAKCWWs37LAAA1CgkzgEP wypzVJZpmu4OAQAAp+K/bdXH5MmTZZqmxo4d6+5QAAAAXMJZ16J2u12rV6/W/PnztXDhQh0/frzY fnXq1FF6erqsVqtTxgUAoDYicQ54GEq1AwAAAAAAADWXaZrasGGD5s+frwULFujQoUMl9o2IiNAd d9yhESNGyGKxuDBKAAA8D4lzwANRqh0AAAAAAACoWbZu3ar58+dr/vz52r17d4n9QkJCNHToUA0f Ply9evVilTkAAE5C4hzwMKwyBwAAAAAAAGqG/fv3a/78+Zo7d662bNlSYr+AgAANHjxY99xzj/r0 6SNfX18XRgkAQO1A4hzwMJRqBwAAAAAAAKqvY8eOaeHChZo3b55Wr15dYj9fX1/169dPI0aM0O23 367AwEAXRgkAQO1T4cT5lCnSlCkTqyIWAE5CqXYAAAAAAACg+sjMzNRHH32kefPmaenSpbLb7cX2 8/LyUq9evTRixAgNGTJEoaGhLo4UAIDaixXngIdhlTkAAAAAAADgfnl5eVq0aJHmzp2rzz//XPn5 +SX27dKli0aOHKk777xTUVFRLowSAABcQOIc8DCUagcAAAAAAADco6ioSMuXL9fcuXP1wQcfKCsr q8S+7dq108iRIzV8+HDFx8e7MEoAAFAcEueAB6JUOwAAAAAAAOAapmlq3bp1mjt3rubPn69jx46V 2Peaa67RiBEjNGLECLVo0cKFUQIAgLKQOAc8DKvMAQAAAAAAgKr3yy+/aO7cuZo7d652795dYr96 9epp+PDhSkpKUvv27WUYhgujBAAA5UXiHPAwlGoHAAAAAAAAqkZ6errmz5+vtLQ0bdiwocR+YWFh uvPOOzVy5Eh169ZNXl5eLowSAABUBolzwANRqh0AAAAAAABwjqysLH344YdKS0vTsmXLZLfbi+3n 5+engQMHauTIkerXr598fX1dHCkAALgaJM4BD8MqcwAAAAAAAODq5Ofna/HixUpLS9Nnn32m/Pz8 YvtZLBb17NlTSUlJGjp0qEJCQlwcKQAAcBYS54CHoVQ7AAAAAAAAUHF2u13ffvut0tLS9P777+vM mTMl9r3++uuVlJSk4cOHKyYmxoVRAgCAqkLiHPBAlGoHAAAAAAAAyufnn39Wamqq5s6dq4MHD5bY r2nTpkpKStLIkSPVrFkzF0YIAABcgcQ54GFYZQ4AAAAAAACU7tChQ5o3b55SU1O1efPmEvtFR0fr nnvuUVJSkjp27CjDMFwYJQAAcCUS54CHoVQ7AAAAAAAAcKXMzEx98MEHSk1N1YoVK2SaZrH9goKC dMcddygpKUm33nqrvL15Gx0AgNqA/+IDHohS7QAAAAAAAIBUUFCgJUuWKDU1VZ9++qny8/OL7eft 7a2+ffsqOTlZAwcOVEBAgIsjBQAA7kbiHPAwrDIHAAAAAABAbWaapr7//nulpqZqwYIFOnXqVIl9 b775ZiUlJenuu+9WZGSkC6MEAADVDYlzwMNQqh0AAAAAAAC10c6dO5WWlqbU1FTt3bu3xH7NmjVT cnKyRo4cqSZNmrgwQgAAUJ2ROAc8EKXaAQAAAAAAUBscP35cCxYsUGpqqtauXVtiv7p162rEiBFK Tk5Whw4dZBiGC6MEAAA1AYlzwMOwyhwAAAAAAACeLCcnR59++qnmzJmjL7/8UkVFRcX2CwgI0JAh Q5SSkqJevXrJ25u3wwEAQMm4UgA8DKXaAQAAAOdxxWo00zSrfAwAAGq6oqIirVixQnPmzNEHH3yg 7OzsYvtZLBb17t1bycnJGjJkiIKCglwcqetxvQIAgHNY3B0AAOejVDsAAADgLC/ohRdMmWbVfF0u LCxMhmFc8XXo0CFJ58vRjhw5UlFRUQoJCVH37t21fv16x/YrV65U3759FRoaqri4OI0ePVpZWVku O1oAADjbli1b9MwzzyghIUG9evXSrFmzik2ad+jQQf/3f/+nw4cPa8mSJUpOTq4VSfMLXnjBLPZL esHp1ytlXW/s3r3bcb0SFRWl4cOH6/Dhw5fsY9WqVerSpYsCAgKUmJioZcuWlTi39PR0jRgxQlFR UQoNDdW99957yXhFRUV6+umnFRUVpcDAQA0dOlTHjh1ztD/yyCNXXFu99tprV3G0AQCeisQ54GGi o2PcHQIAAACASsrIyLjkjerRo0erW7duql+/viTp97//vQ4cOKANGzbo0KFDatu2rW6//XZHidoX X3xRY8eO1cGDB/XVV19p1apVevzxx905JQAAKuzIkSN65ZVX1LZtWyUmJurll1++IvEqSQkJCXr2 2We1bds2rV+/XmPGjFFMTO19b2zChCu/qkJZ1xtTp07VXXfdpV27dmnDhg3Kzs7WPffc42hfvXq1 +vfvr5SUFB0+fFgfffSRPvzwwxLHu/POO5WVlaUtW7Zo27ZtOnz4sEaNGuVonzhxohYsWKClS5dq 9+7dys/Pv2Q8SXrssccuucYaM2aME48IAMBTkDgHPMyFEu0SSXQAAACgJjt37pxSU1P1u9/9zvHY 5s2bNWLECMXHxyskJESjR4/W8ePHlZ6eLkn6+uuv1bt3b4WEhKhVq1Z6+OGH9e233xa7/yNHjig6 OlqpqamOxx588EHdcsstJd4rFgCAqpKdna3Zs2erd+/eql+/vp5++mlt3rz5in6hoaF6+OGHtXLl Su3du1f/+Mc/1LJlSzdEXHuVdb3x6quvaujQoQoLC1N8fLweeuihSyrkPPfcc3rggQf0u9/9TuHh 4WrSpIn++c9/FjvWkSNHtHr1ar344ouKiYlRXFycXnzxRX300Uc6cuSIJGnatGl6+umn1bZtW8XG xurVV1/VihUr9Msvv1R4blwfAUDtRuIc8ECUagcAAABqvrlz58rHx0fDhg1zPDZs2DAtWLBAhw4d UlZWlqZNm6abb75ZcXFxxe5j5cqVateuXbFt9erVU1pamkaPHq3t27dr9uzZ+uKLLzRv3jx5eXlV yZwAALiYzWbT4sWLlZSUpOjoaN13331aunTpFeXBrVarBg8erPfff19Hjx7VW2+9pW7dusli4e3t 6qC0640jR45o5syZGjx4sCSpsLBQ//nPfxQZGanWrVsrMDBQnTp10sqVK4vd/sJr4fL7uJumqU2b NunUqVM6fPiwrr/+ekdby5YtFRAQoJ9++snx2OzZs+Xn56f4+Hj9/ve/V2ZmZrHjcX0EALWbt7sD AOBc0dExJMwBAAAAD/Dvf/9bo0aNkq+vr+OxcePG6YcfflCDBg0knS9Ru2jRoiveTJakN998UytX rtTatWtLHKNXr1568sknNXjwYB09elQff/xxrS5xCwCoeqZpauPGjZozZ47mzZun48ePl9j3pptu UkpKiu6++27VqVPHhVGivEq63pg5c6ajnHpiYqIWLVokScrMzJTNZtPbb7+tjz/+WM2aNdMbb7yh AQMGaPv27Y7b01wQFxenDh066C9/+Yvefvtt2e12/fWvf5VhGMrKynLc6zw0NPSS7cLCwhxt06ZN 07Rp02Sz2fTTTz/poYce0r333qtPPvmk2DlxfQQAtRcfyQM8DKXaAQAAgJpv/fr12rhxo/7nf/7n ksd79eqlunXr6siRIzp79qyeeOIJde7c2VGq9II333xTf//737V06VI1adKk1LEeeeQR/frrr7ru uut06623On0uAABI0q+//qqXXnpJ1157rTp27KjXX3+92KR5kyZNNH78eO3evVurV6/Wo48+StK8 0sZX6d5Lu964//77ZbfbdeTIEXXp0kWdO3dWTk6OAgMDZRiGHnzwQXXo0EHBwcF67rnn5Ofnp2XL lhU7zvvvvy/DMNSiRQtdd911GjBggAzDUGRkpEJCQiTpihXkGRkZjrYLvL291aFDB7322mv67LPP dPbs2RLnxvURANROJM4BD0SpdgAAAKBmmzp1qnr27KmmTZs6Hjt58qR++OEHPf7444qNjVVQUJD+ +Mc/qqCgQGvWrHH0mzhxol566SUtX75c1113Xanj2O123XfffRowYIB27dql6dOnV9mcAAC1T0ZG ht555x11795dDRs21HPPPacdO3Zc0a9OnTp67LHHtGbNGu3atUsvvPBCmR/8QvmY5vgq2W95rjcM w1BsbKyeffZZb8VwpwAAIABJREFU/frrr9q9e7f8/f3VvHnzy2I0ZZpmiaX3GzZsqE8//VQZGRk6 duyYGjduLD8/P3Xq1El16tRRXFyc1q1b5+i/fft25eTkqG3btpWaG9dHAFB7Uaod8DCUagcAAACc a8KE8ZowoereeL5cZmam5s+fr9mzZ1/yeGRkpBo2bKh//etfaty4sYKCgvTuu++qsLDQ8cbwc889 p9TUVK1atUrXXHNNmWO9+OKLOnjwoNatW6d169Zp0KBB6tSpk1q3bl0lcwMAeL6CggItWbJEc+bM 0Weffab8/Pxi+/n6+mrQoEFKSUlRnz595OPj4+JIPdF4l4xS2vVGUVGRRowYoWeffVYtWrTQsWPH 9Pe//10xMTGOhPno0aM1adIkDRw4UM2bN9frr7+uoqIi9ezZs9jxJk+erHbt2qlTp05au3atHn/8 cT377LOOFeWPPPKIXn75ZXXr1k3R0dEaO3asunfv7hhv6NCh+stf/qIWLVrol19+0ZNPPqn+/fsr ODi42PG4PgKA2ovEOeBhLpRqv/g7AAAAgMqa4PiXYUwopZ/zzJkzRyEhIRo8ePAVbZ999pmefvpp tWzZUgUFBWrRooUWLlyopk2bKjs7Wy+99JIkqVmzZo5tfH19lZeXd8W+li9frldeeUVr1qxRYGCg evTooWeeeUZ33XWX1q9fr8DAwKqbJADAo5imqR9++EFz5szRggULdOrUqRL79ujRQ8nJybrzzjuv uC81Km/CBKPYx519/VLW9YaXl5dSUlL06KOP6qefflJYWJi6dOmi5cuXy9fXV5L0+OOPKzMzUwMH DlRmZqbatWunRYsWKTY2ttgxhw0bpkcffVQrVqxQ/fr1NXbsWD3++OOO9nHjxikjI0M9e/ZUTk6O brvtNs2YMcPR/tBDD+mxxx7T5s2bFRUVpcGDB2v8+PHFjsX1EQDUbkZc+37m6P/9QA+2ziy2w9Kl Xykp6V4XhwXUPosXf67gkPAKbdOlc+erSoxv3Lhe/foNUFrabH7PAQAAUGUmT54s0zQ1duxYd4cC ALUe52Q40969e5WamqrU1FTt2rWrxH4tW7ZUSkqKkpKSFB8f78IIAQBATVfZ/NmFbdu371hm/3d/ DtWUZ4ZVfMX56NHnv0+dOk6mObGimwOoYqwyBwAAAAAAQFU5deqUFi5cqDlz5mj16tUl9ouOjtbI kSOVnJys6667ToZR/IpoAACA6qJSpdqnTi1+dToA96NUOwAAAAAAAJwpPz9fn3/+uVJTU/XFF1+o sLCw2H7+/v4aOnSoUlJS1KtXL3l7c6dQAABQc3DlAnigC8lykuYAAAAAAACoDNM09Z///Eepqal6 7733lJGRUWw/wzB06623KiUlRXfccYeCg4NdHCkAAIBzkDgHPAyrzAEAAAAAAFBZO3fu1Jw5c5Sa mqr9+/eX2C8xMVEpKSkaMWKE4uLiXBcgAABAFSFxDngYSrUDAAAAAACgIk6cOKH58+crNTVVa9eu LbFfvXr1lJSUpOTkZCUmJrowQgAAgKpXycT5JOdGAcCpKNUOAAAAAACA0uTm5urTTz9VamqqlixZ IpvNVmy/oKAgDRs2TCkpKerRo4e8vLxcHCkAAIBrVHrFuWlOdGYcAJyEVeYAAAAAAAAojt1u16pV qzRnzhy9//77ysrKKrafl5eXbrvtNiUnJ2vw4MEKDAx0caQAAACuR6l2wMNQqh0AAAAAAAAX27p1 q+bMmaO5c+fq4MGDJfbr0KGDkpOTNWLECEVHR7swQgAAAPcjcQ54IEq1AwAAAAAA1G7p6emaO3eu UlNTtWnTphL7xcfHO+5bfu2117owQgAAgOqFxDngYVhlDgAAAAAAUDtlZ2frww8/VGpqqr755hvZ 7fZi+4WEhOiuu+5SSkqKunbtKovF4uJIAQAAqp8KJ86nTJGmTOH+5kB1Ral2AAAAAACA2sNms+nr r79WamqqPv74Y+Xk5BTbz9vbW/3791dycrIGDBggf39/F0cKAABQvbHiHPBAlGoHAAAAAADwXKZp av369UpNTdX8+fN1/PjxEvveeOONSklJ0d13363IyEgXRgkAAFCzkDgHPAyrzAEAAAAAADzTvn37 lJaWptTUVP3yyy8l9mvatKmSk5OVnJysJk2auDBCAACAmovEOeBhKNUOAAAAd5swYcIlP69Zs0am aSo7O/uSx1944QVXhgUAtRLn5Jrv9OnTWrhwoebMmaPvvvuuxH6RkZEaPny4UlJS1KlTJxmG4cIo AQAAaj4S54AHolQ7AAAA3GXlypWaNGmS8vLyrmj76quvHP/28/NT9+7d1aNHDxdGBwC1C+fkmisv L0+ff/65UlNTtWjRIhUWFhbbz8/PT0OGDFFycrJuu+02Wa1WF0cKAADgOUicAx6GVeYAAABwp+7d u6tFixbatGlTqf2aN29OggYAqhjn5JrFbrdr5cqVSktL0/vvv6/MzMxi+xmGoVtvvVVJSUkaNmyY QkJCXBwpAACAZyJxDngYSrUDAADA3V577TUNGTJEGRkZxbaHhYXptddec3FUAFA7cU6u3kzT1ObN m5WWlqa5c+fq8OHDJfZNTExUSkqKRowYobi4OBdGCQAAUDuQOAc8EKXaAQAA4E7du3dXw4YNS1zh mJCQwMpGAHARzsnukZmZqdDQ0BLbDxw4oLlz5yotLU0///xzif0aNGigkSNHKikpSW3atKmKUAEA APAbi7sDAOBc0dEx7g4BAAAA0GuvvaawsLArHmdlIwC4Hudk1/rxxx8VGRmpO++885LHT58+rbfe ekvdu3dXQkKCxo0bV2zSPDQ0VA899JBWrFih/fv3a9KkSSTNAQAAXIAV54CHoVQ7AAAAqoOSVjiy shEAXI9zsussXLhQDz/8sGw2m1asWKHc3Fx9/vnnSktL06JFi1RYWFjsdj4+PhowYICSkpLUv39/ +fn5uThyAAAAkDgHPBCl2gEAAFAdXH5fXVY2AoD7cE6uei+99JJeeeUVZWZmSpKysrJUt25dZWdn l7hNjx49lJSUpGHDhik8PNxVoQIAAKAYJM4BD8MqcwAAAFQXl69wZGUjALgP5+SqNWrUKH388ceO DyZIUmFhYbErzNu0aaPk5GSNGDFCDRo0cGWYAAAAKAWJc8DDUKodAAAA1cmFFY4X/g0AcB/OyVWj e/fu2rBhg86dO1din/j4eI0cOVJJSUlq3bq1C6MDAABAeZE4BzwQpdoBAABQXXTv3l2RkZEyTZOV jQDgZpyTna9x48Y6dOhQifcu9/Pz01dffaXOnTvLYrG4ODoAAABUBIlzwMOwyhwAAADVza5du9wd AgDgN5yTncfHx0c2m02maZbYx9vbWw0aNCBpDgAAUANwxQZ4mAsl2iU5vgMAAAAAAMC5HnjgAd1+ ++1q166dYmNj5evrK6vVquDgYIWFhSk4OFg2m00rVqxwd6gAAAAoB1acAx6IUu0AAKA2MQzD3SEA HqW0lZPwHJw7gapzedn2UaNGadSoUW6Kpnic6wEAAK5E4hzwMJRqBwAAtZH5zTvuDgGo8Ub97Q3N XLnZ3WHAhf5M4gyodeaPGqX9M2e6OwwAAIBqicQ54GEulGq/+DsAAEBtsGz5cneHAAA1zvfLlrk7 BAAAAACoFkicAx6IUu0AAKC2yskvLLsTgCsE+FrdHQLcqCgnx90hAHABr4AAd4cA4DJpabPdHQIA VGtJSfe6dDwS54CHYZU5AACo7QpsRe4OAahRfLy93B0CqgF7QYG7QwBQhSw+Pu4OAUAJXJ0UAgCU jMQ54GEo1Q4AACDZ7HZ3h1Amu2nqrW9+1OqdhxQVEqhXk3te1f4ycvL0u7cX653/uV3B/qW/OV5k t2va0h+1dvcRRYYEXPXYNV1Fjp2n8bZY3B0CqhG7zebuEJzKtNu19623dHL1avlFRantq69e1f4K MzK0/ne/0/XvvCPv4OCrGnvLc88pumdP1b311quKqSba/Mwzih04UFFdu7pkvMuft9p47C3evAUM AABQHlw1AR6IUu0AAADnE9PV2Ya9R7Uz/bSmPNhXAT5W7T52RuMXrtLsxwZVan8X5ms3zTLnvnZP uvYcO6N/PdhHAT7Wan+sqtrlx+4v763Ura0a6pZWCW6OrGpZDMPdIaA6qgEfPCqvjA0bdHbnTnWc MkVeAQHK3r1bW8eP1w2zK1kW98KxsdvLPE7lGts0Pep4V4gr517c81abjj0fkAIAACg3EueAh2GV OQAAwH9V53zwnmNn1CQ6XP5Wq0xTahQVplmjB1U65gvbmWbZ895/IvOSsZ3huQUr1Cexsbq1jHfO Dl3o8mP3t7u6X/K4JyJnjtKYNejFv2PSJGVs3nzJY2GJiWrx5z/r7J49CmrSRBZ/f5mmqcBGjdRp 1qxKz+/CdqZplrmP8oxdnv14IlOSXDj34p632nLsDU72AAAAFULiHPAwlGoHAAC4XPV8Y/xcfoGs XhY5Pz6zzH3muHHs6q2mx19eJFLgWWL69lXDe6+8P2zRuXOyWK1uiMi9YwMAAACoHBLngAeiVDsA AED19vJn3+vH/cckSd/8vN/xuNXLolmjB0qSxs1bofaNovVL+mntPZ6h8AA/3de9jRLj60qSMs7l 6e1lm7T9yCnVCfJX7zaNKjX2kOub6e4bWyorN1+zV/2snw+ekCS1TairlK6tFeTnU2Y8by5Zr33H MzRt6Y+atvRHNY0J19/u6lZqHHmFNr23ZrvW701XTr5NzetFaFSPREUGB5Rr/rkFNi38frs27Duq c/mFuvGaOKV0aS1fq1eZcynr2P114Srdcm2Co1R7WbGczs7TO8s2aUf6+f31at1Qs1Zt0b8f6lfr 7pkOVBc7Xn5ZGT/+KEk69s03jsctVqs6zZolSdo8bpzC27fX2V9+0bm9e2UND1ej++5TaGKipPP3 xt7z9ts6u327fOrUUUzv3k4b+3JFeXk6+N57OrN+vWw5OQpu3lyNRo2Sb2RkmeOVNQ9HPIYh38hI 1e3RQ3FDhjhKT2weN06hrVope88endu/X76RkWryu9/p7C+/KH3xYhXl5qrOTTep8YMPOra5mngl KTc9XdtefLHS8TrzeStrLpvHjVN4u3Y6u3Onzu3bp8YPP6w6N91UrnkCAACgZiFxDngYVpkDAACU pPqssn164E2auXKziux2PXhLO0nS3uMZmvD+Kl0c57c7DuqJfp1Uv06IFv+4W1O+2qipD/WTIemN JesV4u+r1+7trdwCm95csu63rQyVNtfixpak1xevl6/VSxNH3CK7aWrq1xs05euNembgf5MDJcXz eN/rdTTzXIVKtU/9eqMKbXb95Y6uCvLz0Ydrd2jyF2v1j+E9HKVlS5v/lK82KDu/UM8MvEnhgX76 ftdhbTt8Utc1jClzLuU7dpcex7KeizrB/nrt3t7KK7DpzS/Xl+u5cL3asJoeOK/F009r38yZUlGR Gj34oCTp3N692jphwiX9Tn77ra554gkF1K+v9MWLtXvKFHWYOlUyDO184w1ZQ0LU7rXXVJSbq11v vunUsS+2Z+pU2QsLde1f/iLvoCAd+vBD7Zw8WW3+8Y9y3VuhtHm0ePppSZJptyvnwAHtev11+dat q8jOnR3bn163Ts3GjJFfbKz2z5ql7S+9pDo336zESZNky87W1r/9TafatFGdG26oFvE683krz1yO r1ypZmPGKKhpUxncMxwAAMBjcaUHeJgLJdolOb4DAACgZurbtomaRIfL19tLvRMbKys3X2ey83Qs 85x2HDmlB25pqxB/X0WHBuqem1tVepzjmee0/fBJjereVuGBfqoT5K/7uiVq0/5jyjiXV2Y8FXU6 O1fr9qTr4Z7XKSokQP4+3hrZuZWOZZ7TodNnyxzv5Nlcbdh3VI/0aq+4iGAF+Fp1a+uGuq5hTJlz qeyxK+252Jl+Svd3S1SIv6/qhgbqnpuvrfAxAVB5R5cs0fcjRzq+Tq9fX/ZGv4np2/f8vch9fRXd u7cKs7JUcOaM8o4d09kdO9TogQdkDQmRX3S04u+5p0riLzh9WqfXrVPjhx+Wb1SUvPz9lTBypPKO HVPOoUNXNY+LGRaLAhs2VEyfPjqzceOl2/fpo8BGjeTl56eorl1VlJ+vhikp8g4Kkl9MjEJbtdK5 ffuqT7xOet7KO5eY225TcLNmJM0BAEC1ZhiGW788QYVXnI8eXRVhABg40Hn7olQ7AABAyarbn3JG Cd8lKTTA1/Gzr/f5N+sLi4p0JjtXvlYvhfr7OvrGhAY6ti/vHC/0O52dKy+LobohAY622LBAR1t4 oF+p8Vw8XnnGPpGVI0l6bPqSK9pOZuUovk5IqeOdyc6TxTAUHRp4xXhlzaXAVlSuY3f5cSztufCz eivkopLs0SEVfy6qEuvM4QzV+Y2w2H79ir3HuaHzr39H7L99v/CzIckaGur42cv3/HnBLCxU4Zkz svj6yic01LE//5gYx/ZlHY+yxr54P/knzt9WYuNjj12xn4KTJxUYX3olj9LmYRiGTn3/vQ5/8oly 09Nlz8+XJAU3b17icbD4+Mji4yMvPz/HGBYfH8f+qlu8lXneKnLsDUm+kZHV+ndAkkyTsz0AAJD6 zGvr8j9ETbupr0Zudu2gVaRSpdqnTs10dhxAreesxDml2gEAADxfRJC/8guLlJWbr5DfEsDHs85V en91gvxVZDd18myuIoP9JUlHM8452srDUoGEQmRwgAzD0FsP9XPcd7wiokICZDdNHcs850h6X1DW XPJtRU49duFB/sortOlsboHjfuZXsz8A1YNPRITs+fkqzMqSNeT8h3nyjh+vkrF8IyMlw9D1b70l 76Agp+67MDNTu958U83++EeFtmolLz8/pS9ZopOrV1d6n9U53oo+b+WeSzVPmgMAAFzMy8/istx5 UYFdpt1Fg7kA9YUAD0OpdgAAgPIxDPd+Sb+tSL78sYv+fXmcF7aJCQtU89g6mrFys87m5etE1jnN X72t3PO6fOzosEC1jKujGSt/UmZOnk5n52rWqs1qlxCt8CC/MuMxDCks0FcHTmXKbppljh8V4q+O jWM0delGHc3MVkFRkfYeP6PJi36QzW4vc7yoEH+1bxSjfy/dqCNnziq3sFDLtu7Xj/uPljmX8hy7 CwOV57mIDQtUs9gIzVxVueeiql9jgNO5+4Vd4kmtnI9f/Fhxc/rtZ7+YGAU3b659M2ao8OxZ5Z04 oQPz55f/GFRgbN+oKEV07KjdU6cq7+hR2QsKlL13r36ZPFl2m638v+zFjGUvLJRpmvIKCJBhters 7t1KX7So3MehpsVbruetonOpzq/9i+MDAAC4iOFlyPCu2i9PzDJXasU5gOqNUu0AAADl5e43nI1i YjBKaDcueeyJftfrrW9+1BOzvlZEkL/6JDbW7mNnSthn2WM/0a+TZq/aoqfnLpMhQ20T6ureronl jmdQh2b699If9eVPn6pR3TC9eHePUkcf3bujPli7QxM/WaPMnDw1qBOiIR2by+rlVa7xft+no+av 3qaXPlmt/MIi3dg0Tl26xv92bEqfS/mPXTmfi76d9Nay8/sLD/TXra0StPvYGXl7eal8z0VVoGQv cLWaPfGE9rz1ln584gn5REQopk8fZe/eXSVjNR09Woc++EDbJ05UQWamAho0UNyQIbJYrVe1X9+o KCUkJWnXG2/Idu6cgho1UkSnTjq7c6fHxlvR562q5gIAAOB2JfxZ6IxbvFT329hUlhHXvp85+n8/ 0IOtiy+/vnTpV0pK+u99okaPplQ7UBUWLfpWwSHhFdqmS+fOVyTHK1KqfePG9erXb4DS0mZf8nsO AABQkxiGIfObd7Rs+XLl5BeqwFYkm90uu2nq/N+CF/4gNC76/wuLtAwWa8Hpftx/VG8uWa/pjwxw y/gXXvcX3gv571si//1dMIzz5fW9LRb5eHspwNeqOd9u0cyVm7lPbi1hGIb+bJr6ftkyFeXkyF5Q cH6Frd1e7Gvg8nt1c/IE3Mxxkjd/+1bC763FIou39/n71gcEaP+cOdo/cybneqCa4H1ZAM5kGIb6 zGsri4/rrtXNIlN22/l7nFfV9cXixZ9XKn92Ydv27TuW2f/dn0M15ZlhrDgHPM2FUu0XfwcAAEDp DLevPEdNtnrnIXlZDCXGR+t41jml/WerOjdv4JbXlclKc7iQp64yAao7kt4AAKBkpuwFXCtUFolz wANRqh0AAKDiPCX/cyIrR6OnLym2rce1CXrstg61IgZXSkyoq3eWbdK0pRvlZ/XWDU3rKalLa5e/ psijwC085eRZAfknTmjD6NHFttXt0UNNH3usRo7lDDUt3hqJkz0AACjFlyM2uzuEGo3EOeBhWGUO AABQeRYPSABFhwbqgz8Oq/UxuFKov6/G3n6DW2Owk0iBGxkWi7tDcCm/6Gh1/uADjxvLGWpavDWN abe7OwQAAFCNVbYqTZcuXfTdd99pxowZuv/++50bVA1D4hzwMJRqBwAAuDoWS81PnqN2sdtJmqMa qGXJc8DlSJoDAABUuUomzic5NwoAkjo7bU+UagcAALg6pM5RU5AyR3XCPc+BqsE9zQEAAFyjwonz KVOkKVMmVkUsQK22ePHnTtkPq8wBAAAAAAAAAACAiqFUO+BhKNUOAADgPKyeRHXF6kNUa5w7Aefg XA8AAFwgPz/f3SFUG9yACvBAlGoHAAAAAAAAAABAWfbs2SNJ2rVrl5sjcT9WnAMehlXmAAAAzsfi SVQXLD5EjcLJE6gcTvYAAMCFpk+frrfffltjxoxxdyhuR+Ic8DCUagcAAKgahkgAwb1MkUhBzcMt L4CK4VYcAACgsq722rtu3bpXtb0nXMeQOAc8EKXaAQAAAAAAAAAAapd5fwlw+ZimpJF/z3H5uFWB xDngYVhlDgAAULVYPAlX84AP7QOcPIGycLIHAADOYEh+VtcNV2CTiuyuG6+qkTgHPAyl2gEAAAAA AAAAAGonw5AsFslSxR9eLbJ73gf/LO4OAIDzUaodAAAAAAAAAAAAKD9WnAMehlXmAAAAVYtKqgBQ CZw8AQAAAJex2yW7uAavKBLngIehVDsAAAAAAAAAAEDtlFfg7ghqLhLngAeiVDsAAIDzmXxSGwAq zGSlOQAAAOAyI/6W4+4QajQS54CHYZU5AACA85H3AYBK4OQJAAAAuExlP7TapUsXfffdd5oxY4bu v/9+5wZVw1jcHQAA57pQol2S4zsAAAAAAAAAAACAkrHiHPBAlGoHAABwDkoMA0AlcO4EAAAAUAOx 4hzwMKwyBwAAAAAAAAAAACqGFeeAh7lQqv3i7wAAAKgY1koCQMVRpQMAAACoeex2u7tDqDZInAMe iFLtAAAAlWe3k/gBgArjzTYAAACgRtq5c+cl32szEueAh2GVOQAAQOXZWS0JABVmkjQHAAAAaqyH H35Yb7/9tkaMGOHuUNyOxDngYSjVDgAAUDnkzAGgEjh5AgAAANWWYRjl7puYmFjuvp56myYS54AH olQ7AABAxZjV7K7mw1//qMrHWPDE0CofA4Bnq+lvlq0ZPrzKx7hpwYIqHwMAAAAoTbcfujl1f6tu WOXU/VUnJM4BD8MqcwAAgIqpnnmfF/TCC+M1fnzV7N0wjEvmfTTjnBZ+v02bDx6XJLWuH6WUrm0U EeTv6LP98EnNX71N+05kKCY0UPd1T1Sr+lHlbr9YWeNlnMvT7G+3aMvB47IV2dWxcT090KOt/H3O /wmblZuvWSs3a/Nv7Q2jwpTStbUa1w0vdrwHpn2unILCKx6f8kBfRQT5a9vhk/pk/U7tTD8lP6u3 OjaO1cjOrR3jlbU9UCtVz5Nnhb3wQvHzmDBhvExz/FXt2zCMS45T3tGjOrhwoTI2b5YkhbZurYYp KfKJiJAkZW3bpsOffKKzO3fKy89P4R07KmHkSHn5l3GeMU1t/dvflLV9uxInTVJgw4aSpMKsLO2f NUsZmzfLtNkU2LChElJSFNS4cbnaL1dWfHvfeUfHli69ZJuG996r2P79z4dpt+vA3Lk6vnKl7AUF CktMVOOHHpI1NLRS4xVkZOjX2bOVsWWLTJtNER07qtEDDzjaKzo/AAAAT2U37bKZtqvejyFDVovV CRFVXyTOAQ9DqXYAAICK8IzET+X8d+5fb9mrG6+J0wO3tFVugU3vLt+kN5as0/g7u0qSdqaf1qRP Vyulaxs9M+hGZecV6Isf96hV/chytV+urPEmL/pBgb5WvZx0q+x26V9fbdDUrzfoyds7SZKmr/hJ Z7LzNPGeWxToa9WCNds06ZM1mvZQX1mKKUM3/ZHbL/15xU86eCpLEUF+kkx9tHaHBnW4Rk37Xa9T Z3P12pK1mrFyk0b37lCu7QHUbBMmuGaco19/rTo33qhGDzygotxc7Xv3Xe184w21/u1TUoc++khx gwYpqGlT5Z86pV2vvaZ9M2ao6ejRpe43ffFiWXx8rnh83/TpKjhzRokTJ8o7MFAHFizQjkmT1GHa NBkWS5ntlytPfDG33aZGDzxQbJyHP/5YJ9es0bXPPy9raKj2TJumna+/rlZ//Wux/csab+fkyfIO DFS7l1+Wabdr97/+pd1Tp6r5k0+Wa/4AAAC1SaG98KqS54ZhyN/i+R8c5yoR8ECUagcAACibaVbf L1fPP7lLa3VsHKsAH6vqBPnrlmsbas+xDEf7/NXb1OPaBPVs1VABPlbVDQnUqO6J5W6//Ku08U5n 52ln+mndfeO1CvX3U3ign4bf1FLr9hzR6ew8maZ04GSmbm4WpzpB/vKzeqt3m0bKys3Xmd/aS/vK KyjStzsOqmfrRo7Hnh3SWa0b1JWf1VtxEcG6tVVD7Th8qtzbV9cvoEq4+4Vd035JLhqvYXKyIjp2 lHdAgHzr1FHdW27RuT17HO3XPvusQlu3lpefnwLi4lT31luVtWNHqXPIPXxY6UuWqGFKyhVj5hw4 oMibb5aYWg++AAAgAElEQVRvnTry8vNTTO/eKszKUuGZM+Vqv/yrXPGV8ho5tnSp4gYOVGB8vHxC Q9UwOVlZ27Yp9/DhCo9XcPq0zu7cqQZ33y1raKh8wsPVYPhwnV63TgWnT1dqfjX2CwAAoALMSv6v tmDFOeBhWGUOAACAq3HmXJ5Wbv9VHRvHSJKK7Hb9kn5K19aP1NNp3+hEVo7q1wlRUudWahkXWWZ7 Rce7kAO4fN24KenXE5kKD/RTpyb1tGbXYXVsHCt/H6uWbtmvZrERCi9H2fTvdh6Ut5dFnZrUK7HP 9sMnlRBVfOng8mwPAGUpOHNGx1euVHjHjiX2ydq+XYEJCSW2m3a7dk+dqoYpKfIODLyiPaJTJ51a s0YRHTvKy99fx5YuVXCzZvIJDy9Xe1mKi+/Et9/q+PLl8g4JUUSHDoofPlxeAQGyZWer4PRpBV5U Jt0/Lk4WX1/lHDgg/3pln1MvGc/xH4vL/mthmjr366/yCQ+/6vkBAAB4GotRufXUdtMu44q/0j0T iXPAw1CqHQAAoHS153PSpbv8OKzafkDTlm6UJMVHhuiZgTfLlHQu36Yiu6llW3/V2NtvUGxYkJb8 tEf/+9n3eiW5p6xeXqW2l3QP8JLGCw/yU6O6YVrw/XY93LOdTFN67/vtMiTlFBTKlDSoYzPt/uIH PTbjS0lSZHCA/jTopmLndbmlP+9X95YJ8vayFNv3y5/2avvhU/r73d2LbS9re8BTmaxsrZTLj9uJ Vau0Z9o0SVJAfLxaPPNMscf26JdfKmv7drX++99LPPaHP/lEvlFRCu/QQYUZGY7xLvSvN2iQdu7e rQ2PPSZJ8o2MVIs//en8ucs0y2wvTXHxNXrwQTV68EGZRUXKOXBAe996S7umTFHzsWNly8mRJHn5 +18yH++AANlycsp8fV0+njU8XIGNGungggVq/PDDMk1TB997TzIMFf22v6uZHwAAgKfx9fJ1dwg1 AqXaAQ9EqXYAAABUVLeW8Up7fIimPNBXzWPraPz7q5RvK5Kv1UuGpFuuTVCjumHy8/HWkOuby+pt 0dZDJ8tsr+h4kjSmXycZhvTUnG80bt5ytW8UIxmGgv3P/6H/0sffKcTfV1Me6KvpjwxQ33ZN9ML7 q3TmXF6pc9x7PEP7j2eoZ+uGxbZ/+dNefbTuFz07pLOiQ69cvVnW9gBQlqhu3XRjWpo6TJmi4ObN tXX8eNnz8y/pc/TLL3X4o4/U8tln5RcdXex+cg8f1rGlS9XwvvtKHGv7Sy/JGhKiDlOm6Prp0xXT t6+2vvCCCs6cKVd7ScqKz/DyUmCjRkq4916d2bhRRXl58vI//yGqotzcS/racnIcbRUdr9mYMZJh aNNTT2nLuHEKb99ekuQdHHxV8wMAAPA0FsMib8PbKV+ezvNnCNQyrDIHAAAoCavLLnXl8TAkhQX6 anDHZvp6yz4dy8hWfGSIYsODfutvOrY0TckwTPl4W0ptL+24lzReVIi/nhpwg6Pfxn1H5eNlUZPo MJ3Nzdfuo2eU0rW1wgLPJ9L7t2ushWu2adfRU6WWUF+6Za9aNYhSdGjAFXF9sn6Xvvxpj56/o7Pq RwQXG3dp2wNAuRmGrGFhihs8WMe+/lp5x44pID5e0vlV5Ee//FLXPv+8/OvXL3EX5/btU8Hp09rw yCOXPL5l3DjF3n674gYNUvbu3UpISZE1LEySFNu/vw4uXKjsXbsU0rJlqe0RnToVO25547ucd1CQ fCIilL1nj4KaNpV0Pvlvz89XQCnl6EsbzzcqSs2fesrx85mNG2Xx8VFQkyaynT1bqfkBAAB4olU3 rHJ3CDVGhRPno0eX3j516jiZ5sTKxgPgKlGqHQAAwDNMmDBeEyZIpjm+Ssexm6beXLJeQzo2U72I YGXm5OnDtTsVFuD7W0Jc6t2mkT7dsEvtG8UoNjxISzbtld001bp+VLnaKzreoh/3KCEqVE2iw7Tn WIZmrtyiwR2byd/n/J+wUSEB+mrzPtUNCZSf1VvLt/0qm91UQmTx9yWXzpd5X7PzsB69rf0VbQvW bNd3vxzUX4d1VUzYlSvNy9oeQE03vspHMO127X7zTdUbMkT+9eqpMDNThz/8UNawMPnFxkqSDi5Y oJPffadWf/2r/GJiSt1fZJcuiuzSxfFzYUaGNowerTYTJzruA+4bFaVjX30lv7p15eXnp+PLl8u0 2RSQkCDv4OBS24tTVnw7J09W3NCh8q9XT7np6fo1NVVh7drJy89PkhTds6eOfP65Qlq0kDU0VL+m pSmkZUv5/zb/io6XvmiRAhMSFNikic7t2aP9M2cqbvBgxwr2is4PAADAE5XnlktdunTRd999pxkz Zuj++++v+qCqsUqtOJ86NdPZcQBwIkq1AwAAXMxwdwCVMMHxL8OYUEq/q3H+uFgMQ11bxOvdFZt1 4GSmAnytah5bR8/f0UVWLy9JUp+2TZRTYNPLn/+g3PxCJUSF6k+DblJYoH+52i9WnvE6Na2n6ct/ 0rbDJxUR5K/br2uqPm0bO/bx1IAbNfe7rXoq9RvZ7HbVCw/WmH7XKzo0qMTZ/mfHIfn7WNWhUT1d /JrIK7Tpk/U7JUlPzlnqeNzqZdGs0YPK3B5AzTZhQsm/z848/xoWiyK7dtW+d99VzoED8goIUEjz 5rr2+edlsVpVlJenw598Ikna9OSTju0sVqs6zZpVqTGbP/WUDsydq5+eekp2m03+9eqp2ZgxjnLn ZbVfrDzx1b3lFu2bMUM5Bw/KGhys8I4dVX/YMEffeoMHy5aTo23/+IfsBQUKbdNG1/zhD8XGXp7x Ijp10r7p05W1bZt8IiIUe/vtiunTp9zzBwAAAC5HqXbAw7DKHAAA4L+MGprfnPeHIS4dr0PjGHVo XPrqxjs6NdcdnZpXur0i40WFBOhPg28qsT0+MkR/LqW9OH3aNr4k+X6Bv493uY53SdsDnsioqSfP Crpp3jyXjhfRoYMiOnQots3b3/+q4vEJD79i+8D4eLX8859L3Kas9orGF96+veM+48UxvLzUMDlZ DZOTnTKeX1SUWv7pTyW2V2R+AAAAgETiHPA4lGoHAAA4z1JLEj8A4FQWi7sjAAAAAAC3IHEOeCBK tQMAgNrOm8QPAFSYxZu3iQAAAIDaZv/+/ZKkgwcPujeQasDJfxFNcu7uAFQYq8wBAEBt5+Pt5e4Q AKDGsfj4uDsEAAAAAG7QtGlTHTlyRB07dnR3KG7n9I8Sm+ZEZ+8SQAVQqh0AANRmAb5Wd4cAADWO V0CAu0MAAAAAUIWMctzOrn///mX2MU3TGeFUW9TgAjwQpdoBAEBtM+pvb7g7BACoceaPGuXuEAAA AAC4yNxXel/V9iOf+tpJkVRfJM4BD8MqcwAAUBvNXLnZ3SEAQI2zf+ZMd4cAAAAAwEUshiHDUvbK 8+IUFdmdHE31VMnEOfcyB6orSrUDAIDaxtPLhHmCyZMnyzRNjR071t2h4P+zd+dxNtb9H8ff15l9 xmwYM/Y1SylLpbrJ1npHKHUrQsgdonSL+ydklOS+W243EqVIpaT1blGSoqK7oix3RUhiFutsZj/n +v1xchizz5wz55zL6/l4XM25tu/3c11n5so5n+v7uYA/cO30T9u3b1eHDh1c80OGDNHLL7/sxYgA AADgT0KCA1SBqu1F5OXZPROMD6p04nzRImnRIp5jDvgySrUDAAAAAGA9Dz/8sOu1zWbTjBkzvBgN AAAA/FGAYUgVTJ47HOfWDbc2bwcAwL3i4xO8HQIAAAAAAHCz7du3680333TNDxkyRG3atPFiRAAA APBHDtOUw1H+pHMrZy6JZ5wDlkOpdgAAAAAArGfWrFmu1zabTdOnT/diNAAAAPBHBQXnxrPKq4rE OWBBlGoHAAAAAMA6tm/frrfeess1P2TIELVu3dqLEQEAAMDfOExTjsJz53nlVUHiHLAYRpkDAAAA AGAtiYmJrtc82xwAAABVMfiBT7wdgs/jGeeAxZwq0S7xvHMAAAAAAPzdDz/8oLfffts1f8cdd+i8 887zYkQAAADwN6Zpljp17dpVkrRs2bIytzNN6z/0nMQ5YEGUagcAAAAAwBrOfLZ5QEAAo80BAAAA DyFxDlgMo8wBAAAAALCG77//Xu+8845rfujQoWrVqpUXIwIAAACsi8Q5YDGUagcAAAAAwBrOfLZ5 QECApk2b5r1gAAAAAIsjcQ5YEKXaAQAAAADwb1u3btV//vMf1/ywYcMYbQ4AAAC3Mk1TJ06ckCTl 5OR4ORrvI3EOWAyjzAEAAAAA8H8zZ850vWa0OQAAADzBMAwdPXpUkpSRkeHlaLwv0NsBAHCvU6Xa z/wJAAAAAAD8xzfffKP333/fNT98+HC1bNnSixEBAADAqv73v/9p06ZN6tevn7dD8ToS54AFUaod AAAAAAD/deZo88DAQE2fPt2L0QAAAMDfGIbh8T5M0/R4HzWNxDlgMYwyBwAAAADAf23evFkfffSR a/7OO+9U8+bNvRgRAAAA/NHklVNl2DyQQDelf94+x/3t+gAS54DFUKodAAAAAAD/9dBDD7leBwUF MdocAAAAVWaz2RQY7L50sGmaKsgtcFt7vobEOWBBlGoHAAAAAMD/fPnll1q3bp1rftSoUWratKkX IwIAAIC/MwxDRoAhQ9UbfW7KlL3A7qaofJPN2wEAcK/4+ARvhwAAAAAAACrJNM0io8uDg4P14IMP ejEiAAAAWIbp/PdmdSZZ75HmxTDiHLAYSrUDAAAAAOB/1q9frw0bNrjmR48ercaNG3sxIgAAAFiB vdDao8TdicQ5YEGUagcAAAAAwH+Yplnk2eahoaGMNgcAAEC12e122e0kziuKxDlgMYwyBwAAAADA v3z88cfatGmTa37s2LFq0KCBFyMCAACAv3t88GPeDsHv8IxzwGJOlWiXeN45AAAAAAC+7uzR5uHh 4fq///s/L0YEAAAAf1eZZ5d37dpVkrRs2bLKPfPcghhxDlgQpdoBAAAA9zIMw+N9WPWLBwBle//9 9/Xtt9+65idMmKB69ep5MSLfxbUYAAAAnsSIc8BiGGUOAAAAeMJMzZxZ8TvvKzudbcOGDbr++usV HR2thg0baty4ccrIyHCtHzNmjAzDKDLNmzev1OjtdrsmT56suLg4RURE6KabblJqaqprfUxMTLH2 DMPQwYMHXdts3LhR3bp1U3h4uC666CKtX7/eTecWOHc5HA5Nnz7dNV+rVi1NnjzZixH5vpkzzRIn aabbr8Xjx493XQ8DA8sff1Tetfvw4cMaPHiw4uLiFBUVpR49eui7774r1o5pmurRo4cMw9APP/xQ an/Jycm6/fbbFRcXp+joaA0bNqxIfwAAAKgcEueAxVCqHQAAAPB/s2fP1qRJk/T7779r7dq12rhx oyZMmFBkm3vuuadIwmfixImltvfYY49p1apVWrdunfbs2aO8vDzddtttrvVpaWlF2ho3bpy6d++u Ro0aSZI2bdqkG264QUOHDtWhQ4f09ttv66233vLMwQPnkNWrV2v79u2u+fvvv1916tTxYkT+Ydas 4pMnLFy4UKZp6r333qvQ9uVdu8ePH68DBw5oy5YtOnjwoDp06KA+ffrIbrcXaWfevHkKCwsrt79b brlFGRkZ2rFjh3788UcdOnRII0aMqNxBAgAAwIXEOWBBlGoHAAAA/Nsnn3yia665RlFRUbrgggs0 evRoffHFF1Vub/HixZo8ebI6dOig+vXr68knn9Tnn3+uXbt2Fdv25MmTevnll3X33Xe7lk2bNk0j R47U3XffrdjYWLVs2VILFy4ssa+kpCTFx8fr5Zdfdi0bNWqUevXqVSw5BJzLCgsLNXPmTNd8bGys Jk2a5MWIUF3lXbu3b9+u22+/XU2aNFFUVJTGjRunw4cPKzk52bXNrl27tGDBAv3rX/8qs6+kpCRt 2rRJs2fPVkJCgho2bKjZs2fr7bffVlJSkseOEQAAWE9eXp63Q/AZJM4Bi2GUOQAAAGA9GzZsUMeO HYssW7FihUJDQ9WkSRONHz9e6enpJe577NgxHTp0SJdeeqlrWbt27RQeHq5t27YV237lypUKDg7W wIEDJUkFBQX68ssvVbduXbVv314RERHq0qWLNmzYUGJ/DRo00CuvvKJx48bpp59+0ooVK/TBBx/o 1VdfVUBAQFVPAWA5K1asKHLzypQpUxQdHe3FiOBuZ1+7Bw4cqFWrVungwYPKyMjQ4sWL9ac//UkN GzaU5HysxvDhw/XUU08pNja2zLZPlZY/+7nvpmmWWd4dAADgbHv37pUk/fLLL16OxPtInAMWQ6l2 AAAAwFoWLFigDRs26PHHH3ctW7x4sTIyMpSVlaW3335bX331lYYNG1bi/qeed3t2Qi4mJqbEZ+Eu WbJEI0aMUEhIiCQpPT1dhYWFeu655/Tiiy8qJSVF/fv3V9++fYs8A/1MV199tf72t7+pf//+Gj9+ vFauXKmEBD6fAKfk5eVp1hn1xePj44s9jgH+raRr99SpUxUcHKzGjRsrOjpa77zzjp577jlX8nvu 3Llq1qyZBgwYUG77DRs21MUXX6wZM2YoJSVFSUlJeuihh2QYBs85BwAAlbJ06VJdf/31uvfee70d iteROAcsiFLtAAAAgDUsWLBAjzzyiNatW6eWLVsWWx8YGKiLL75Y8+bN03vvvafMzMxi20RFRUlS sRHpaWlprnWnfPfdd9q6dav++te/upZFRETIMAyNGjVKF198sSIjIzVt2jSFhoZq/fr1pcY+ZswY /fbbb+rUqZN69+5dqeMGrO65557TgQMHXPPTpk1TRESEFyOCO5V27b766qtVr149JSUlKTMzU/fd d5+6du2qpKQk/fjjj3rmmWe0YMGCCvfzxhtvyDAMtW3bVp06dVLfvn1lGIbq1q3ricMCAAB+xDCM Ck8DBw7URx99pISEhErtd3blGysI9HYAANwrPj6BhDkAAABgAY899pjmz5+vzz77TBdccEGV26lT p44aNmyob7/9Vpdffrkk6aefflJ2drY6dOhQZNtnnnlGV111lVq1auVaFhYWpjZt2hTZzjRNmaYp m63k+/EdDoeGDx+uvn37avPmzXrhhRc0cuTIKh8DYCUnT57U7NmzXfONGzcucrMK/Ftp1+6jR4/q v//9r/71r3+pfv36kqT7779f06dP1+bNm5WTk6NDhw6pXr16Rdrr1KmTJk2apCeeeKJYX82aNdN/ /vMf1/x7772n0NBQdenSxUNHBwAA/MmrU0d5rG1T0uDHnvdY+97CiHPAYijVDgAAAHjGrFmJMozE Gulr2rRpWrx4sTZu3Fhi0vymm27S1q1blZ2dre+//15/+9vfdMMNNygyMrLE9saMGaPHH39c27Zt U0pKiiZNmqQePXoUSYinp6frtdde05gxY4rtP27cOD333HPasmWLsrKyNGfOHNntdl111VUl9jd7 9mz9/vvvWrFihVauXKmJEydq586dVTwbgLXMnz9fqamprvmZM2e6Ho2AikosYfK+sq7ddevWVbNm zfT0008rNTVVJ0+e1Pz581VQUKAOHTrojjvucN2UZJqmkpOTJUnff/99iUlzSXrqqae0fv16ZWVl af369ZowYYIefPBBVzWRxMREtW3b1rX9zp07ZRhGketx27ZtlZiY6OYzAQAAfIIhhQYHuX0KCLBu epkR54AFUaodAAAAcLfTzyI2jFllbFd9pxLTktS6dWvX8pCQEOXm5kqS7rrrLt1zzz3avn274uLi 1L9//zITH1OnTlVaWpquuuoqZWdn69prr9WyZcuKbPPSSy8pKipK/fv3L7b/hAkTlJ6erhtvvFHp 6enq2LGjPvzwQ9eoyTN99tlneuKJJ7R582ZFRESoZ8+emjJlim699VZ99913lKPGOe3EiRP65z// 6Zpv06aNhg8f7sWI/M+sWaWXBHX39Xnp0qUaPXr0Ge07+z5y5EixcugVuXa/9957mjx5stq1a6f8 /Hy1bdtWq1evLlLlozIGDhyosWPH6vPPP1ejRo00adIkTZgwoUptAQAAazIMyWazyeamsup2h0Oy u6Upn0TiHLAYSrUDAAAA7meaZo31VatWrXL769Onj/r06VPhNgMCAvTEE0+UOmpRksaPH6/x48eX un769OmaPn16uX316tVLGRkZVdoXsLp//OMfSktLc80/8sgjCgzk67mKqslrseS8Semuu+6q0LYV uXa3b99ea9asqVB7CQkJ5bbXtGlTffjhh6WuT0xMLHJTVfv27Yu1+fPPP1coHgAAgHMB/zIHLOZU qfYzfwIAAAAAAO9KSkrS/PnzXfOdOnXSwIEDvRgRAAAAzgUOh0MObwfhJ0icAxZEqXYAAAAAAHzL 7NmzlZOT45qfO3eubDbrPh8SAAAA3pebX+jtEPwKiXPAYhhlDgAAAACAb/nll1/03HPPueZ79uyp a665xosRAQAAwOpun/O8t0PwO9zWCljMqRLtklw/AQAAAACA90ybNk2FhadH+8yZM0eGYXgxIgAA AFiZaZoVnrp27SpJWrZsWaX2M03Ty0fpfiTOAQuiVDsAAAAAAL7hu+++0+rVq13zN910k6644gov RgQAAACgJCTOAYthlDkAAAAAAL7BNE1NmTLFNW+z2fToo496MSIAAAAApSFxDlgMpdoBAAAAAPAN a9as0WeffeaaHzlypNq1a+fFiAAAAACUhsQ5YEGUagcAAAAAwLvsdrv+7//+zzUfFhamxMRE7wUE AAAAlMDhcHg7BJ9B4hywGEaZAwAAAADgfS+//LJ27Njhmr///vvVsGFDL0YEAAAAFLd79+4iP89l JM4Bi6FUOwAAAAAA3pWdna1p06a55uvUqVPkWecAAACArxg5cqRq166tQYMGeTsUrwv0dgAA3I9S 7QAAAAAAeM+8efN06NAh1/yMGTMUHR3txYgAAABwrjEMo1Lbd+zYsVLbm6ZZqe39AYlzwGLi4xNI mAMAAAAA4CWHDx/W3LlzXfMtW7bU2LFjvRgRAAAAzlXdZvzXI+1++chlHmnX2yjVDlgMpdoBAAAA AKhZGzZscL1OTExUZmama/6xxx5TcHCwN8ICAADAOc5hmsordLh1st4489MYcQ5YEKXaAQAA4E2z Zs0qMr9582aZpqmsrKwiy2fOnFmTYQGAR0ycOFHPPvus2rRpo/vvv1/PPvusa90VV1yhW265xYvR AQAA4FxXYHfIbndPujs0OMAt7fgqEueAxVCqHQAAAN60YcMGzZ07V7m5ucXWrV271vU6NDRUPXr0 UM+ePWswOgBwv99++005OTn64YcfdNddd8lut7vWPfnkk5V+tiQAAADgbqak6j6S3HYO/LOWUu2A xVCqHQAAAN7Uo0cPtW3bttzt2rRpQ9IcgCUcOnTI9bqgoMD1OiYmRvn5+d4ICQAAACgiwGYoMKDq k2FItnMgc86Ic8CCKNUOAAAAb5o3b54GDBigtLS0EtfHxMRo3rx5NRwVAHjG4cOHS1yelpamAQMG qGHDhtq5c2cNRwUAAAA4hQZZu7y6OzHiHLAYRpkDAADA23r06KFmzZqVur5p06aMNgdgGSdOnCh1 3cmTJ3XgwIEajAYAAAA4zWYYCrS5d7LyuHNGnAMWc6pU+5k/AQAAgJpW2qhzRpsDsJqMjIwSl0dH R+vSSy/VJ598UsMRAQAAAE5fPnKZt0PwK4w4ByyIUu0AAADwttJGnTPaHICVpKamKiwsrNjymJgY TZkyhaQ5AAAAvMY0zQpNXbt2lSQtW7aswvuYpunlo/MMEueAxVCqHQAAAL5i3rx5iomJcc0z2hyA 1aSmpiooKMg1b7M5v2r78MMP9eCDD3orLAAAAABVQOIcsJhTJdolkugAAADwrrNHnTPaHIDVpKam yjCcT3kMDw9X69atZZqmrrjiCi9HBgAAAKCySJwDFkSpdgAAAPiKU6POGW0OwIpSUlJkt9sVGxur 22+/XT/99JO3QwIAAABQRYHeDgCAe8XHJ5AwBwAAgM/o0aOH6tatK9M0GW0OwHJSU1OVl5enJUuW aPDgwd4OBwAAAKi0/fv3S5IOHjzo3UB8ACPOAYuhVDsAAAB8zS+//KI9e/Z4OwwAcLsHHnhA+/bt I2kOAAAAv9WiRQsZhqFOnTp5OxSvY8Q5YEGUagcAAAAAoGY0atTI2yEAAAAAxRiGUant+/btW6nt TdOs1Pb+gMQ5YDGUagcAAJVV2Q9SAOCr/OGLG665QOX4w981AACAr/r7ytEeafcfg5/zSLveRuIc sJhTpdrP/AkAAFCedeZt3g4BAKpszoh1Wr/8qLfDqDAzvZW3QwB83oixe7V8JUlzAACAajEM2Wzu u3nXNCXT4XBbe76GxDlgQZRqBwAAVbFp/TZvhwAA54z1G/Z5OwQAAAAA54CAwAAFBNqq3Y4pKT+n oPoB+TAS54DFMMocAABUR162de8aBmBNIeHV/wLIW7KzvR0B4JvCw70dAQAAgLUYNqPaj42y263/ nRGJc8BiKNUOAACqqzDf+h+EAFhDYLD/Js1Pyc/3dgSAbwkO9nYEAAAA1mOakun8T5X2N9xY7t2X kTgHLIhS7QAAoLochd6OoPocdlMfLT6sX77JUlTdQI14sqm3Q0I5XpxyQJfeGKvzr4z0dijwAzYL faNRaPd2BGWz26XFy0x9852punWlJ2f7/w0LVjflIYdu/LOhK6/wry84AwO8HQEAAID1mA5ThXkW +KKnBljoYyYAiVLtAADAfUxH1e5C9hW/fJOllL25uvvpZgoJt/nl8bwy46Au6h2lC3tFeTuUGmHK eQd8Vd6rc+1cneusONrB4cPFPr7ZYmrvPlNPP2lTeJhvx1qaGY861PtKQ726W+93pzSmw7/eKxv3 YwAAALifKRUW+Piduj6ExDlgMZRqBwAA7lTFCl4+IXV/nhJahio4zOaW43h52u/qdF20Luhe/cRs RWPER2kAACAASURBVNsa/HAjSf77PlTpnFWxcpy/nytUXDUfy+fTfPX3d/8BqWULQ2Gh7olx2iMO XdfbUPeu1X8zK9rWww86s7K+eo7LU5Vz5rwZyXMxuZOV/64BAAC86R+Dn/V2CH6FezkBC6JUOwAA gJSf7VBAEN/EA0B1ZedIQQy9AAAAAPzK8ePHdcEFFzgru1VyysvLU9++fSVJcXFx+vXXX4ttY0V8 7AEshlHmAAAA0tuPJ2vf9yclSds/TddlA2LV7S91Ti83pKi6QbqwZ6QuH1Bb+iO/vvWjNG1Zk66c jELVaxaiXsPiFN88RO8vSFHqr3n6aPFhfbT4sOq3CnWNcC5NZdtaMfV3tegYrkO7c5X6a56uHV1P W9ek6cJep8uPr5j6u1p2jtChXTlK3ZeniNgA9R4ep2YXhUuSso4Xau3Swzr0c65q1QlUx6ujtf7F Ixq3pLnCIst+cOyKqb+ryQVhStmbq8P78xVZN1DX311Ph3blasuaNOXnONT2ilq6elQ918jAss5n aceZn+PQV6uPa8+Wk8o7aVeby2up59C6Cgpx3td9PLlAr88+VOLxlWXlQweLnKvyzkV55zI7w67P VhzVbzuzZUhq1iFcvYbWVWitANf5Ovv9atkpXF++flx7vstSXrZDDduE6aoRcYqqW/5H77LOS1V/ byWpINdR5ZgASXp8vqnvtzu/FPt0g6kBfQz95SbDtdwwpLp1pJ7dDA3oY7iuDx99amrNJ6YyMqRm TaVht9nUvKm0YImpX39zPjN98TJTrVqcHg1emsq2NXWWQx0vMrR7j6lf90ujhxtas85UrysN9brS GeDUWQ517mBo1x5p335TsdHS8MGGLrrAuf74CWnpClM//2KqTqx0dU9DL75qask8myJrlX3Ops5y 6IK2hvbuN7X/gFS3tnT3CJt27XEeR06udMWlhkYNPX2+yjqfpR1nTo60+h1TW7aZOpktXX6JoaGD DIU4//yVnCLNfsIs8fgAAABgbenp6brzzju1c+fOKu0fHBys119/Xb169dJ///tf9evXT998841C Q0PdHKlv4ZMyYDGUagcAAJBumlxfny4/IoddumZUXJHlkvO5r0cO5Om9f6coul6Q2nWN1InkAm14 5Zj+MqOh4puH6Mhvefp5c6bim4eo74QEpaVUvOx4VdvauSFD/SbWV/1WoTJs0tY1acXa/vGLDN14 X4LqNArR1jVpWrMoVWOfae5MVs9PUWSdQN01r6nycx16f0Fqpc7bL9+eVL+JCapdP0jrXzyqN+Yk qe2famn43MbKyXJo1cMH1fTCLLW+rFa557O04/xwUapys+y6eUp91YoN1K6vs/T7jzlq0Smi3OOr jIqci7L6eu/fKQoKMTTsscYyHdKaZ1L14aJU3TylgWv/s9+v//wrWYUFpv4yo6HCagVo81vH9e5T ybrj0cblliEu67xU9fdWcsZd1ZgASZp8r6Hlr0h2hzRqqFFkuWTI4ZAOHJT+vdihenFS18sMJadK r7xuasZkZ4L7t9+lzd+Yat7U0IS7DaUcNitcdryqbW340tTEcTa1au58dvaadcVHxHyxydR9Y21q 1NDQmk9MLVpq6pmnnMnq+UscqlPb0LzHbMrNlRY8W7mHhX/7vamJY22qnyC9uNLUnKcc+lMXQ3MT bcrKkh7+p0MXni9ddolR7vks7TgXPW8q66SpKffaFBsjff2dqR93mep0kVHu8QEAAMDaHn30UQ0a NKhabYSFhemNN97QpZdeqh07dmjKlCmaP3++myL0TZRqByyIUu0AAABlM2xSvWYh6nRdtPZudY5M twVKAYGGQsJsCgwyVL9VqHoMrlul9qvaVqdrY9SgtTMJW5rO18cooWWogkIMdbgmWtkZdmWdKFRa aoEO7c5V7zvjFBYVoOh6QbrytjqVirvzddGKbx6ioFCbzr8yUvl5DvX8Y5R1bEKQmlwQrtRf84rt V9L5LEnG0ULt3XJS14+JV52GwQoJt+mi3lGupHlZx1cZFT0XpfWVfrhAB3/K0dUj4lQrNlCRdQLV e3icfv0hWyfTTsdy5vuVebxQv3x7UteOrqfouCAFh9nUfXBdpaUW6NjB/DLjrch5kSr/e1udmICK stmkZk2k664ytPUH57LAACkwUAoLlYKCpFYtpMG3Vi1bW9W2ru1tqHVLZ3yluf5qQy2bSyHB0jW9 DGVkSifSpNTD0u490p2DDUVFSvXipNsGVi7+664y1LypFBoiXfknKS9PGjrIUK0IKSFeuqCdoV9/ K75fSeezJEePS1t+MDVmhE0NG0jh4VLv7oYraV7W8QEAAMDasrOz9c4772jw4MHVbqtRo0ZatWqV DMPQggUL9OWXX7ohQt/FiHPAYhhlDgAAPM7fRqqdEe/ur7P033dP6ERygQrynKMHG7YJlQwpul6Q +twbrw2vHFVOpl1xTUPU+fpoxTUNKbW90lS1rci6gcXbN4puFx4d4JoPDHG+KCwwlXWiUEGhNoVF nS7JHhMfWGIbpSnSdrChoGCbgkJPZ50Cgw0VFpiubco6nyUdZ8bRAhk2KSY+qNR4Sju+Cv3e/XGc FT0XZZ1LW4ChqHpBp/ev73ydebxQEbHOts58v9KPFEiSltyzv1hY6UcLVLdJcKlhl3deqvp7W52Y fIY1H5tXKT4xOviPGM6M5evvTL37gankVGdSWJLatJIMw1C9OOneuw298oapzExTTRsbuv5qQ00b F22zIsdW1bbq1im+zDjrGKKjTs+H/PHnUFDoTC6HhkhRkae3jY8zJDlLqVck7ujI09sFBxsKDjZ1 ZlXL4CCpoOD0NmWdz5KO8+gxZ5I9vl7p8ZR2fN7+nbLo4zABAAB8Qm5urgYNGqRbb73VbW12795d 9957r/79739r2LBh2rt3b9F/p1oIiXPAYijVDgAAULLsdLveX5CifvfXV5MLwhQcatOWj9K0a1OW a5uWnSPUsnOETFP6+atMvTbrkMY801xBIUaZo8BLUpW2qvO5s1ZsoApyHcrJtLueZ552uHIjtSuj Iufz7OOMiguS6XCOCI9JCJKnVPdcRNYJlMNuKuNooetZ4GkpBa51p5z5fkXVDZJhSGOfba6wWmU/ T/5sZZ2X6vzeVicmoCzpGc7nbt8/ztAF7QyFhkgfrTO16ZvTGdHOHQx17iCZpqGvvjY16x8OPfOU TSHBZY8CL0lV2qrO13ixsVJunpSZJdfzzA8f8Vy2tyLn8+zjjKsrORxS6hEpoZ7HQgMAAICf+eKL L/Txxx/LVtl/dJdj5syZWrhwoX799Vdt27ZNHTt2dGv7voJS7YAFUaodAADUBMMwfHuS8cfIQOd8 YYEp05RCwgMUGGRT8p48bf0wzXUsB3bm6MtVx5WeWijT7nyedGG++ccIRUMRMYE6ciBfpqP8Y69K W3+c1SLtOJdUYBvDUGz9YDVoHar1y48qJ9OhjCOF+vK1YxV+r8pqu+g2qtD5LOk4o+OC1LJzhD5e cljHkwqUn2Nqx/oM7fs+u8IxlBX/qXNVkXNRVl8x8cFq1C5M65cdUXa6XVnH7frsxSNq3jFCtWKD Stw/Oi5ILS+ppY+fOay0lAIV5kup+/L07lMpchSWfQxlnZfq/N5WJyZvTyjOMLw3nd1/QYFz1HB4 uLN8+p5fpQ8/MV3b7fzR1Kq3TKUecT4b3WFK+fmn24mJNnTgoHN5eX1XpS3nyuLHoDLmzzzO+vFS 65bS8pWmMrOkI0el1948fXwVOV9F2i7hPTxzm/LOZ0nHGVfHeUPBkmUOJaVIObnS+o2mvt9ulnt8 3vw9AgAAgGe1adNGf//73/Xuu++6td3Y2Fh98MEHuummm9ShQwe3tu1LGHEOWAyjzAEAAEoWHRek HkPq6v35yco76VC95iE6r0stJe3OlSQ1ahem1F/z9MbcQ8o6XqjY+sHqNzHBVaq8S79YfbzksL7/ eK/im4doyOzGpfblzrYq48b76mvts6laet9+1YoN1IW9o5S8J1cBge7PWJR3PqWSj/OG8Qn64rWj emPOIRXkmWpzeS317BZZRk9VU91zceN99fXZiiNaPvmADENq1iFcvYbFlbnPDePitfnN43rjsSRl p9tVt3GwLhtQWwFB5fdZ2nkJCrFV6/e2OjEBpYmrKw251dD8xaZOZptq3lTq0tnQ7r3OZG+7NoZ+ PWBq7lMOHU9zJqInjnWOpJakfn82tGS5Qx+vM9W8mTR7eunjOtzZVmXcN9amZ180dd/fHYqNlXpf aWjPr6YCPVC8obzzKZV8nOP/aui1N6U5TzqUlyddfqmhbpfztw0AAGBVlbnJePbs2RXazjRP3bBZ 8barM5rd9PHn9hgNO//ZHPfPNzWqfXqJG6xbt1ZDhgyr4bCAc8+aNe8rMiq2Uvt069q1xCR5RUu1 b936nf7857565ZUV/J0DAHAOMwxD68zbtGn9NuVlO1SY75CjUDIdZsnPITVO7+f8WXOxonL2fX9S HyxI0YQXWno7FK/jXPiHU9cc15cpJVyDDEMybIZsgVJgsE0h4TZ9/tIRrV9+1Oe/hJGc104zvZXW b9in7Gzn6OlCu7PsdknhnzlS+MyfqFnfbze14FlTLyykeGNlnf67LvrzTIbhLEcfGCAFBztH37/0 mqnlK02/+LsGgKrie1kAlWEYhiZNXCmjss+SK4FpOvTkvMFFEud3vDaz2u2W3p+pV25/uEr/tqtq /uzUvp07X1Lu9s/vjNaiKQMZcQ5YEaXaAQBAjSOR4xN+3pQpW4ChZheFK+1wgTa8clRtu0aek+8P 58IPkRurMJLnnrfpv6YCAqSL2hs6fER6ZbWprpcZnPtKIucNAADgfoZhKCgwpMr72+0FKrQ7SlwX GBpc5XZLY5qmCnPz3d6uJ5A4ByyGUu0AAMBbzqVkQvqRAi0Zt7/Ede17RumGe+JrNqA/NLsoXJ8s PaKPF6cqKNSm1pfVUo8hdZVx1DfjraiqnO/SzoU3fk999ffFl5BcqzyrXHOPHJXGTSr5S7ue3Qzd M9o7B3pRe0NLV5havMyh0BDpsosNDfmLoaPHfDNeX8TfNQAAgAcZhmyGrVIl1iVnEttuLyhzG1uA zX0fOExT9kK7e9qqASTOAYs5s0Q7SXQAAFDT3FAtzC/ExAfp72+e5+0wigmPDlD/SQnFlseE+ma8 FVWV813aufAGX/198RVmyTlIVIDNAjna+DjpzRW+9z+P6Ehp0j2Gzi5TEeqj8foaB0lzAACAGuGx x9qco3dBkjgHLIhS7QAAwJtsVsjkAKgRDrJr1WYjhwsf4+BmGAAAAI8zTYfsHrgL2fSzEeLuRuIc sBhGmQMAAJ9A7hxAeciZu41VyrbD/52jA5MAAABqlMPhUH5+rtvb9adnkXsKiXPAYijVDgAAAAAA AAAAYD1PzhvssbZfuf1hj7XtL0icAxZEqXYAAOArGAUJ4GyMSPUcrrnwFv6uAQAAPK8yzzNfunSp Dh48qMTERLe1PWDAAL377rsaPny4li9fXuFY/AlPwgIsJj4+wdshAAAAAAAAAAAAwEvuuusuvfTS S8rNdU9J9/Xr1+vdd99VUFCQHnroIbe06YsYcQ5YDKXaAQCAL2IUJABGpNYcrrmoKfxdAwAA+K4J EyZo4cKFeuCBB6rVTlpamkaNGiVJuu+++9SiRQt3hOeTSJwDFkSpdgAA4JPI5ADnLrJrNY5LLjyN P2sAAADfNmHCBLVo0aJaifOCggINGjRI+/fvV+vWrTVr1iw3Ruh7KNUOWAyl2gEAAAAAAAAAAM5t AQEBGjJkiFasWKGCgoJK75+bm6vbb79da9euVVBQkN58802Fh4d7IFLfwYhzwGIo1Q4AAHwdoyCB cwcjUr2PSy7cjT9rAAAA/zFnzhz16tVLiYmJ+vHHHxUaGlqh/RwOh5o1a6bU1FSFhYXpww8/VPv2 7T0crfcx4hywIEq1AwAAAABcDCYmN00AAADwO82aNdPRo0e1ZcuWCu+TkZEhh8OhwMBAvfTSS+rZ s6fnAvQhjDgHLIZR5gAAAACAIhgiDAAAAFiWUcHSft26datS+7fccku525gWKTdG4hywGEq1AwAA X2eRz1IA4Be45AIAAADWN+7VaO90bEqLBqd7p28PIHEOWBCl2gEAAAAAAAAAAM4NhiEFhtTss3Uc habsBTXapceROAcshlHmAADAZzHUHABqDJdcAAAA4NxiGJItQFJN5M9NyVFYA/3UMBLngMVQqh0A APgiEjgAUHO45gIAAADwJKt+5iBxDlgQpdoBAAAAAAAAAADOLQ67tyPwbyTOAYthlDkAAPAlVr0D GQB8EddcAAAA4NxVkMsHguoicQ5YDKXaAQAAAAAAAAAAzh1P35bu7RAswebtAAC4H6XaAQCA15lM TExM5UxwG9NkYvKNCQAAADXPNM0i0+rVq3XfffcVW17RKT8/X+PHj5ckxcXFaffu3eXuYxWMOAcs hlHmAADA2xwO63xgAgBf53B4OwIAAAAAvuLjjz/WmjVr9Pzzz1e5jaCgIM2fP1+1atXS3Llzde21 12rbtm2KiopyY6S+icQ5YDGUagcAAN5kksABgBrDfUoAAAAATrHb7fr888/Vp0+fardlGIbmzJmj PXv26I033tDo0aO1atUqN0Tp20icAxZEqXYAAOANFqrMBQA+j2suAAAAgDPt27dPycnJuvnmm93S nmEYWrZsmbZt26bXX39dd9xxh2688Ua3tO2rSJwDFsMocwAA4BUkcNzm8UG/eLyPyavO83gfADzH U0nzQSM8XzZk1TKbx/sAAAAAzkUbNmxQs2bN3NpmrVq1tGTJEvXu3VtTp05V3759ZRiGW/vwJSTO AYuhVDsAAKhpjHp0t5maOTNRiYmead0wjCLvWVpKgb5cfUy/bc+WJDVpH6ZeQ+NUq7bz4+LJtEJ9 tuKoftuRLXuhqVaXROjqkfUUHOZMfn2y9LC2rUsv0kevYXG6+IaYEvvPzrBr/YtH9Nt2Z3v1moWo 59C6SmgRKkn69IUj+n5tmjNWmzRpZdEkf3nrz1be8S0YuVd52cWThXcvaq7I2oHl7g/UNE9fc2fO LLmDWbMSZZqJ1Wr77OtPymFp9dumtv/PubB9O0NDbzNUO9a5/sdd0rsfmNq911RoiHRJJ0ODbzEU FlZ2P6YpPfwPh37aLc1NtKlZE+fytHRpxWumdvzPVKHd2d7IIafbcziklW+Y2vClqfx86aL2hu4a Zii6nEc5ltbfCy+bWrveeWw2m7RyadGbBpauMLXu86Lne9jthm64puQvIss7X+UdnyT9tFt67U2H fv1NSqgnDb/d0AXtrPvFJwAAwLli9+7dmjhxolq2bKlEN3+h0KtXL1166aX69ttvtXDhQk2YMMGt 7fsSPukDFkSpdgAAAFTUD5+kq83ltXTNyHrKy3Fo3fOH9d78FN2e2EiS9O5TyQqNCNCdjzeV6TD1 4dOpWvNMqvr/rb6rjU7XxuiqkXEV6u/TFw4r64RdQx9rotAIm75cdUxvzU3S2MUtZNikq0bG6aqR cdq79aTeeSKp2P7lra/s8U14oWWR7de9cFhHf89X5B+J8fL2B6xo1qya6eeTz0xdfqk0cqhNOTnS 8y+Zmr/YocSpzgTz2++Z6vdnqVULm44dl+YtdmjZK9K4u8pO9K75xFRwsKGzy6E89bRDEeGGHn/E JodDenqpqWdeMPW3e5ztvfOBqc3fmJo+2aboKGnxC6b+vdjUQ1Oq1t/IOwyNvMPQ1m2mnlhQ8g0J 1/Z2blMR5Z2v8o5v9x5p7r8cGjrI0JR7DWWdlD5Ya+qCdhXqHgAAAD6sdevWCg4O1rhx4zzS/rhx 4zR69GhLjzaXJOpjARYTH5/g7RAAAMA5wjRNJg9MNf3e9bijjlpdEqHgcEORdQLUvleUUvfmyjRN ZR4vUNLuXHX9S22FR9sUERugroNq65dvs5R5vOCPNiRTFT++Iwfy1fZPtRRZJ0BBoYY6XBOl7Ay7 Mk8UFD0Pf5yLUs9TOesrcnxnT/m5dv34RaYuuiqqSvsz+dffgb859Wvvyammj+OOvxi6pJOh8DCp Tm2p15XS3v2n1z84yVD78w2FhkoNG0i9uxv6ebdZ5jEcSpY+Wmdq6G1/fKH3x/LjJ5yJ47/c5BxB HhsjDbrJ0LdbTR0/4dxm3eembrzeUJNGUnSUdMcgQz/+bOpQcuX7K+ncVmZ5SVNZ56six/fam6Z6 djN0VQ9D4eFSvThpxBCjRn63+LMGAACoPMMwKjWdOHFCY8aMqfR+FelvxIgRKiws1IQJE6rUtr9g xDlgMZRqBwAAQFVlnSjU/zZkqOUlEc4FpxIdZ3/WNaUjv+WrVqzzI+WPX2Rqx2cZCo8KUMuLI9Rt UB2FhJd8n/Z5XSK0a3OWWl4SoZAwm7aty1CD1qGKjPX8x9Nix3eWn77KUkCgodZdalVpfwBVdyJN 2vCVs7x4aX7aJTVtUvp6h0N65nmHht5mKCK86LpTidtilzNT+u2AqaBAQ8dPSC2an96iYX0pJFg6 8LupBgnF+y2rv4r6YpOpzzaaioqSLu5oaNDNzsR4ec4+X+UdX1SkoV2/mDq/raHJMxw6clRq1FAa cqtN7dpULXYAAAB43tKVEz3a/l2D5xWZX/nY/7mt7cFT57qtrZpC4hywIEq1AwAAj2LUmP876z38 38YMfbT4sCQprkmwbp7SQDKlWrGBim8eoq9WHde1o+vJNE1tev24ZMj5XHBTumZUnK4ZFSeH3Tma fO2zh7VmUaoGTKpfQsfSZf1i9c6eZD17z35JUlTdQN389wYlxlXqssqsL+P4zrZ9Xbra94hSQKBR ZH1F9wc8wWojdc8+no1fmVq8zLmwSSNpyn22Eo/5409N/bTL1CPTS14vSe9+aCqujqGLOxpKS/+j vz/6jI2RmjeVVr1tavRw5yjr198xZRhSdo5zkqSw0KIxhoc715XUZ1n9VeTYRw01NGqoIbtDOvC7 9OxyhxYtlSaNL/3mgNLOV3nHdzJbsjuk9RtNTRpvU/146aNPTf3z3w49Mdvmek46AAAAfE9QUIBH 2rXbHSUuD7DZZLNVr2h5QWFhtfb3Fkq1AxZDqXYAAABU1gXdozTplVYas6iZGrYJ06uJB1WQ50zM 9JuYIMOQlj3wm16a+rtadA6XISkssujHSVuAofjmIeo1rK72bj2p/NySP4CvnpOk8KhAjVnUTPe+ 0EKdr4/RqzMPKuuE5z5Ul3V8p6Tuy1Pq/jxddFVUlfYHUDXduxp65TmbFj1pU5vzDCXOdSgvv+g2 H39q6u33TT04yab4uJLbOZTkLLU+fHDpSeeJY20yDOmB6Q5NneVQ54ucyyNrORPmkpSTU3Sf7OzT 6yrbX0UF2JxJ72G32bR1m6nc3NK3Let8lXV8IcGSYUi9rjTUvKkUGioN6GMoKEj6309czwAAAHyZ YTMUEhrk1ikouOyx1cFBgQoNDqr0FFJOu77Ov6MHUAyl2gEAAFAlhhQRE6jL+sfqh0/SlZZaoLgm wYqKC9KAB06PHt+79aQCgw3Vb1lCJqkcOZl2Je/JVc+hdRUR4/w4evENMfpq9TEl/5Kr80opke4W pRzfKT+sS1fTC8IVEx9Upf0BVJ1hSDHRUv8bDH3ymanUw87R1JJzVPfHn5qaPtmmRg1Kb+PXA85n eY+5v+hNO1NnOdTnWkND/mIorq70wARDpwqab91mKjhIatncUFiYVDtW2vurqVYtnOsPJUt5+VLT xsWT4xXpz1NKO19lHV9wsFQ/vmg7pukcIW8wrAYAAMAvuPeZ4eXfPOnsrnJ9mn5eMovEOWBBlGoH AADwb7NmJWrWLMk0Ez3aj+mQ3l+QossGxKp2g2Blp9v19VvHFREToNr1nQnkLR+mKa5piOq3DFHy 3jytX35El/WvreAwZ6bl3aeSdflNtVW7QbBOJOfr85ePqkXHCAWHFs/EhEUGKCouSD+sTVdMvSAF hRra8VmG7IVSXNMQrxyf5Cw7v2tzpv48Nr5K+wPWk+jxHhwOacGzpgb0MdQgQUrPkN5631RMtFT/ j0Jqq9429dVmUw9NsSkhvuz2ul1uqNvlp7/US0uXxk1y6LGZNjVt7Fz24VpTTZs4E8l7fzW1fKWp /n2cSXNJuqqHofc/NtW2taHoKOmV1021a3M6nsr2V56nnjZ1U19DDepLySnSy6871PFCQ6El3JdU kfNV3vFd08vQf9aY6tzBUP0E6aN1phwOqX07zyX5AQAA4B4Oh6mafWaYKbujcv3ZDBuJcwC+hVHm AAAA/m6W65VhzCpju+ozbNL5V0Zq3fNHdORAnkLCA9SwTaj+Mr2hAoKciZTzutTSuhcO6/cfcxRZ O1CX9IlVp+uiXW1c2CtKny47oqO/5yksMkCtLqmlKwbWLrXPmx6orw0rj2rZA7/JXijVbhCkGycm uEZ67/gsQ2ufO+za/snBeyRJ45Y0V1hkQLnrK3t8kvTjl5kKDrOp5cURVdofsJJZs0r/3XbnNclm k668Qnr+JYcOHJTCw6Q25xmaPtmmoEApN0969wPnl25/m3Z6VHdQoPTi4qoNke5ysaEXXjb14y6H asdKfa41dN1Vp4+3/w2GsrOlR590KD9fuvB8Q/feXfXh2J99Yeq5F09/cTj4LudxLJlnU2QtqdeV 0rJXHPr9oBQZKV3S0dDA/iWf//LOV0WO77qrDGXnSI/PdygnR2raWPr7fTbFRJfYJQAAAHyEvdAh e2HJj0PzlNy8ghrtz1eQOAcshlLtAADAndxaBQwV8sCrrWq0v1YXR6jVWQnjM0XHBWrg30uvj9yy c4Radi59/7PFNQnWLf9XensX9Y7SRb2LP2e8ouvPVt7xSVLn66LV+bqSM0cV2R9wF29fc199vmZr dl/c0dDFHUs+6LDQ6sUTG1N8/7i60t8nni5lfraAAOmOQYbuGFT5N6Kk/np3N9S7e+ltde5gGtQQ sAAAIABJREFUqHOHivdV1vmSyj8+Sbr5RkM338j/3AEAAPyJ3V6zSXO7o2b78yUkzgELolQ7AABw B8PGF+sAUFNsPGcaAAAAwFnuGjyvRvsbPHVujfbna0icAxbDKHMAAOAONj4pAECNCQwofxsAAAAA 55bKPC987969GjFihDZu3OjR/saPH6+nn35aa9eu1TXXXFPlvnwVX4cBFkOpdgAAUF2BwQx7BICa Ehzs7QgAAAAA+LuMjAxFR5f8CDJ3Cv7jA0x+fr7H+/IGEueABVGqHQAAVFVIOElzAKgp4eHejgAA AACAFaSnp5M4dwMS54DFMMocAABUxZwR67wdAgCcM0aM3evtEAAAAABYSHp6uqKiojzeD4lzAH6F Uu0AAKAq1i8/6u0QAOCcsXxlxZ9VCAAAAABlyczM1KxZs3T8+HElJyerfv36HusrKChIEolzAH6E Uu0AAKAyTJMEDjzrqaeekmmamjRpkrdDAbzO6tfczz//XGPHjtXPP/9cZHlERIS2b9+uFi1aeCky AAAAwJoiIyN17NgxhYeHezRpLp0ecV5QUODRfryFxDlgMYwyBwAAAADUtNTUVD3wwAN6+eWXi627 +eabNW/ePDVu3NgLkQEAAFiLYRgea9vqN3n6s4q+7+VtV933+NSIcxLnAPwCpdoBAAAAADXFbrfr 2Wef1YMPPqi0tLQi65o1a6aFCxeqT58+XooOAADAmrr/d4Db29x42TtubxPudcV/x1Rr/82XLa52 DDzjHIDfoVQ7AAAAAMDTtm7dqrFjx+qbb74psjwwMFBTpkzRtGnTFB4e7qXoAAAArMs0TdnlcFt7 Ntnc1hY8q9C0V2k/d73HjDgH4FcYZQ4AAAAA8KS0tDRNnz5dzzzzjByOol/Y9ujRQ4sWLdL555/v pegAAAD8W2FhodLS0pSWlqaMjAxlZmbq5MmTOnnypHJyclzb5TvyZa9iEvVMAUaAQm2hkqR//vOf CgkJUUhIiEJDQ11TWFhYkfnw8HCFhYUpICDANdlstiKvQ0JCZLORkHc3u+lQnqNySesAw6YwW4hb +j+VOGfEOQC/QKl2AAAAAIAnmKapl156SZMnT9bhw4eLrIuLi9MTTzyhoUOHevS5mwAAAP6qsLBQ u3bt0v/+9z/t27dPBw4cUFJSklJTU3Xs2DGlp6crIyNDubm5RfY7Mxl99r+z7KZDUnWeWW0owAhw zT388MOKjo6WzWaT3W53TQ6Hw/XzzElyPlP7zEmSIiMjlZGRIZvNpsDAQAUFBSkoKEgREREKDAxU RESEIiIiFBkZqaioKEVHRysmJkYxMTGKjIxUWFiYazqVpD81RUREKCoqSjExMefsvztN05Sjgu+7 IWfi3F1OlWpnxDkAv0GpdgAAAACAO+3YsUP33HOPvvjiiyLLDcPQX//6V82ZM0e1a9f2UnQAAAA1 JyMjQ+np6UpPT9eJEydcr0+NEk9LS9ORI0e0f/9+JScn69ixY8rKylJ+fr5M05TNZnMlgE8ljhs1 aqT27durdu3aqlu3rmrXrq24uDjVrVtX0dHRrkRzrVq11LhxY1csNjcmRCW5RrZ37NhR48aN09Ch QxUaGlrq9oWFhcrLy1NeXp5yc3Ndr09NJ0+edI2az8zMVGFhoZKSknT8+HGdOHFCaWlp2rdvnzIz M5WVlaWTJ0/KNE2FhIS4ku1njma32Wxq2LCh9u3bp5MnT7oS6DExMYqNjXX9PPW6Tp06qlOnjhIS EpSQkKDIyEi3ni9vMQwpQN65aYAR5wD8SlVHmZtmde5KAwDAN5yrdxoDAOApGRkZSkxM1Pz582W3 Fy0F2rlzZz3zzDPq0qWLl6IDAABwnxMnTig5OVlJSUlKTk4u8jooKEg//PCD0tLSXCOkzx4lfeLE Ce3fv1979uzRgQMHFBERofPPP1/du3dXhw4d1KFDB5133nmKj493y/cXgUaAAs8YLe4O999/v7Zv 365PP/1Uf/3rXzVz5kzNnDlTd911lwICivcVGBjoGkHuLrm5uUpLS3Ml1k/9PH78uPbv369Dhw4p Pj5eBw8elM1mc5WOP1UaPicnR/n5+Tp8+LDy8/OVkpLimux2uxISElS/fn3Vr1/flVBv0KCBGjVq pJYtWyokxD0lzT0pxBbstb4ZcQ7Ar1CqHQAAAABQXaZpauXKlXrggQeUklL0c2VMTIweffRR3X33 3SV+gQoAAOBrTNPUzz//rIMHDxZLip96HRYWpgYNGqhBgwauxGq3bt1Uv359NWrUyJUoP9PPP/+s RYsWafny5crPz9e1116rBx98UFdeeaXatGnjsWd8G4ahYMP9ydOnnnpKkrRnzx7NmzdPS5cu1Zgx Y/T888/rpZdeUps2bdze59lCQ0NdCe3yHDt2TAcPHtShQ4eK/Dz1Oi8vT3/605/Url073XrrrWrV qpXq1Kmj3NxcJScnKyUlRXv27NHGjRsVHBysTz75RPXq1VPr1q3VunVrnXfeeWrTpo1at26tsLAw jx97SUzT1Oeff+6aD7EFeSWOU04lzhlxDsBvUKodAAAAAFBV27Zt0/jx4/Xll18WW3fnnXfqH//4 h+rVq+eFyAAAACpmy5Yt2r59u3bu3KkdO3bop59+0p///GcVFBS4kuLdu3d3vW7QoEGlRhofPHhQ U6ZM0euvv64+ffro+eef13XXXVdjo5U3XvaOR9tv1aqVFi5cqMmTJ+u+++7Tu+++q0suuUSvvvqq +vbt69G+K+NUKfYOHTqUuD4nJ0cpKSnasWOHdu7cqeXLl2vnzp0KDg5W+/bt1b59e3Xr1k0XXnih GjZsKEn6/ffftXv3bu3evVtff/21XnzxRe3evVuxsbG68sor1bFjR/Xs2bNIyXxPKCgo0OrVq/Xk k08qMzNTkrT5ssUe7bMiTiXOjx8/7uVIPIPEOWAxjDIHAAAAAFTFsWPHNGPGDC1ZskQOh6PIuo4d O2rhwoXq2rWrl6IDAAAo2759+7Ry5UqtWrVKLVq00IUXXqguXbpo1KhROv/8893Wz/r16zVw4EB1 6dJF27dvd2vbFWGapubOnatdu3Zp2bJlJW7z+uuv6+uvv3aNIK+qpk2b6u2339bSpUt1zz33aMCA AXrjjTc0YMCAarVbU8LCwtS8eXM1b95c/fr1cy1PSUnRzp07tXPnTr3xxhuaOXOmsrKyXMn09u3b q0+fPmrSpIlrn6SkJO3atUtr167VokWLFBAQoJ49e6pHjx7q2bOn69nf1ZWRkaGlS5dq3rx5atKk iWbMmKF+/fp5rHpBZf3000+SpA0bNng5Es8gcQ5YDKXaAQAAAACVYbfb9eyzz2r69OnFRo7ExMTo kUce0ZgxYxQYyNdIAADANz3++ON67733NHjwYG3atEmRkZEe6WfLli3q27evpk6dqunTp7vlWeWV dcstt6hnz56lJs0lKTMz023nwDAMjR49Wo0bN1b//v01aNAgff311+rUqZNb2veGU6Xgr776atey 9PR0VzJ9/fr1WrZsmU6cOKGePXuqV69e6tWrlxo0aKBevXpJkvbv36/PP/9cK1eu1COPPKK2bdtq 8ODB6tmzZ5ViSkpK0vz58/Xcc8+pd+/eWr16tS677DJ3HK5bjRkzRps2bdJDDz3k7VA8gk88gAVR qh0AcC7yxodVAAD83YYNG3Tvvfdq+/btRZYbhqGRI0fqscceU1xcnJeiAwAAKN/kyZPVokULbdy4 0aP95Obm6vbbb9fQoUM1Y8YMj/ZVku3bt6tfv3567bXXdPnll5e5bUZGhqKiotza//XXX6+lS5dq 2LBhGjRokH744QeFh4e7tQ9vio6OVtf/Z+++w6K42jaA37tLVQQEFAULdlHB3nuJxq7BgtijMYpd o3ktUUyMGDU2jGJs2IhdscaIBXsUjA17i4qKAgKCAlvm+8MPItIWmK3cv+sa0Z2Zc56Z3ZXdeeY8 p2nTdBWWHj9+jFOnTiEgIACDBw9Gs2bN0K1bN3h4eMDFxQVDhgzBkCFDAACHDx/G2rVrMXnyZHh5 eaFfv35wcnLKsd/w8HAsWrQI+/btQ//+/XHp0iVUqFBBU4epFnWusW3fvj3HbQRBECMcrWLinMjI cJQ5ERERERER5eTJkyeYOnUqdu7cmWFdw4YN4efnh/r16+sgMiIiIiL1bd26Fba2thg1apTG+1qx YgU+fPiQ7/LnebFjxw4EBATgwYMHalUBSkhIQPHixUWPY+DAgTh69Ci2bt2KxYsXY+bMmaL3oU9S y7wPHToUAHDmzBn8+eefmDFjBr788kv06dMnbYR5p06d0KlTJ0RGRiIwMBDdu3dHpUqV4OXllWFe eEEQEBISgoULFyI0NBSjR4/GgwcPYG9vr+1DzFLdQC9IpHkfpBLquVXEaLRHPwriE5FoUku0A0j7 SURERERERAR8vIg6Y8YMVK1aNUPSvESJEggICMD58+eZNCciIiK99+eff+LEiROYMWOGxvuSy+Vp ieLChQtrvL9PHTlyBMePH8fhw4fVnjrHxMREY5X5FixYAFNTUyxduhTJycka6UNfNW/eHD///DMe PXqEDh06YO3atahVqxb8/f3TtnF0dMTEiRNx+fJljBw5EgcPHkTVqlXx448/4tWrV9i1axcaNmyI ESNGoGvXrnjy5AlmzZqlV0nzVBKpFFILk1wvhoyJcyIjxFLtRERERERE9CmVSoUNGzagUqVKmDdv XrqLnKamppg6dSru3buHwYMHQyrl5SIiIiLSb0qlEitXrsS6deu00t/x48cRHx+PAQMGaKW/VAEB ATh37hxWr16dq/3Kli2LBw8eaCQmJycndOzYEdHR0QgJCdFIH4age/fu2LJlC4KDg6FQKFChQgWs Xbs23TYtWrSAv78/Tp8+jTt37qBcuXKYNGkSvv/+e9y+fRsjR46EpaWljo5APRKpFBITmdqLoeM3 ISIjw1HmRERERERE9KlTp06hfv36+Prrr/HqVfobrLt06YLw8HD88ssvKFKkiI4iJCIiIsqd1atX o2HDhlrr79ChQ+jQoYNWR5sfPHgQFy9exNy5c3O9b7ly5fDhwwcNRPVRkyZNAAChoaEa68NQODg4 YMyYMQgPD8fz58/h5uaGoKAgAMCbN2/g4+MDNzc3JCYm4q+//sL06dMxbtw4rFmzRseR54EgfFyU qswXleHNaf45Js6JjAxLtRMREREREREA3Lt3Dz179kTr1q1x5cqVdOuqVauGo0eP4sCBA6hUqZKO IiQiIiLKm40bN2LIkCFa6+/ChQto2bKlVvvbu3dvuhLgudG4cWMEBwfj3bt3Ikf2kZOTEwBkuCmz ILOwsICPjw9Onz6N8+fPo27duqhcuTKeP3+OU6dOISgoCM2bN8fIkSMRERGBqKgo1KpVC3v27NF1 6NkSlCoIcuXHRaH6uKiEzBelCjDw3DkT50RGiKXaiYiIiIiICq6oqCiMHz8e1atXx759+9Kts7e3 x8qVK3Ht2jW0b99eRxESERER5d2JEydQpUoVODs7a6U/QRBw+/ZtuLu7a6U/APDy8spz0jxV7969 sXPnTpEiSi91/nSVSqWR9g1VaGgoRo4cibVr18LJyQnu7u7w9/eHq6trhm1nzpyJ4OBgnDp1Ch07 dkRcXJwOIs6eoFRBlaTI9WLIyXPDnqGdiDJwdCzBhDkREREREVEB9OHDByxbtgy+vr6Ij49Pt87U 1BTjxo3DjBkzULRoUR1FSERERJQ/7969w6ZNmzBo0CCt9RkbG4v379+jbNmyWulvxowZ8PHxgamp ab7aGTZsGGbOnImvv/5apMj+k5rktbW1Fb1tQyMIAo4ePYqFCxfi3r17GD9+PNasWQNra2vcunUL PXr0wO7du2Fubp5hXwcHByxfvhy3bt1CkyZNcOjQIbi4uGj/IDIR5hWo6xB0giPOiYwMS7UTERER EREVLAqFAuvWrUOlSpUwbdq0DElzDw8P3Lp1C4sWLWLSnIiIiAza8OHDsXHjRiiVSq31GRsbCwBa +RwVHh6O0NBQDB48ON9tlS1bFp07d0bJkiVx//59EaL7z+vXrwEAJUuWFLVdQ3Lnzh34+fmhZs2a +O677zBw4EA8fPgQ3333HaytrQF8nB7J19cXPXr0yLatatWqITw8HAMGDMgwxZIuCIKQ6bJjxw4A wLhx47Lc5tPFEDFxTmSEWKqdiIiIiIjI+AmCgH379sHd3R3Dhw9HREREuvUNGzbE2bNnsWvXLlSs WFFHURIRERGJp1SpUmjQoAG++OILrfUpl8sBIN8jwNXh4+ODJUuWiNaep6cnoqKiMGXKFNHaBP5L nJcuXVrUdg3FP//8A3d3d8yaNQvz5s3D9evXMWTIEJiZmWXY1s3NDR07dsSCBQtybPfs2bPw8fHB 8ePHNRF2voWGhgIA6tWrp+NINIel2omMTF5LtRvq3T9ERGR8UufJIiLSJ9r4v4mfySk3Tp48ienT p+PixYsZ1lWsWBG+vr7w8PDg79VM8P1MRESkP/L6e1kmk+Vq+/z8bk5NmKcm0DXl7NmzkMlkqFat mqjtKhQKBAUFifIZKPU8RkZGAvh4I4MhEuvz4MWLF1GlSpUctxs3bhzGjBmDGzduwM3NLdtt9+/f j8GDB+Pt27fo1auXKHGK5Z9//gHAxDkRGZDUUu2f/iQiIiIiovyajdmzfeDjo5nWP79wExISAl9f X1y4cAFWVlbo3r075s+fn1byb+TIkVi9enW6fZYsWYIJEyZk2v7Lly8xadIkBAcHIyUlBd27d8eK FSvS2lMqlfjf//6HgIAAvH//Hu3bt4e/vz8cHR3z1B9pzuXLlzFjxgwcO3YswzpHR0fMnj0bw4cP 18qIKEM2e3bmF8/nzPGBIPjkq+3P389jxozBb7/9BuDjRX6FQpHt/jm9/1+/fo0JEybg2LFjSE5O Ru3atfHrr7+mXcC0tbVNm3f0U8+ePcv04nZO/REREWlav0DNzqX8h5dXvvZP/Z0YFxen0Tm9d+/e DQ8PD4203bz53/lu48yZhml/Ty1fX6KE4U4XGzi1c77291pwSK2keSpbW1uEhobmmDgHgI0bN2LC hAlwcHBAq1at8hGluK5duwZLS0tUrlxZ16FoDEu1ExkhlmonIiIiIjJsc+fOxeTJk/Hs2TP89ddf OH36NMaOHZtum9GjR6ebPy67JHavXr0QHx+PGzdu4NatW4iIiMDQoUPT1vv6+mL79u0IDg7GgwcP kJycDE9Pzzz3R+K7fv06evTogQYNGmRImhcpUgRz5szBgwcPMGrUKCbN1TRnTsZFE1asWAFBEHDg wAG1ts/p/T9mzBg8ffoUYWFheP78OWrWrInOnTunzfUaGxub7r3q7e2NFi1aZDkiTJ3/b4iIiDRK IoHM3FwjixiKFi0KExMTvHz5UpT2srJz50707t1bQ60LSE5W5nn5XGJiIgBo9EYCbTA1kcLcVJbr JS8D1uvVq4ewsDC1t1+6dCnWr1+PkydP5r4zDYiMjMTr16/h5uaW64oPhoQjzomMDEeZExEREREZ vk8To9WrV8c333yDZcuW5amtFy9e4Pz587hy5UraiJC5c+eiadOmePHiBZycnODv74/vv/8eNWvW BAD8+uuvqFatGu7evZurURSp/aWOgB0wYAAAYNiwYXj06BGCg4ON+iKLJty6dQs+Pj7YuXNnhnVm Zmbw9vbG9OnTUaxYMR1ER5qQ0/v/+vXrGDt2LMqUKQMA8Pb2hp+fH16+fJkhOZ6YmIgtW7Zg1apV ee6PiIhIGyRSKaQm4qaslCkporQjlUpRqlQpPHnyBI0aNRKlzc8dPHgQI0aM0EjbqVQqQC5X5Xo/ c/OMY3BTb9gzhhs2TWXSXCXCFcrcn0MAaNSoUaaf6bOzadMmlC9fHnfu3Ml0/nRtCg8PBwDUqFFD p3FoGkecExmZ1BLtANJ+EhERERGRYQsJCUGtWrXSPbZp0yZYWFigTJkyGDNmTKalmYH/5iH8vHy0 IAi4evUqoqOjERERgfr166etc3V1RaFChXDt2rVc9+fk5IStW7fC29sbt2/fxqZNm3Do0CH88ccf TJrnwu3bt+Hl5YUaNWpkuMAmk8kwbNgw3L9/H0uWLGHS3Mh9/v738PDA9u3b8fz5c8THx8Pf3x9N mjSBs7Nzhn0DAwNhZmaWq7Kvmf1/Q0REpC0SiUSURWxVqlTB7du3RW831blz51CuXDmNtf8pQVB/ yYkmzrUmCYKAu3fvZnhc7ddWPvo2MTFJSz7nxtq1azF8+PB89CyO1PNWtWpVHUeiWUycExkhlmon IiJDZWhfuIiItMHPzw8hISFYuHBh2mP+/v6Ij49HQkIC9u7di3PnzmHQoEGZ7u/s7Iy6devihx9+ wKtXr/DixQvMmjULEokE8fHxiI+PBwDY2Nik28/W1jZtXW76A4B27dph0qRJ6N69O8aMGYPAwECD nv9Qm8LDw9GvXz9Ur14df/zxR9qND8DH35NeXl64ffs21q5dmzbimIxXZu//adOmwczMDKVLl4aN jQ327duHNWvWZPo5avXq1Rg6dCjM1SxVm1l/RERE2iKoVFAplaIsgipvo4Kz4ubmhqtXr4ra5qeu XbuWVv1Jk6RSCWQy9RaJ5OP2hkylUuHKlStYuHAhunbtCgcHB7i6uqbbRhAEKJUq9RaVGncTiKxN mzYoXrw4tm3bpvW+P5WaODfm+c0BJs6JjA5HmRMRERERGQ8/Pz/89NNPCA4ORoUKFTKsNzExQd26 dbF06VIcOHAA7969y7SdXbt2QSKRoGrVqqhduza6dOkCiUQCBwcHWFtbA0CGEeSxsbFp63LbHwCM HDkS//77L2rXro02bdrk9tALnH/++Qe9evWCm5sbtm3bli5hDgC9e/fGzZs3sXXrVlSqVElHUZI2 ZfX+b9euHYoXL44XL17g3bt3GD9+fNrUC58KDQ3FlStX1C77mtP/N0RERJqkTE6G4sMHUReVXC5a fHXr1sWlS5cyfEYTy7Vr1+Du7q6RtlOZm0tRqJBM7cXKygSFCslgampYqcSkpCTs3bsXgwYNgqOj Ixo3boyDBw+idu3a+OOPP/D27du0bZVKAR9SlLlakvNQ7j6/Fi1ahB9//DHtxmZdePToEQAY/edE w3q1E1GOWKqdiIiIiMg4+Pr6Yt68eTh58iRq166dr7ZcXFywf/9+xMbGIjIyEuXLl4eFhQUaNGgA e3t7ODs74/Lly2nb3759G+/fv8/zqBeVSoXBgwejS5cuuH//PtavX5+v+I3ZmTNn0KlTJ9SpUwe7 d+/OcDG2V69euH79Onbs2IFq1arpKErStqze/1FRUfj7778xduxYlCxZElZWVpg4cSJSUlJw4cKF dG2sWrUKbdu2RcWKFfPcHxERkVYIAgSVSiOLWJo1a4ZXr17h4cOHorWZ6ubNm+jevbvo7aYngVSa 98UQ3L59G6NGjUKJEiUwevRoFClSBJs2bcLbt28REhKCH3/8Ee3bt09XaUslCHlaNHT/RLZ0XbL9 yZMnAD5+tzRmJroOgIjEx1LtRERERETimzPHB3PmAILgo/G+ZsyYgS1btuD06dOZji7u2bMnfvjh B1StWhV3797FpEmT0KlTJxQpUiTT9hYvXoxatWqhQYMGuHTpEsaOHYvp06enjSgfOXIkFi5ciBYt WsDR0RGTJ09Gy5YtUaVKlTz1N3fuXDx79gyXL1/G5cuX0a1bNzRo0AA1atQQ6QwZNpVKhUOHDuGX X37BuXPnMqyXSCTo1asXfvjhB7i5uekgwoLCR9cBZCq797+DgwNcXFzw22+/oXz58rCyssK6desg l8vT3egSFxeHbdu2YdOmTfnqDwB8fHywbds23LlzB8DHi/tubm64ceNG2nu6atWq8PT0hI+PTz6O nIiICqo/vLx0HUKOSpUqBUdHR0yaNAl79uyBiYl46bVXr17h/fv3orWXmTNnGmq0fV2KiorCd999 h8DAQPTs2RN79uxBq1atIJVmP3bYa8EhLUUojiZNmuDw4cPYsGEDhg4dqvX+IyIiULRoUVhZWWm9 b21i4pzIyDg6lmDCnIiIiIhIdHPS/iaRzMlmu/xLSEjAvHnzAKSfP87c3BxJSUkAgOHDh2P06NG4 fv06ihUrhu7du2ebsPLw8MCoUaNw6tQplCpVCpMnT8bYsWPT1k+bNg2xsbFo27Yt3r9/j/bt22PD hg1p63PT38mTJ7Fo0SJcuHABhQsXRqtWrTB16lT07t0boaGhKFy4cD7OjmFLTk5GYGAgFi1ahFu3 bmVYL5VK0a9fP0ybNg3Vq1fXQYQFx5w5WY+cEvs9vnbtWnzzzTeftP+x7zdv3sDBwSHdtuq8/w8c OIApU6bA1dUVKSkpqFq1Knbu3JluZPnmzZthbW2d4+g1dfojIiLSpMxKn8vlclSuXBmPHz/WQURZ e/fuHY4ePSpq0hwAYmJiYGdnJ2qbqRQKBcqWLZs2WtjYPHnyBC1btkTlypVx8+ZNteffzqnkfocO HbB48WK9+0w+d+5c1KlTB507d0bx4sW11q9cLkdMTEyG+eGNERPnREYmtVT7pz+JiIiIiCh/NDWX YWasrKxy7K9z587o3Lmz2m2WLVsWhw8fznK9TCbDokWLsGjRonz317p16wxz782cORMzZ85UO15j Ex0djdWrV8PPzw+vXmX8jmZmZoYhQ4ZgypQpapXVpvzR5vsZ+HjjibplNdV5/9eoUQNHjhzJdpsx Y8ZgzJgxovTn4+OT7kaZGjVqZNgndTQ6ERGRGPr27ZtpVR4xpd7Ipu19U336u1RTifPTp0/jwIED Rps0V6lU6Nu3L5o2bYotW7bkOMLcWKxatQo//fQT/Pz8tNZndHQ0AKBYsWJa61NXmDgnMkIs1U5E RERERKR74eHhWL58OTZt2pTp6N0iRYrg22+/xcSJE+Hk5KSDCImIiIj0S1hYGJRKpVbth4dSAAAg AElEQVQ+GwX+0FzjfWTG66cz6f4tl8tRpkwZ0fv55Zdf0irLGKO9e/fi0aNH+OuvvwpM0hwAGjZs iNmzZ+PmzZtamworNjYWAGBra6uV/nSJiXMiI8NR5kRERERERLqjVCpx8OBB+Pn54fjx45luU7Jk SYwbNw4jR44sEBefiIiIiNQVFhaGbt26aa0/qVQCCfI/glxdSpUqw2MJCQmiJ36vXbsGAKhZs6ao 7eqT/fv3w9PTEzY2NroORevGjBmDFStWwN/fXyv9JSYmAkCBmHaLiXMiI8NS7URERERERNoXGRmJ 9evXw9/fH0+fPs10Gzc3N0yaNAleXl4wMzPTcoRERERE+u/u3buoX7++Vvu0MJMCWkieJ6UoM33c xMQECoVC1L4CAgIwZMgQUdvUN5GRkVobca1vunTpgrVr1+LJkydwcXHReH9yuRwAYGpqqvG+dI2J cyIjxFLtREREREREmqdSqXDq1Cn8/vvv2LNnT9oFpU9JJBJ07twZEyZMQJs2bUSZE5OIiIjIWMnl cq0kAj8nkwKaTJ4rVUKW68ROnCckJODZs2fo3bu3aG3qoxIlSuDZs2e6DkNnqlevjpCQEK2+XwrC dxkmzomMTF5HmQtC1r+4iYiIcqsgfJAmIqKCKzIyEgEBAVizZg0ePnyY6TY2NjYYMmQIxowZg4oV K2o5QiIiIiLDlJiYiLi4OK33+zGv/fEaudiXymU5VGG3trbGhw8fROsvPDy8QFzvb9asGRYvXqzr MHTG1dUVN2/e1HUYRoeJcyIjw1LtRERERERE4lMqlTh27BjWrl2LoKCgLEcF1axZE97e3ujfv3+B mAOQiIiISEwODg6IiorSap8piozzjmuTtbW1qAnQu3fvokqVKqK1p6+6deuGkSNH4vr163B3d9d1 OFrn5uaGffv26ToMo8PEOZERYql2IiIiIiIicTx58gQbNmzAhg0bsiwFaWlpiT59+mDkyJFo2LAh K68QERER5ZG9vT2io6O11p9KJUCVTRl1bShTpgy2bdsmWnv37t1D5cqVRWtPXxUvXhzt27fH2rVr sXz5cl2Ho3VWVlZ4/fq1rsMwOkycExkZjjInIiIiIiLKn+TkZAQFBWHt2rUIDg7OstSlu7s7RowY gf79+8PW1lbLURIREREZH5lMhrNnz2LcuHEa78vrpzMa70MdpUuXxtOnT0VrLzg4GI0aNRKtPX02 cuRIDBw4EJ07d0aHDh10HY5WpaSkwNzcXNdhGB0mzomMDEu1ExERERER5Z4gCLhy5Qo2bNiAwMBA vH37NtPtrKys4OnpiW+++Qb169fn6HIiIiIiEfn7++Pp06d4/PgxypUrp7F+cjMHeFJSEpydnWFn Z4e7d+9CKs1h0vJccnJywqtXryAIQr4/W+7fvx9hYWHYsWMHunTpIlKE+qtr164QBAGdO3fOciol YyWXy2FqaqrrMIwOE+dERoil2omISJeYQCAiIkPy+vVrbNmyBQEBAbhx40aW2zVp0gTDhg1Dnz59 YGVlpcUIiYiIiAqOs2fPwtvbW6NJ89zauXMnYmJiMGvWLNGT5qnKlCmDp0+fomzZsvlqp2vXrmjX rh02bNggUmT6TSKRYPHixVi3bh2io6Nhb2+v65C0Jjk5GWZmZroOw+gwcU5kZDjKnIiIiIiIKHtJ SUk4ePAgNm3ahCNHjmQ5OqVYsWIYNGgQhg0bBldXVy1HSURERGQc8nKDfV5vys/NSHJ1rV+/Hubm 5hg0aJDobacqXbo0nj17plbiXJ1zY2KiXvpPE+dLU3I6bgcHh3z3YUjnQy6XM3GuAUycExkZlmon IiIiIiLKSBAEXLhwAZs2bcKOHTuyLMUuk8nQqVMnDB06FJ07d+bFKCIiIiIRBC6crvEKdf2++1n0 Np8/f46QkBD06tULRYsWFb39VKmJc3Ut/mNavvoTBAGTvebnqw1dGBq4BNDA60gQBAR4TRS9XU1K SUnhdxUNYOKcyAixVDsREREREdFHd+/eRWBgILZu3YqHDx9muV2NGjUwdOhQ9O/fH46OjlqMkIiI iKhgkEgksDDTzJzMSckpGml3z549EAQBnp6eGmk/VY0aNRATE6P+DhLA3CJv5zIlSQ4DGlidgcxE BqmpeOlNRVKKQY00T5WSksI5zjWAiXMiI8NR5kRERESka3PmzEn37wsXLkAQBCQkJKR7fPbs2doM iwqQiIgIbN++HYGBgQgLC8tyOwcHB3h5eWHQoEGoU6eOxkdBERERERV0EokEUqlE1M9dCoVStLY+ d+jQIVhYWODLL7/UWB8AUK1aNfz8888YPXq02vtIIIFUJs3VuVQqNXeutEkilUIiwnzzQhbno0yZ MpDJZPluX5OkUimcnZ11HYbRYeKcyMjktVS7Id5RRURE2seEAhHlJCQkBPPnz0dSUlKGdX/99Vfa 3y0sLNCyZUu0atVKi9GRMYuKisLu3buxbds2hISEZPkdx8zMDN26dcPAgQPRsWNHjtIgIiIi0oVM PqoJnzyoUvN6tQSau06RnJyM06dPo0WLFihUqJDG+gGA+vXr4/Lly3na99PzBgEQVFmcO6O7pJPp i+jjj6zOwaeyOR9Pnz7V+5sMUlJS8Pr1a12HYXSYOCcyQizVTkRERES60rJlS1StWhVXr17Ndrsq VaowaU75FhMTg3379mHHjh0IDg7O9uJWixYt4OXlhT59+mh0fkoiIiIiyppKpYJKpeso1BMWFoak pCStfW+pX78+QkNDUa9ePbW2VwkCVBocba/PVEolUDAPnTSMiXMiI8NS7URERESka0uXLkWPHj0Q Gxub6XpbW1ssXbpUy1GRvoqPj4e1tbXa20dHRyMoKAi7du3CsWPHoFAosty2Zs2a6NevH/r164cy ZcqIES4RERER5ZEgCEhKkes6DLWFhoYCABo2bKiV/urXr49Lly6plzgXPs5VXhApFUqggN4wQJrH xDmRkclrqXYiIiIiIrG0bNkSLi4uWY46L1u2LEebEwAgPDwctWrVgqenJzZv3pzldi9evMC+ffuw Z88enDp1KtuR5RUrVoSnpyf69euHatWqaSJsIiIiIsolrynzdB1Crt24cQMAUKtWLa30V79+ffzx xx8QBCHHqfIm9fPVSkz6ZoPXRF2HQEZOqusAiEh8LNVORERERLq2dOlS2NraZnico80p1cGDB9Gk SRMoFApcvHgxw/o7d+7gl19+QePGjeHs7IzRo0fj+PHjmSbNXVxcMHXqVISFheHevXv46aefmDQn IiIi0hOCIORqeffuHapUqZLr/QQ150VX18OHD2FnZwc7OztR283KixcvsHnz5mxvKAWyPp8xMTGo UaOGzs6Xpn0ee0pKCnr37g0bGxucOXMmT68XQz4fpBkccU5kZDjKnIiINCWnu52JiD6V1ahzjjYn APDz84OPjw/i4+MBAA8ePIBCocCFCxdw4MABBAUF4d69e9m24eLigl69eqFPnz6oV68ef08RERER GQlTU1PI5bovQ/7y5Us4Oztrrb9OnTpBJpPl+dgjIiLg5OQkclT6SaVSYeDAgTh+/DhOnDiBOnXq 6DokMhJMnBMZGZZqJyIiIiJ98flc5xxtTgAwefJkbNiwAW/fvk17zNTUFPb29mmJ9KxUrlwZHh4e 8PDwQJ06dZgsJyIiIjJCZmZmSElJ0XUYiI2NRaVKlTTSdnafY4cPH47hw4fn2MbnI6RfvHhRYBLn 06ZNw8GDB3Hy5EkmzUlUTJwTGSGWaiciIiIiffD5qHOONicPDw8EBwdnSJDL5fIsR9bUq1cPPXr0 QM+ePeHq6spkOREREZGRk0gkkEgkUKlUkEp1N+OwXC6HqampxtofERiY531/9/LK8FhERIRWR8jr yqZNm7Bw4UIEBQWhfv36ug6HjAwT50RGhqPMiYiIiEifpI46T/07FVwNGjTAzZs38eHDh2y3MzMz Q5s2bdCtWzd07doVpUqV0lKERERERKQvTE1NkZKSAgsLC53FYGFhkeNn13yRSGBiZpbr3RRZjMZX qVQoU6ZMfqPSa6GhoRgxYgTmzZuHrl276jocMkJMnBMZGZZqJyIiIiJ90rJlSzg4OEAQBI42L8BK ly6NV69eQaFQZLmNtbU1Nm7ciHbt2sHKykqL0RERERGRvjE1Nc32s6M22NvbIzIyUqN9SKRSSE3U T9WplMos11lZWeHSpUtihKWXoqOj0atXL3Tr1g3ff/+9rsPJNalUiiJFiug6DMoBE+dERigvpdo/ nw+FiIgKFpa9JSJNun//vq5DIB0yMzODQqHI8TtHfHx8WnUCIiIiIirYTE1Ns5zKR1vKlSuHgwcP Ijk5Gebm5hrtS4zrMvb29oiOjhYhGv2jUqkwYMAAWFpaYv369QZ5HSspKQlJSUm6DoNyoLvJIYhI IxwdS+g6BCIiIiIiojS9e/eGq6srzMzMYGVlBRsbm0znqrSxsUFYWJgOIiQiIiIifWNmZoaULEqS a0vt2rWhVCpx5coVjfYjqFRQKZVqLdmpXLkyXr9+rdFYdWXevHk4ffo0du/ebbDVqT58+ABLS0td h0E54IhzIiPDUu1ERESkbYZ4pzcR6UZ2Fz/j4uIQFhaGunXrajEiIiIiItJH+jDivHXr1vDx8cGh Q4fQuHFjjfShSE4Wra0yZcogMTERDx8+RIUKFURrV9dCQkIwe/ZsBAQEoFq1aroOJ8+YODcMTJwT GaG8lGonIiIiyg+fh5z2hYjyJuV9IjaO7oOI04cxYsQIXYdDRERERHpAH0acN2nSBI6Ojti8eTPm zJkDmUwmSrupxyUIguhTqPbo0QMXL140msR5VFQUvLy8MGjQIAwcOFDX4eQLE+eGgYlzIiPDUeZE RESkK+dDTug6BCIyUBZ2xXUdAhERERHpCblcjqdPn+LatWsoX768zuIwMTHB8OHD8fPPP+PPP/9E 586dRWm3Vq1aAIA1Xl6itPepwYMHo2nTpqhSpQrq1asnevvaFBsbi3bt2sHa2horVqzQdTj5lpSU BAsLC12HQTlg4pzIyLBUOxER5RbLbJOYFB/e6zoEIjIwJpaFdB0CEREREemRa9eu4fnz59i6dSt6 9uyp01i+/fZbzJ8/H8uXLxclcd66dWsEBQWhUqVKIkSXkZ2dHZ49e4auXbvi5cuXGulDW7y9vXH9 +nUcOHAAhQsX1nU4+cYR54aBiXMiI8RS7URERKRLKrluy+kRkeGQmprpOgQiIiIi0jP16tWDn58f PDw8dB0KSpcuDQ8PD+zYsQM3btyAm5tbntpJTEzEoEGDsHfvXtja2oocZXrBwcHYu3evRvvQho4d O8LNzQ1t2rTRdSiiYOLcMDBxTmRkOMqciIiI9IGgUug6hDwTlErc3e6PqBuXYFHUAfWm/qrrkCgH YYumolTrrnCs21zXoWjNP8tmoETDtijZyHAvIkmkvCRBREREVNDkpuqdt7d3rtoWe77wVFOnTsWO HTvg6+uLwMDAPLWxYsUKtGrVSqNJ88/P7YIFC/LUjtjnMb+VDqdPn57jNpp67sXExLlh4LdUIiPD Uu1ERESkLwSVStch5EnUjUt49+whGv7wG0wsChnkcfyz/AeUbNgGJRq21nUoWiEAgErI03NlqOdK ED7+YYivTwCQSKW6DoGIiIiIdGTb8hmAiNPGqVQqeI2fJ1p7n6tbty46duyIbdu2YebMmahWrVqu 27h06RK2bNmigejSmxI4BRJp3s6tIAhY2G+hyBF95PHj31CqxE9uSyTA3tmNRG9XEz58+AA7Oztd h0E5YOKcyAixVDsRERHpDQO46/tzCRFPUKR0BZiYW4oS/5VlM+DctAMc67XQWlu1x/748S8GeP6B vJ4zIU/Hm9tzJebzmW9C3o5Z50S8SEpEREREhsnCzDTPCd5PJafIoY17SX/88UccOXIE06ZNQ1BQ UK72ff36NR4/fqy10cYymQwyM1mu9hFUAlKSND/tWlKKUrzGJIBlLo9TlyIjI2FjY6PrMCgHTJwT GRmOMiciIiJ9Y2hpPUXSe0hNTEWNW4B450HMtvRZbo9Tm+dFX54DfYkjN5gyJyIiIqJUUokkX2W8 VVq8ibRevXrw8vJCYGAg/vzzT3z55Zdq7xsTE5OnUer5IZVK1T63giBAqcpbQju3JdIFACqVIMr3 GBOZYX27iI6ORtmyZXUdBuWAiXMiI8NS7URERER5F75+IWJu/wMAeHnxOEq37QGXL/v897hEAgtb Bzg2aIUybXukjZx9cfZPRJw+gpSEeFiVckGF7oNg5VwOd7b4IeH5Y9zb7o972/1RpExF1Eod4ZyF 3LZ1Zck02LnWQvzje0iIeIxKvb5BxJkjKNGgdVr58StLpsG+Wh3EP76Ld88fwcy6KCr0GIyild0B AClxMbi3ay3iH9+BuY09SjZph4f7NqKRz2qYFi6SbbxXlkyDbcXqePfsIRIjnsDc1gGV+36LuMd3 EXHmCJTJH1CsZmNU8hiWdr6yO59ZHacy6QOeHN2JmPAwKJIS4VCzEcp3HQiZmTkA4MObl7jhPzfT 48vOVb9Zap+rLGNLTsKTP3cg+mYolEnvYV2uCir2HArzog5pbX7+HD07uT/b5ySn1xwRERERkTFI TbzmNpGqi0/FCxYswP79++Ht7Y3r16/DyspKrf2qVq2KkydPaji6jDQ577dM9nGkd0pKCkxNTXO3 swQoiBM3RUdHw97eXtdhUA6YOCcyQizVTkRERJQ31b+egod7AyColKjoMSzd48DHedsTXz7FnS3L YGFfHMVrN8WHNy/x6OBWuI/8AValyiEx4l+8+ecCrJzLoeqAsfgQ/QpOapb2zmtbkZdC4DpoAoqU qQiJVIqIM0cytB0Zegaug8ajcIlSiDh9BHf/WIlGs1YBEglub1kOc1t71J+2FMqkJNzZ6per8xZ9 4zJcB02AZbGSeBi0ETd+n4ditZqg7qT5kL9PwPWVPyKqshsc3BvmeD6zOs6721ZC/j4B1YdNhZl1 UURdu4i4h7dg51o7x+PLrazayjq2VVAp5HAf9QNMC1nhafAe3Nq4GLXH/5zW/+fP0bOT+7ONObtz RERERERk6JQqFZTaqLEuImdnZyxcuBCjRo3CuHHjsH79erX37dixI06dOoVWrVppLsBPKFIUGm2/ cOHCAIC4uLi0v6vDVCZBQa1DFRMTwznODUBBvKmDyKg5OpbQdQhEREREWZIYwJJdrFKpFEWcXeDU tANiwq98fExmAqnMBCbmlpCZmMK6bEWU7+KVrj11+85LWwDg1LQ9bFwqfyzHl8l2AODc/EtYl64A mak5nJp8AXlCPFLi3yIpKhLxT+6hYo8hMCtsDUv74ijXyVPtuAHAuVkHFClVDibmFnCs2xzKlGRU 6DYQpoWsUMihBGwrVUfC88dqnc/M4k+JjUJ0eBiq9BmJwo7OMLUshJKN2sDetXaOx6dO/Oqeq0xj i4tB9M3LqNL7G1jaFYOJhSXKd/bCh+hIvH/1PNvnSJ2Y1T1H+rwQEREREX1KJQhITpGLsigUIs6Z rYZvv/0WXbp0wYYNG7BmzRq19/v666+xcuVKDUb2H4VcAXmyPNdLbob9pyaAX758qfY+UqkEZqYy UZf8lPrXNibODQNHnBMZGZZqJyIiIv1nKF9s/4vzzfWLeHYiCB/evIQyJRkAYO1SBYAEFnbFUbX/ ODw6tBXyxHewKlkWzs2+RGGnz+cuy/m489qWua1DJu2nT1uaWdmk/Vtq+rG8uUouR0r8W8jMLWBa 2Pq/OOwdM20jK6aftm1iBpmpGWRmFmnrpSZmUCnkadtkdz4zO86kmChIpFJY2jtmGU9Wx6fe6029 c5Xx1gogKeYNAODiT6MztJr0NgqFS5YBkPlzlF0/6p0jQ0hNG9os7ERERESkaV7j5+k6hDyTSCTY uHEjGjRoAG9vb5QuXVqt+c6bNGmCzZs349y5c2jaVHNVpBZ6LdRY258qUeLjAL4nT56gbt26OW6/ e1ZDTYek15KTkxEREYEiRbKfCo10j4lzIiOUl1LtmpzvhIiItMOQ7rIl0utc32dDZVPexeHOVj9U GzQRtpWqQ2ZmgYizf+L1P+fTtrGvXgf21esAgoDXV87h6qo5aDx7FaSm5pBIpP+1q4a8tCWRSHLK m6ff75OfZjZFoUxOgvz9u7T5zJNiXmfdRlYyaTuzbdQ5n58fp4V9MQgqFT7ERMLSIZsKS5nFkPu8 ebZtZYjNzgGQSNB4zu8wLZT1HIeZPkdZ9JOSkPM5ytXx6Qq/YhARERHRZ9S9Dh0cHIwtW7YgICBA swHlgZ2dHQ4dOoSmTZuiZ8+eCAoKQvv27XPcb9WqVXB2dkZERIRG4hIEAe/fv0etWrVw7949jfSR KjVx/vTpU7Xi+tTx48fh6emJqKgojBgxAn5+fjAzM9NInPpiwYIF+Pfff7FlyxZMnDhR1+FQNliq ncjIsFQ7ERERGQ5dF5DOrrD0f/9WyeUQBAEyi0KQyEwR//QBnoccTtvu7b2beHx4Oz5ERUKlVEIQ VFDJUyCoPq43s7ZFwsunEFSqHPvOW1uZnc/PH8tqGwksHUrCumxlPNgbAHnCOyRFv8Hjw9ty8Rxl 3XZm2+R0PjM7TnPbYrCrVgf3tq/G+8gXUCR9wMu/TyDm1j+5iEHd+LNvK7PY7KvXw91tq/DhzSuo 5Cl49+wRwgMWQ6VQ5NBm5v2oc44y31+fFiIiIiKivLO1tUVsbKyuw8hSlSpVcOzYMRQqVAhdunTB 1q1b1dpv06ZNGDx4sMbiWrRoEebPn6+x9lOlJs6fPXum9j4KhQI+Pj744osvEB8fjzVr1mD16tVG nzQHgL59+6J69epMmhsAjjgnMjIs1U5EREQGRZ/za/8fm4V9MZTv0h93ti6H/H0iipQqBwf3Boh/ cg+QALYVXZHw4jFurp2P5LgYWBYriWqDJkBm8bFUeenW3XBvx2qcPXsUVqXKofb4uVl2mee2MstV ZpcX/iyv7DpoPO7v/B2XfMfD3KYoSjRsg3dPH0BqYqLec5RV28j4WE7nM6vjrNp/DJ4c3oYba+ZB mZKMYjUboXi3Zhlz5JkcX67iz6GtTGPz8sa/f+3GjbW+kL+LQ6ESpVGmbQ9ITU2z7iObftQ5R7k6 Pm3jSHMiIiIiyqeiRYvi7du3ug4jW7Vr18bp06fRsWNHDBgwANevX8fPP/8ME5OsU29t27bFiRMn sHDhQkyZMkX0mJ48eYJGjRqJ3u7nihYtCgCIjo5Wa/unT59i4MCBOH36NMqVK4cdO3agXr16mgxR a3JTAVLdbVkhWHckznU6Ct4LdmNYjbhMNwgO/gv9+w/SclhEBc+RIwdRxLporvZp1rRpvhLjV66E omPHLti6dRN69/bMcztERKQf8lqqXd39xN5On/al/JFIJPB5KOB8yAkoPrz//xHSio8jcgUhXQ5N kvqn5L+fEr3M/BVsMbf/we2tfmg6d72uQyEDI0D4/8T5fz8z/B8gkUAilUIiNYHU1AwmloXwcP9m PNwXwAtEREREVKBs3bqJ+ZcsREdHo02bNrh27ZquQ8nRq1ev0KtXL5w7dy5tLvPy5ctnu8/cuXPR oEEDtUq854arqysuXbqk8bm09+zZAw8PDwwYMACbN2/OcjtBEPDHH3/A29sbcXFx6Nu3L1avXg0b GxuNxpdfHTp0wOLFi1G9evUct5VIJOh9cYBofe9stEWt70WHDx/Gvn378Pvvv4vWd1YuXryIxo0b Y/DgwTqZPiGv+bPUfevUyfkmjXU3bbByqgdHnBMZG44yJyIiIoPEGx906s3V84BUBrsq7vgQ/RqP Dm1F8dpN+bxQ7jDpTUREREQi0fdS7Z8qUaIETp48ienTp2PRokWoWbMmFixYgG+//RZSaeYzJs+c ORNDhgzB+/fv0aNHD1HiuHXrFkqXLq3xpDkAREZGAgCKFy+e5TYvXryAt7c3goKCUKRIEWzcuBED Bw40yoEPAgQkq5Lz3Y6F1EKEaCg/mDgnMjIs1U5EVDAZ45cOKoAKwOs4KeYN/v7JO9N1jvVboarX aC1H9JFtZXfc370W93b4Q2ZmAQf3hijfpT+S3kbpZbzq0tfzbZSYNCciIiIiEclkMlhYWCAxMRGF CxfWdTg5MjU1xcKFC9GxY0d8/fXX8Pb2xtatW7F69eosRy0HBARgzJgxSExMRP/+/fMdw4ULF9C4 ceN8t6NuXwBQt27dDOuUSiX8/f0xY8YMxMXFoV27dlizZg1cXFy0EpuuqAQBKkH1Wc0t9ZlImLLV B3wWiIxQarKcSXMiIiIyNJIs7sY3FpYOjmi1bLeuw8jArIgNqg+ZnOFxS3MLvYxXXfp6vo2NoFLp OgQiIiIiMkKpo84NIXGeqk2bNrhx4wamT5+O3377DbVq1cLEiRMxa9YsWFlZZdh+xYoVmDlzJv73 v/9h/vz5+er7+fPnapUWz6+YmBjs2bMHFhYW6NixY7p1ISEhmDBhAq5evQo7OzusX78eQ4YMKVAD PvKaOCf9YNxXpYgKIEfHEroOgYiIiChfJBIpFy5cDGQhIiIiItIUW1tbvH37Vtdh5FqRIkXg5+eH ixcvwt3dHQsXLkTVqlWxffv2TOeunjt3LmrUqIH69evj9u3bee5XLpcjMTExP6Gr5YcffkBiYiK+ /fZbFC36cd7pa9euoWvXrmjVqhWuXbuG4cOH4+7duxg6dCgKUtJcKpHCRGKSp4X0A7/lEhmZ1BLt AJPoREREZMAkEi5cuOj7QkRERESkQUWLFjWYec4z06BBA1y6dAkrV67E+/fv4enpidatW+P69esZ th0wYAD279+PcePGwc/PL0/9mZiYQKlU5jfsbO3atQsrV66Ek5MTZs2ahQsXLqBnz56oVasWDh48 iLZt2yIsLAxr1qyBg4ODRmPRN5Yyi3wtFjJzXR8CgaXaiYwSS7UTEREREREREXiDi10AACAASURB VBERkSFLLdVuyGQyGUaNGoU+ffpgxowZ+P3331GrVi0MGjQIM2fORMWKFdO2LVmyJI4dO4ZffvkF LVq0wJw5c9C6detc9aWpxLlSqcSqVaswefJkmJiYwMvLC+3bt0dYWBgAoHnz5pg9ezbatm2rkf71 3a5GW3UdAomEiXMiI+PoWCJPCfPMSsQQEZF+KEglrYgy4OufSP/wuwMRERERaUHRokUNslR7Zuzt 7eHv748RI0ZgypQp2LhxIzZv3owePXpgzJgxaNWqVdr1n++//x69evWCj48Pfv/9d8yZMweVK1fO tv1Xr14hICAAlpaW8PT0hI2NjShxx8bGIjAwEEuXLsX9+/dhYvIxrbho0SKYmpqib9++GDduHJo0 aSJKf4Yop9zK5s2bcevWLfj6+mopIsoPJs6JjExqqfZPfxIREREZMqbOifQHU+ZEREREpC3GMOL8 c3Xq1MHx48cREhKC+fPnY8+ePdizZw/KlSuH/v37o0+fPqhRowYqVKiAzZs348yZM/D09MTt27cR HByMpk2bZtpuiRIlYGtri+jo6Hwnzf/9918cPXoUW7Zswfnz59ONYlcoFKhTpw4GDhwILy8vFC9e PF99FQSPHz9GuXLldB0GqYmJcyIjxFLtREREZHQ48pxI9zjSnIiIiIi0yNbWFq9fv9Z1GBrRsmVL tGzZEvfv38eaNWuwZcsWzJ07F3PnzkX58uXRtWtXdOjQAS1atMCyZcvg7e2Nu3fvolmzZjm2rW7l QkEQoFAoEB4ejtOnT+PQoUO4fPkyYmJiMrRXr1499OrVC1999VW68vKUs8ePH6Nx48a6DoPUxMQ5 kZHhKHMiIiIyXkyeE+kOk+ZEREREpF22tra4d++ersPQqEqVKmHBggXw9fVFSEgIdu/ejf3792PZ smVYtmwZTE1NUbduXcjlcvTt2xfDhg2D47rAfPcbOcwLtra2SEhIyHRe9GLFiqF169bw8PBAu3bt YGdnl+8+CyqOODcsTJwTGRmWaiciIiIiIiIiIiIiQ2dMc5znRCaToU2bNmjTpg1WrFiBGzdu4OjR ozh+/DhOnTqFlJQU9OvX7+PGUikkUmme+xIUCgBAXFwcAMDCwgIuLi5o1KgRunbtiubNm6NYsWL5 Pib6iIlzw8LEOZERYql2IiLjoW55LaIChe8LIu1heXYiIiIi0hFjnONcHRKJBO7u7nB3d8eUKVMg l8uxadMmeHl5oVChQh83MjUD8pI8l8sBfEycf//99xg3bhycnJzEC57Sef78OUqWLAmZTKbrUEhN TJwTGRmOMiciIqKCgKlzIs1jypyIiIiIdKmgJs4/pVAocP/+fVhbW2PhwoXp1kkk0tx9ORaEdJ/x 27Rpg6JFi4oSp7GRy+WilKfnaHPDw8Q5kZFhqXYiIiIqCJjQIyIiIiIiMm4FLXEuCALu37+P8+fP 4++//0ZoaChu3LiB5ORklCpVCq6urum3V2WcmzwrEqkMgkqV7rEOHTrAzMwMzZo1Q7t27dCuXTvU qVOnwI+OTkxMREREBEqWLJnvth49eoTy5cuLEBVpCxPnREaIpdqJiIjIqLF0NBERERERkdErCInz mJgYHDlyBIcPH8aJEyfw6tUrVK5cGQ0aNMDAgQNRu3ZtuLm5wdbWFsB/U/oJKcm56ierb9EpKSk4 ceIETpw4genTp8POzg7t2rVD+/bt0b59e5QuXTo/h2eQ7t69iypVqojS1pMnT+Di4iJKW6QdTJwT GRmOMiciIiIiIiIiIiIiQ2dmZgapVIqkpCRYWFjoOhzRKJVK7N+/H+vWrcPRo0fh7OyMTp064bff fkPz5s1RrFix7Bv4bOR4ulWJCZBaWgLSj6PGU26HQ2ptDRNn9RLgMTEx2LFjB3bs2AEAcHV1RadO nfDll1+iRYsWMDMzU+8gDZiYifPHjx+jadOmorRF2sHEOZGRyWupdoEjt4iItC71LmEiUhc/rxAR ERERERUUycnJeP/+Pa5evYpGjRrpOhxRBAUFYerUqXjz5g2GDBmCn376CbVq1crVNaLIYV6ixFKp UiXcv38/221u376N27dv49dff4WVlRXatWuHLl26oFOnTqKUMtdHb968gbu7e77bUalUOHHiBPr1 6ydCVKQtUl0HQETiY6l2IiIiMjqCwIULF10vRERERERadPnyZbx+/RrLli3TdSj5JggCxo8fD09P TwwZMgRPnz7F4sWLUbt27VwlzQVByHIZNWoUAGD27NkQBAGLFy/OsP+AAQOgVCohCALu3buHf//9 F2vXroWnpyccHByy7TshIQH79u3D8OHD4eTkhLp162L27NkIDQ2FKptR8Ibml19+wcCBA/PdzpEj R/DixQsEBQWJEBVpC0ecExkZlmonIiIiY8N0HRERERERUcHTrFkzrFq1Cm3atNF1KPm2Zs0abNiw AefOnUOdOnU00ke5cuUAIO18TZw4Ee/evcPs2bPTttmyZQtKly6NefPmAQDKlCmDYcOGYdiwYVCp VAgLC8Nff/2Fo0eP4sKFC1AoFFn2d+XKFVy5cgU//vgjSpYsiS5duqBbt25o27YtLC0tNXKMmrZi xQqMHTtWlLbatm0LX19fjBs3TpT2SDuYOCcyMnkt1U5ERESklzjKlYiIiIiIyGhoc9o6fZmeNDEx EdOmTcOSJUs0ljQHgLdv3wIAbG1t0x774YcfEB0djeXLl6c95uvriwoVKmDYsGHp9pdKpahfvz7q 16+PGTNmID4+HsHBwfjzzz9x6NAhvHjxIsu+X758iTVr1mDNmjUoVKgQ2rdvjx49eqBLly6wt7cX +Ug1x8/PD1euXMl2m9y+hqdOnarWdvryei3omDgnMkIs1U5ERERERERERERE+qhdYHVIpBpMoKsE HPMK11z7ubRnzx5YWlpi8ODBGu0nJiYGAGBnZ5f2mEQiwZIlS/Dq1Svs2LEj7fGRI0eiYsWKaNmy ZZbtWVtb46uvvsJXX30FQRBw9epVHD58GIcOHcLFixezTPS+f/8e+/btw759+yCTydC8eXP07NkT PXr0QJkyZUQ6WvFt374dgwcPRuHChXPcNnBCK0hFvAnEc8lJ0dqi/GHinMjI5HWUOe9mIiLSrM/v RtXmHdZEBomfTYiIiIiIiIyWRALIzKWit6tI0r+5tv/66y90794dJiaaTcnFxsYCAIoWLZrucalU io0bNyIiIgLnzp0DACgUCvTq1QuhoaEoW7Zsjm1LJBLUrl0btWvXxowZMxAVFYUjR47gwIEDOHr0 KOLj4zPdT6lU4tSpUzh16hTGjx+PunXromfPnvjqq6/g6uqazyMWT3x8PObMmYNbt26pvY9EIoG5 Sf5fw0lyZb7bIPEwcU5kZFiqnYiIiAydIOjfhQ4iIiIiIiISmQSQyMQbWCAo9fMG7PDwcHh7e2u8 n7dv38LU1BSFChXKsM7CwgJ79+5Fw4YN8fjxYwBAVFQUvvrqK5w7dw4WFha56svBwQEDBw7EwIED kZKSgpCQEOzfvx9BQUF49uxZlvuFhYUhLCwMM2fORJUqVfDVV1/Bw8MDderU0ekgEy8vLwQGBuZ6 P4lEAqkk7wNkFEpe/9A3TJwTGSGWaiciIiJDJaj4pZGIiIiIiKjA+CzXLQhChsfUodHS7/kUGRmJ EiVKaLyfmJgY2NnZZZnELVasGPbv349GjRohMTERAHDlyhVMmDAB/v7+ee7XzMwMX3zxBb744gss X74cV69eTSvVfv369Sz3u3v3Lnx9feHr64uyZcumJdEbN24MqVT8agRZWbhwIb744gvUqlUrz22w oq/x0N4rj4i0wtFR87+AiYiIiDRCELhw4WKoCxERERFRLqkUApQpqnSLSi5Apcj9okxRQaXQz8+l CoVC42XagY+l2m1tbbPdpkaNGggICEj32OrVq7F9+3ZRYkgt6T5nzhxcu3YNDx8+xK+//opmzZpl Oyr733//xZIlS9CsWTOUKlUKo0ePxokTJ6BQKESJKytXr17F06dPMX78+Dztr1CqkKLI+6JU6edr tiDjiHMiI8NS7URERGSQCkDiLWRyX4330fJXcS52EBERERERaZKgFPS2tLrYChcujLi4OI33ExMT g8qVK+e4Xa9evTB58mT8+uuvaY+NGDECDRs2hIuLi6gxlS9fHpMmTcKkSZMQGRmJoKAgBAUF4dix Y5DL5Znu8/LlS6xcuRIrV66Evb09evToAQ8PD7Rt2xZmZmaixfb48WOMHTsWZ86cydP+SpXAxLcR YuKcyAixVDsRkX7R5RxNRIZAyEsdPgM1e3bmxzpnjg8EwSdfbUskknTn8kPUK/z75068vfexNJ5t pRoo320gzG3sAABxD2/h6fEgxP97DzIzCzjUqIdynb0gs7DMtH15Qjwe7tuIt/euQ6VQwMrZBeW7 DUSR0uXVWg8AcY9u4/HhbUh4/hiWDiVQocdg2Fasnml/KfGxeLh/E2Lv3YBKqYBD9Xqo+NXXafEJ KhUeHwpE5OUQKOUpKFrZHZV6DYdZERsAwPkZX0OR9D5Duw1nrUw7B5/LLr77u9bi5YXgdNtX6D4I zi06qRUPERERERF9FOwVrusQtKpEiRK4fPky+vbV3M3UgiAgNjYWdnaZf9f5nK+vL86fP48LFy4A AOLj4zFkyBCcOHFCY2XSHR0dMWLECIwYMQJxcXE4dOgQdu/ejSNHjuDDhw+Z7hMdHY1169Zh3bp1 sLGxQbdu3eDh4YH27dvD0jLz7645iYmJAQB0794921Ly2fFaeipP+5H+Y6l2IiPDUu1ERERkUIQC tPy/OXMyLqL5pL+X54/BoWYj1P/fUtSZ6AtlchLubF6etv7psb0o1bILGs1cCfcRMxD76DYe7N2Q ZfwP9qxH0tso1Jnoi0Y/rISVU1ncXDsfglKl1vr4x/dwc818ONZpjkazVqHakMmIuv53lv3d2rgY yqQPqPvdQtSb8iuS42Jwd9uqtPXPju/Dm6sX4P7tTDT43zIICjnubF6Wtr7J3PVosWhb2uLUpD1s yrvC3Nou0/5yjA+AU9P26dp0bt5J7XgK1EJERERElAVBEPK8NGjQAM+fP1d7e30QGxuLW7duYeXK lUhKStJYPwkJCVCpVDmWak9lamqKwMBAWFtbpz0WEhKC5cuXayrEdGxsbODl5YXdu3fjzZs32LVr F7y8vNLF87m4uDhs3rwZPXr0wPTp0/Pc94wZM1C5cuU8J83Vff2dPXsWffr0MajXKzFxTmR0Uku0 A0yiExERkb7TdXbPGLOJ//VXvusAONSoBxPLQjC3tUeJhq3x7tnDtPVu305H0co1ILOwQKESzijZ sA3iHt3JMv6EF09RvHYTmNvaQ2ZhgZJNvoA8IR4p796qtf7JkW0o0aAVSjZuCxPLQrC0L46KPYdm 2ldKfAzin9yDy5d9YFbEBuY2ReHSsS+ibl5GSvz/sXfn8THd+//AX7Nk3xeJyIISlCQiieyLqJYW RaJuqeq3ll8vLW0VV3W/3a7SXkW11U3pvXWrxFZFUdklSImtdkkkiCSyrzNzfn+4zhWyzExmMsnk 9fSYy8ycz+e8Z6JXMq/zeX9KAAi4lr4PHsPGwqqHF0xt7fDA2KkovXgaNTfz75tPWV+LG1nJcAt7 qNnXp159aHa8JvV0jRsRERERkW5NmjQJP/30k6HL0Ii9vT0+//xzhIaGwtzcXG/nuXXrlng+dfXq 1Qtr1qxp9NiSJUtw8eJFndbWGisrK8THx+Nf//oXCgsLsXPnTkyfPh1OTk7NjpkwYYJW57p69So2 btyIiIgIbctVm0ql0tvqfdIftmonMkJs1U5EREQdHnM1/Wjmfa0vv4UbhxPhNCio2WPKLp6BdY+e zT7fzS8YN4+lw2lQEORmFriWvg+2vfrBzMYBEFp+XlAoUXb5LOz6DMSRZQtRW3ITVt098MCYp2D3 wIP3vwxxnzjJPXm1gMr8HNjITFBXVgIbjwfE5y1d3CE1MUNlfi4snHs0mq8wKxVSmRzOPsFNvj5B qUZ9AnDjSDKuZ/wOE2tbOA0MRK9H/wK5uSUaqis1qoeIiIiIiDQ3adIkTJo0CS+//LKhS2lE3S36 NN3KT5NVyHfaj6vbqv2OO6u+ExISAAA1NTWYM2cOdu/ebZCtB83MzDB69GiMHj0aX375JQ4ePCjW d+PGDfG4mJiYNp1n+/btLb4+XawAl0qlcHZ2bvM81L4YnBMZGVfX7gzMiYiIqINjaq4/jd/bG0eS cPY/XwAArNy84DNj0X3HAEB+6h6UXjqDIfPebfJ5APCMfRzluReQ8d7zAABzB2f4zPgbILl93pae V9RWQVApcT3jAAb93yuw6OaG/JTdOPntRwhauPy+PcfN7Bxg7dEbV3b/B/2emAUIAnL2/ARIJFDW VkP5373L5RYWjeqVW1j+97nGr+HaoX1wHRoDqVze5OtTpz7v+Bnwjp8BQaVEVUEuzm1ai7Mb12DQ /72icT1ERERERKQ5T09P9OjRAxkZGQgJCTF0OY0s/PdyQFdBsyBg2ZQFGg25s+Jc0+BcIpFgzZo1 OHjwoDjH3r17sWnTJkyaNEmjuXRNLpdjxIgRGDFiBFavXo20tDRER0cj+JD2bdpbJQEyQz7QyVQF BQWQyxnDdjb8ihEZmTut2u/+XR3cQ4OISDuGuPqWqDPjdxz6de/76xIUDZfAKNRXlCF3fwKOffY2 ghYug9TETDymIHUPcn9LgO//WwJzJ9dmv0bZaz+AuZMLQt5YA5mZOa5nHMCxz95C4IJlMLV1aPF5 uYUVIJHANTgWVh69AQCeD41HfvKvKL1wCi6BUfed78FpL+Hi1u9x5KMFkMjl8Bw+HrcunILcygZS cwsAgKKmplG9ippqSM0tGj1WefUSKvOvYMBT85p9bVJTM/Xrk8pg5dEbD4ybhuwv3oOirlajeoiI iIiISHt32rV3tOAcAGQyKWQmbYvdlA0KKBVKjcfdCb0dHBw0Htu9e3csXboU/+///T/xsQULFmDM mDGwtLTUeD59kMlkiIq6/XOZAAE1qnqdn0MKKcxlJjqbLzc3F15eXjqbj9oHm+sTGSG2aiciIiIi kUQCU1t7eA0fh7pbRagp+l97u7wD25C3fxv8Zr8Oa/dezU7RUFWBitwL6BExEqa29pCZmcM9+jGo FEqU55xv9XmpiSksu7k1nlQQbt+auQDJ3KEbBj27AGHvfo3Qt76AhZMLpHJT2Hj2gYmlNUztHFFx 9X9771UX5kPVUHe73fxdCtL2wb7vIFg4uzb7+rSp726a1ENERERERNp75JFHkJ+fb+gymiWVySAz kWt1k8pkWp+3LcE5AMyYMaPRxQh5eXlYsWKF1vW0hwaVEvU6ujWoNL9YoTU5OTno2ZM/D3Y2DM6J jIyra3dDl0BERERELXq7iZtuCSoVzmz4FFUFOVApGlB3qwg5e3+GqY09LP4bEF/Z/R9cS98Pvzlv wtLVo8X5TKxsYO7QDdfS9qK+ogzK+joUpOyGoFLAyq1nq88DgFv4w7iecQCVVy9DWVeLvAPbIAgq 2Pf1afKc+Um7UHrhFJR1tSi9cAoXtq6D10PjIPvv6m630Idw9eBOVBXkoL6iFJd2/At2Dzwovj4A UNRW4+axdLiFjWj1PWutvtPff4LK/MtQNdShMv8KLm3/AY4D/CEzM1e7HiIiIiIiahsHBwdkZWWh urra0KU0S6Llr7Zoa3AulUqxcuXKRo8tXbpU3Du94xJ0dNO9wsJCBuedEFu1ExkZbVu1ExEREekL NzT4n3feaf7dkEjeafP8d2aXSKVwDYzChS3foLIgF3ILS9j16g+/v74OmdzkdjC8fxsA4MjS+eJ4 qdwEkR9+3+Tcg6YvwOWd/8bRZQsgKBWwcOmBgU+/BMv/ruRu7Xn3iJFQ1lTj1HfLoKipgbV7T/jM +BvMbO2bPJ+zbzAubPkWpRdPw8zOER4xo+EeMVJ83mv4OChrq3Hiy/ehbKiHQz9f9J86r9Hft5tH UyA3t4DzoMBW/x62Vp9bcCwuJnyHyoI8mFrbwGlQEHo+Ei/Oq049RERERETUdkOHDsXhw4cRExNj 6FLuI6gEKPWwerk1d4Jze/umf75SR3BwsNgKHwDKy8uxfPlyfPCBbvb8bqva2tpG92WSjrs2WKlU Ij09HYGBgYYuhTTE4JzICLFVOxEREXUYarS57iqil//YrudzGhQIp0FN/5AuM7fQuB4rNy/4zFqs 9fMA4PVwHLwejlPrfOaO3eAz82/NPi+RyfDA2Kl4YOzUZo/pETkSPSJHNvu8JvU5DgyA48CANtVD RERERERtFxwcjMzMzA4XnKtUKtTfE+62lzvBuaOjY5vmeffdd7F582YolbfD/9WrV2PRokVtCuTb ori4GL/88gu2bduGPXv2iI9bSE0NUo+6du7ciTFjxhi6DNICg3MiI8NV5kRE7UfCQJCoRRJpx736 m4iIiIiIiDqn4OBgcVV0R7FsygKDnl9XwXm/fv0wZcoUbNiwAQBQUVGBr776CgsXLmxzjerKycnB tm3bkJCQgOTkZDHEv+Nw6IftVou2tm/fjkmTJhm6DNICg3MiI8NW7URERNQRSKT8UYOIiIiIiIh0 z87ODqdOnTJ0GSJBUG+P7OHDh+ORRx7B4sUtd+rSxq1bt2BqagpLS8s2z7Vo0SIxOAeANWvWYP78 +ZDJZG2euymCIODMmTPYvHkztmzZgmPHjrU6pk+fPjh79qzGNW3atAlz5sxBUVGR+NjgwYOxbt06 +Pv7a1x7UxQKBfbv349vvvlGJ/NR++KnWURGiK3aiYiIyJCkJh27ZRoRERERERF1Xi4uLigsLDR0 GRpzdXXFjRs39DL3rVu32rza/A4fHx+MGDEC+/btAwBcuXIFBw4cwMMPP6yT+YHbbe0PHz6MhIQE bN26FWfPnm11TFBQEB5//HGMGTMG/v7+WnWCfOKJJxATE4M5c+Zg8+bNAIDjx49j6NChePPNN7F4 8WKYmJhoPO/d/vGPf+jl4ghqHwzOiYwMV5kTERGRIckt2n51OxEREREREVFznJ2dcfPmTUOXobHu 3bvj2rVreplbl8E5AMyYMUMMzgHgl19+aXNw3tDQgMTERCQkJGDbtm3Iz89v8Xi5XI7Y2FhMmDAB Y8eOhYeHR5vOf4eLiws2bdqEjRs34oUXXkBJSQkUCgXefPNNbN26FevWrYOvr69Wc6elpSE7O7vD bSVA6mNwTmRk2KqdiIiIDGHDK88augQiIiIiIiLqIvr06YPy8nLY2toauhS1ubq64vjx43qZu6Sk BA8++KDO5hs7dixMTEzQ0NAA4HYgrI3q6mr89ttvSEhIwI4dO1BSUtLi8VZWVnj00UcxYcIEPPbY Y7C3t9fqvK2RSCSYPHkyYmNj8dxzz2H79u0AgKysLAQGBuL111/Hq6++qvHq86effhqnT5/WR8nU ThicExkhbVq1q7sPCxFRV6FNuyeiruzi1nWGLoGIiIiIiIi6iLv3qO4sXFxc9LJSXqVS4datW3Bw cNDZnFZWVvDz88PRo0cBAKdOnYIgCGp9XlZSUoKdO3ciISEBe/fuRXV1dYvHOzo6YsyYMYiPj8fD Dz8MCwsLnbwGdXTv3h1bt27FDz/8gHnz5qG0tBQNDQ146623sGXLFnz33XcYMmRIq/OsXbsW3377 LX7//XeYmZm1Q+WkLwzOiYwMV5kTERFRe1P3Arza2lpkZmYiKSkJSUlJSEtLQ1VVVYtjvLy8kJOT o4syiYiIiIiIiAzmp59+wunTp3H06FEEBgbqbN7y8nKoVCo4OzvrbE4A6Nu3rxicV1dXo7i4uMVz CIKA0aNHY+/evVAqlS3O7e7ujvHjxyMuLg7R0dGQyw0XV0okEjz99NN46KGHMGPGDOzevRvA7b3P g4KC8Le//Q0ffPABbt26hVu3bqG0tBRnz57FuXPncO7cOVy+fBmjRo3Crl27dNounwyDwTmRkWGr diIiIuooKioqkJaWJgblmZmZqK+vV2tsr169EBUVhZiYGCiVSshkMj1XS0RERERERKQ/s2fPRlJS Enr16qXTee+0P9d1aOvk5NTofmlpaYvBuUQigUqlajY079evHyZMmIC4uDgMHTq0Q3V7rKmpwfDh w2FpaYmRI0fi4MGDqKurg0qlwpo1a/D999/DwcEBjo6OcHNzg5eXF/r164dhw4YhIiLCoME/6Ra/ kkRGSJtW7URERERtVVRUhJSUFCQnJyMpKQlZWVlQqVRqjR04cCCio6MRFRWFqKgoeHp66rlaIiIi IiIiIu1pG/xquzK8uW5vxcXFANQLztsSVnt7e2s8JigoCEeOHAEAnDt3DkuXLsXSpUu1rkHfQkND sWfPnkaPlZWVoaysDAUFBVrNyW1yOxcG50RGhqvMiYiIqL0UFBSIq8mTkpJw6tQptcZJpVIMGTJE XFEeGRmp85ZyRERERERERPr2YMbsdjnPmZDPm33uzopzdX+unvuPf+ukppasWjwFeXl58PDwgEQi QWTGG3o/Z1ulhLyL3bt3w97eHhkB/QG0NfCWICTrrC5Ko3bE4JzIyGjbqp1XPRFRV3bv1bYdqVUU UUchCAKuXLmCxMREMSi/ePGiWmNNTU0RHByM6OhoREdHIywsDLa2tnqumIiIiIiIiEj/6lUNep3f VNJylHcnOL+3tXpLZHKTNtXUEqVCAQDw8PAQHxMA1KsUejtnW8gkUsglUgCAnZ2d+LigUEJoZa/2 ZkkkkJqa6qI8amcMzomMEFu1ExERUVsJgoCzZ882CsqvXr2q1lhLS0uEh4eLrddDQkJgYWGh54qJ iIiIiIiIDKNaWa+XeU2kslaD8zut2jXt5GZiaq51Xc1RKFp+H2r19D5pSyKRwFJm1uzzqtpaCIJ6 W9DdPafUwrKtpZGBMDgnMjJs1U5ERETaUCqVOHHiRKPW6zdv3lRrrL2968ES0QAAIABJREFUPaKi osQV5UOGDIGJif6uXiciIiIiIiLqaFRtbu3dmLr9ELUNzgHddl1Ut6utrt+ntpCp8y4Lwu2b2pPK tC+og6qrqwOALvFZD4NzIiOjbat2IiIi6loaGhqQlZWFpKQkJCYmIiUlBWVlZWqNdXFxQXR0NGJi YhAVFQVfX19IpVI9V0xERERERETUMUklEkjVjrp1605w3q1bN43GCYJKozy4JVKpTK2V2RKJRL2w uh2o1HzxEqn6QbigUuLeSx6uXLmCXr16aVBZx3PlyhUAgLu7u2ELaQcMzomMEFu1ExER0b1qa2uR mZkpriZPS0tDVVWVWmM9PT0RExMjrijv16+fTq9KJyIiIiIiIuqsZBIprFpo961vRUVFkEgkGu1x LqhUaKir1WNV95NJpC22Re+IZFZWbZ6jd+/e8Pf3x4QJExAXF4dBgwZ1us9UEhMTAQAhISEGrkT/ GJwTGRmuMici0kxn+0aVSF1VVVU4dOiQuEf5oUOHxNZarfH29hZD8qioKPTq1Yv/rRARERERERHd QwJALjFsa+6ioiI4OjpCpkGLcJVKqceK7nf7fer4neqCgoLEP0vkzUeodSoB+fUN6GVuCnVe1bFj x3Ds2DG89dZb8Pb2RlxcHOLi4jB06NAO/3lLRUUFNm/eDFtbWwwbNszQ5egdg3MiI8NW7URERF1T eXk5UlNTxaD88OHDUCgUao318fERg/Lo6Gi4ubnpuVoiIiIiIiKizu90yOeGLgGFhYVwdXVV+/hV i6fosZqmpYS82+7n1MbOnTvh5uaGkKyzejvH+fPnsXTpUixduhQeHh6Ii4tDfHw8IiIiNLr4ob2s XLkS5eXleOmll2BhYWHocvSOwTmREWKrdiIiIuNXXFyM5ORkcY/yY8eOQaVqfT8xqVQKf39/sfV6 VFSURu3ciIiIiIiIiAgQtNggfODAgZg/fz5mzpypszpu3LiBgQMHqnWsNjW31dGjR3H8+HGsX78e Dg4OeOaZZzBu3Lh2O//hw4eRkZEh3nr37o3g4GCEhIQgJCTkvr3h1XmPzp8/D19fX8ycORMrV66E VNr8uvPc3FwkJCRgy5YtSElJafTZzdWrV7Fy5UqsXLkSLi4uGD9+POLj4zFs2DCYmppq/6J15Ny5 c3j//fdhY2ODxYsXG7qcdsHgnMjIcJU5ERGRcbpx44YYkiclJeHEiRNqjZPL5QgKChKD8oiICNjZ 2em5WiIiIiIiIiK6V3BwMJKTk3UWnCuVShQWFmLEiBE6mU/X5s+fj4qKCnTv3h1r166Ft7e3Xs9X W1srBuSHDh1CRkaGGJJPnz4dX375JSwtLdt8Hm9vb0RFRUEQhBZDcwDw8vLCiy++iBdffBGFhYXY tm0btmzZgv3796OhoUE8rrCwEGvXrsXatWthb2+PsWPHYsKECRg1apRBVnpXVlbiiSeeQE1NDdas WaNRV4POjME5kZFhq3YiIiLjkJ+fL4bkiYmJ+PPPP9UaZ2ZmhpCQEDEoDwsLg5WVlZ6rJSIiIiIi IqLWTJgwAU8//TRWrFgBBweHNs937do1qFQqeHh46KA63dm+fTvmzp2LZcuWYdKkSXo7T3FxcaPV 5BcuXBBXki9evBjBwcF6O3evXr2Qk5Oj0RgXFxfMmjULs2bNQmlpKXbu3InNmzdjz549qKmpEY8r LS3Fhg0bsGHDBlhaWuLRRx9FfHw8Ro8eDVtbW12/lPvU1dVh4sSJyM7OxsSJE/HXv/5V7+fsKBic ExkhbVq1G6JFCxGRvkkkEkOXQKQWQRBw5coVMSRPTEzEpUuX1BpraWmJ8PBwMSgPDg6Gubm5nism IiIiIiIiIk2NGTMG7u7uWLhwIb7++us2z7d3714AQN++fds8ly5UVlbihRdegKWlJS5duqTzPbsr KiqwZ88eHDp0CJmZmSgrKxOD8ieeeAI+Pj46PV9LevTogT/++EPr8fb29pg6dSqmTp2Kqqoq7N69 G5s3b8bOnTtRUVEhHlddXY3Nmzdj8+bNMDU1xYgRIxAfH6+TlfNNqaqqwsSJE7Fnzx4EBwdj3bp1 He4zVpVKhbPnLyC/oAAA4O7eA/379m119b86GJwTGRmuMiciIur4BEHAuXPnGrVez8vLU2usjY0N IiMjERMTg5iYGAQGBsLExETPFRMRERERERFRW8lkMvzwww+IiIiAvb09li9frvVcV65cwcKFC+Ho 6IjHH39ch1Vqrra2Fv/617+wbNkyrF69Wiet44uLi3HixAmcPHlSvFlaWmLgwIEIDQ3FnDlz8MAD D+igeu04OTmhpKREJ3NZWVkhPj4e8fHxqKurw759+5CQkICtW7eiuLhYPK6+vh67du3Crl27IJFI 4ObmhlWrVmH8+PHw9PRscx2XL1/GxIkTkZWVhaCgIPz6668dsovh2fMXcOnyZfH+pUuXIRGAAf37 tXluBudERoat2omIiDoelUqF06dPNwrKr19X799oBwcHREVFiUH54MGDIZfz23giIiIiIiKizigw MBAbN25EXFwcKisr8cUXX2g8x6VLl/Dwww+jpKQECQkJ6Natmx4qVV/fvn1x48aNRnt2a+Lq1av3 heQKhQK+vr7w8fHBmDFjsHjxYvTq1Uu3hbeBtbU1qqqqdD6vmZkZRo8ejdGjR+OLL75AcnIyNm/e jISEBBT8d4U1cHtRRkFBAebNm4d58+YhICAAc+bMwYwZM7Q+96BBg1BTU4NHHnkEmzZtape28NrI z8+/77Gr+fkMzomoadq0aiciIiLdUSqVyM7ObhSU332FcEtcXFwQHR0ttl738fHRSaspIiIiIiIi IuoYxo8fj48++ggLFy7El19+2aa5JkyYoLOtWNvakvve8Uql8r7PNM6dO9coID958iRsbW3FkHza tGnw8fGBq6trm2rRNxMTEygUCr2eQy6XIzY2FrGxsVi5ciUyMzOxZcsWbNmyBRcvXmx0bFZWFmbO nImZM2e2+bx79+6FnZ1dh93it66+Xq3HtMHgnMjIcJU5ERFR+1MoFMjKyhKD8uTkZJSVlak11t3d XVxNHh0djf79+3e4vaOIiIiIiIiISLcWLFiAhQsXIiBjXZvmyQr5P53Uc8eIfw/SyTz7ppzCiBEj MGPGjEYhee/eveHj4wMfHx+MGDECPj4+HXZlc0tUKlW7dgSUSqUIDQ1FaGgoli5dijVr1uC7776D QqHA8ePHxeOGf/lvnZzvwHNTdDJPZ8PgnMjIaNuqvaNeOUREpK57g0YGj6RP9fX1OHz4sBiUp6am orKyUq2xvXr1EoPymJgY9O7dm39fiYiIiIiIiLosAQotP5+XQj+fJ0hlbZtXUN5+PampqRg0aBCC g4MxadIk+Pj4wMTERBclGlxFRYXB9v+WSCTo3bs3AgICsHbtWly8eBE7d+7ESy+9BACQymRtml+l VOqizE6JwTmREWKrdiIiIt2qra1FRkYGEhMTkZiYiPT0dNTU1Kg11tvbu9GKci8vLz1XS0RERERE RESdiUoQUKPSrO23DBJYyvQXQsvMtds2TqUQxOA8PT0dAQEBuiyrwygqKjL43vJ39OnTBy+++KIY nEMigczUTKu5lHW1Oqys82FwTmRk2KqdiIio7aqrq5Geni4G5RkZGairq1Nr7KBBgxrtUe7m5qbn aomIiIiIiIjIGCjVXHkuASDTYfe6cePG4dSpU/efR9OV54L4PwCA9evXY9euXXBycoKzs7N4c3Jy Qrdu3Tr16vPLly8bdHGEIAitfuYkkcqgSVMCoQuvNL+DwTmRkdG2VTsREVFXVlFRgdTUVLH1+uHD h9HQ0NDqOIlEAj8/P3FFeVRUVIe52tgQ2qPlPLeXISIiIiIiImOl3RpvzWVnZ2P58uXYv38/CgsL oVA0s9pdkx/Bm/hIIDIyEkVFRSguLsa5c+dQVFQk3mQyGQRBgKenJzw9PeHh4SHe7jzWkbe2O3Hi BB5//HGDnf/MmTPo3bt3i8cIgur211CNz1Ik0ra1dzcWDM6JjBBbtRMREbWstLQUKSkp4oryrKws KNW4qlYqlSIgIEAMyiMjI+Hg4NAOFXceb73V9A9j77zzNgTh7TbNfe8PzC+88AI+++wzAIBMJmv+ B/3/unDhAt5880389ttvAIDhw4fjk08+gbu7OwDg2rVrmD9/Pvbt24f6+nqMGzcOq1evhq2tLQDg r3/9K7788stGc/7zn//8Xyu0JiQlJWHJkiXIyspC3759sWLFCgwfPlyzF05ERERERERGz1zHweWf f/6Jo0eP4uTJk7hw4QKOHz+OvLw81NXViRely+VyODo6wtraGqWlpSgpKRHHq+oFaJac32/FihWI j4/Hs88+ix49etz3fH5+PvLy8pCXl4erV68iMzMTW7ZsER/r3r07wsPD4ejoCF9fX/j6+sLb27tN NelCRUUFsrOz8d577xnk/LW1tfj8889x8eLFZo9RNdS3Y0XGg8E5kZHhKnMi6oo68tWn1DEUFxeL q8kTExNx/PhxtVYuy+VyBAUFiUF5RESEGKJS8955p33Os3r1aqxevRo7d+7E+PHjWz3+888/xxNP PIE1a9agvLwcs2fPxpNPPonk5GQAwMSJE2Fvb48TJ05AqVRi2rRpePbZZ7F582Zxjueffx6rV69W q760tDQ89thj+Pjjj7Fjxw6UlJTgn//8J4NzIiIiIiIiIycIAhQKhXirra1FWVkZKioqUF5ejurq atTU1IjHm0rbttZ8xowZOHPmDK5du4Zbt26hqqoKJiYmMDU1BXA76JVIJLCxscGwYcPwzjvvIDg4 WBzf0NAAExMT8TM2lVIAlG3v+DZ48GAsXboUCxYswMiRIzF79mw89thjkMluXyTg7u4Od3d3hIaG Njn+2rVrKCgoQFZWFg4ePIhVq1YhNzcXvr6+8PHxga+vL/z8/PDggw+2uVZN/Pbbb5DJZIiKimrX 8wK3/27FxsYiIyOj2WNUrSwsoOYxOCcyMmzVTkREBNy4caNRUH7y5Em1xpmamiI4OFgMysPCwmBt ba3naqm9fPzxx+Kf7e3tMXPmTEyZMgUAUFBQgLS0NGRlZaF79+4AgPfeew8REREoKCho8sr41rz2 2muYPn06nnvuOQCAg4OD2qE7ERERERER6UdZWZnYPryiogJVVVWora1FbW0t6urqGv1+7+3O45WV lbh16xbKy8tRUVGB2tpaNDQ0QKVSoaGhQbxYXxAE8c8ymUy8WVlZiVvEZYU82+bXVFVVBV9fX0ya NAkAcOrUKRw4cADDhg3D3r170b9/f7zxxhsYM2ZMk+Pv3mt835T79zrX1meffYZPP/0U+/btw9df f40JEyagd+/eWLRoEZ555hkx2G+Om5sb3NzcEBgYKD5WV1eHEydO4MSJE8jMzMSOHTuQk5ODJ598 EpMnT4ajo6PO6m/ODz/8gFGjRsHGxkbv57rbyZMn8eijj2L//v1wdnZu8pgDz01p15qMDYNzIiPE Vu1ERNTVFBQUNArK//zzT7XGmZubIywsTAzKQ0JCYGFhoedqqSMoKCjAunXrMG7cOAD/2zv93g4W giDg2LFjYnC+fv16fP3113BxccHjjz+O999/H3Z2dvfN39DQgJSUFMTGxsLHxweXL1/GoEGDsGzZ MsTExOj51REREREREVFmZiZSU1ORm5uL06dPo7i4GEVFRbCysoKTkxOcnZ3h6emJhoYGmJubw9zc HGZmZuLvzs7O4uPm5uYQBEHcE/zChQvw8vLCgw8+CG9vb7i6usLBwQEODg6wsbGBtbU1rK2tYWVl BSsrq1YD4ra6fPky/vOf/2D9+vV48MEHMWnSJMTFxeHpp5/GZ599hr/85S9qzdNSd76ysjIMHToU xcXFOHXqlHjReWvkcjlGjRqFUaNG4erVq/j000/x8ssv48MPP8TSpUsxceJEjbpJmpmZISgoCEFB QeJjly9fxsaNGzFs2DAEBARg8uTJGDlypNpzauL8+fPYtm0btm3bppf5m1JfX49vv/0WCQkJyMvL a/a4pr5+3333HaZPny7e//333zFs2DB9lGkUGJwTGRmuMicioq4gNzcXiYmJYlh+4cIFtcZZWVkh PDxcDMqHDh0KMzMzPVdLHcm6devw7LO3r+b38/PDrl27ANxuDxcYGIg33ngDX331FVQqFd58801I JBKUl5cDAL744gt88cUXUCgUOH78OGbOnIlp06Y1+cNyWVkZFAoFvvrqK2zduhX9+vXDypUrMWbM GJw5cwYeHh7t96KJiIiIiIi6kMLCQowePRqenp6IiIjApEmTYGNjA2dnZzg7O0Mu1zway83NRXx8 PCZNmoS///3v7bKquTUKhQKbNm3Cf/7zHxQXF+Mvf/kLdu/eDRcXFxQVFSEkJASLFi1SOzRvjZ2d HQ4ePIjx48erHZrfy8PDA8uWLcOiRYvw7rvv4sknn8SoUaOwbt06dOvWTevaevfujVdffRWvvvoq 9u3bhx9//BHffPMNvv32W512EhQEAQsWLIC/vz8ee+wxnc3bnMLCQnz22WfYsGEDXnrpJezZs0ej 8YIgYNWqVeJ9X19fXszfCgbnREaGrdqJiMjYCIKAS5cuNQrKc3Jy1Bpra2uLyMhIREdHIyYmBoGB gY3aj1HX83//93945plncP36dbEV++nTp2FpaYmff/4Z8+bNw4ABA2BmZoYlS5bgwIED97U/k8vl CAwMxIoVKxAbG4uKior72rNZWVlBIpFgxowZYku51157DStWrMCBAwcwbdq0dnvNREREREREXUVD QwOmTJmCtLQ0nf78P2fOHHz11Vfw9/fX2ZxtsXz5cuzduxeDBw/G66+/3mj1dVFREUaMGIFFixZB 2sa90+/Vo0cPqFQqXL9+XevwHAC6deuGlStXYvr06Zg8eTICAwOxY8cODB48uM01jhgxAiNGjEB1 dTUCAgJw+PBhnbVU//bbb7Fz506kpKTo/L29W1paGrZt24bffvsNzz//PC5duqTVPCkpKfjjjz/E +y+88IJGq/u7IgbnREZIm1btLbVgISIyJH4z1/UIgoDz58+LbdcTExORn5+v1lgHBwdERUUhOjoa w4YNw+DBg7W6kpyMm0QigZubG5YsWYI1a9bgwoUL8PPzQ69evbB9+3bxuB07dsDc3BzBwcEan8PC wgL9+/dv9Nidve30+cM1ERERERFRV/bLL78gICBAp6F5ZmYmHB0dO0RovmHDBrzzzjt44YUXsHfv 3iaPmT59OjIyMmBmZobY2Fj4+voiNDRUZzWEhITgxIkTbQrO7/D390dmZiamTJmCqKgo7Nq1C5GR kTqoErC0tMSff/6JkSNHIiEhAZaWlm2aLyEhAbNnz8Z7772HsLAwndR4t71792L37t349ddf4evr i8mTJ2Pp0qVtmnPlypXinx0cHDB16tS2lmn0+IkNkZFxdW37P1ZERETtSRAEnDp1Cl988QUmT54M d3d3DBgwAM899xz+/e9/txiaOzs7Iy4uDitWrMCxY8dQVFSEbdu24ZVXXkFgYCBDc4N5u4mbYSmV SkyaNAnHjh1DbW0tcnJy8NZbb6F79+5iwP3JJ5/gwIEDqKysxIEDBzB37lwsWbIEtra2AIAJEyYg KysL1dXV+OOPPzB//nw89thjzV65fmdFwtGjR1FZWYkPPvgASqUSDz30EADg7bffxoABA8TjT548 CYlEgpMnT4qPDRgwAG+//bae3hUiIiIiIiLjEh0djd27d+t0ztOnT8PLy0unc2rq999/R2RkJE6f Po2TJ0/ipZdeavK4999/H48++qi4Ld1vv/2GRYsW4ZNPPkFqaqpOFtBNnToVa9eubfM8d9jY2CAh IQHx8fEYNWoU0tLSdDY3ALzxxhuYPn06zpw5o/HYqqoq7Ny5E+PHj0dcXBxeeuklLF68uM01NTQ0 4PDhw/jmm2+waNEieHh44Mcff0RoaCgyMzPx008/YcKECW06R05ODrZs2SLenzVrVpsvHugK+Eki kZFhq3YiIuroVCoVTpw4IbZdT05ORlFRkVpjXV1dERMTI7ZeHzhwoNiVgN0JOoZ33mn+6yCRvKPT c3399deYNWvWXfPfPvfNmzfva68uk8nw9NNPY/bs2Th+/Djs7e0RGRmJ33//XfxAIT4+HrNnz8bB gwfh4eGBV155BXPnzhXnmDlzJp5//nlkZ2ejW7duGDduXIuh9ty5c1FWVoaxY8eirKwM/v7+2LVr F9zc3HT4LhAREREREdEdjo6OWLJkCWbNmoWvvvpKJ3NKpVKoVCqdzKWNxYsXQy6X44cffkCvXr2a Pa60tBQ//vhjo4ux5XI5kpKSsH79eqxcuRKvvvoqysvL0b17d/HWs2dPKBQKmJqawszMDObm5rCx sRH3he/WrRucnZ2xa9cujB49GmFhYQgNDcUnn3yC+fPn6+Q1yuVyfPPNNzh//rz4s7ome3FXVFTg 6NGjuHDhAoqKilBZWYn6+noAt79+W7Zswc6dO/Hqq6/CxMQEcrkccrkcMpkMKpUKSqUStbW1qKio wK1bt5Cfn48LFy7g7NmzkMlkGDVqFJKTk7VeDZ+dnY1jx47h+PHjOH78OC5evIjBgwdj8ODBeOih h/DRRx9pNW9LVq9eLf69lclkeP7553V+DmPE4JzICGnTqp2IiEhfFAoFjh07JgblKSkpKC0tVWus u7t7o6C8X79+DMg7sPbe+mXmzJmYOXOm2sePHTsWY8eObfb5nj17YteuXc0+P3r0aIwePVqjGl9/ /XW8/vrrTT739ttvNwrefXx87nsP//zzT43OR0RERERE1NU9+eSTkEql8PLywjvvvIMpU6aIF0xr QyKRGGSr05ycHEyePBlz5sxRq8X2hg0bMGfOnCafmzZtGqZNmwZBEFBcXIzr16+Lt+rqapSXl6O0 tBR1dXWora2Fvb09Tp8+jaKiIty8eROWlpY4fPgwhg0bhr179+KVV17BE088gfT0dJ21LZdKpdi1 axfGjh2LwsJCtcYolUqMHz8ee/bsQUNDgxj0W1tbi+36BUGAt7c38vLysHHjRigUCvEmCAJkMhlM TExgbm4OW1tbODk5wdPTE8OGDYOfnx9CQkJgbW2t9us4c+aMGJDfuQ0ePBj+/v4YOnQoZs2a1aj7 nD5UVlY2unAkLi7O4F0TOgsG50RGhqvMiYjI0BoaGnD06FExKE9NTUVFRYVaY3v27NkoKH/ggQcY lBMRERERERGRRiZNmoSJEyfiww8/xMCBAzF06FA88sgj6N69O+rr67Vqg/2Pf/xDq1q0Cd3Xr1+P L7/8Ehs3blQ78ExJScG8efNaPEYikcDZ2RnOzs7w8fFRu56SkhLMmjULH330UaPPaX7++We157jX nfelqc99kpKSNJ7v5s2b6NatW4tdDe9eja9Obc0pLS1FXl4ecnNzkZOTg7y8PNTU1GDbtm3o27cv /Pz84O/vj8mTJ8PPz0+j16EL3333HcrKysT7uuoM0BUwOCcyMtq2ajfEFXNERPe69xtlBqadQ11d HY4cOYLExEQkJSUhPT0dVVVVao3t27cvoqKixLC8pZZjRERERERERETqkkqleO211/Daa68hOTkZ v/32G+bOnYuGhgYAwL//uRBSPX72pBIETHl5mcbj9u3bh/379yM1NVWjcenp6fjxxx81Pp86HB0d sXnzZvH+1z+Oh7ZvnUoFzJqytdFj/eMOaV2bTCrB6Z9DxC3b/v26GaRt+LI++W4dZs6ciaeeegoq lQq5ubliSH7nJpfL4enpCS8vL3h5eWHgwIHw9vbGsmXLxJXuhqJUKrFixQrxfmhoKEJDQw1YUefC 4JzICLFVOxER6VNNTQ0yMjLEFeUZGRmora1Va+yAAQPE1eRRUVFwd3fXc7VERERERERE1NVFRUUh KioKwcHBKCwsxIwZMwAAEqkEZqa6Dzrr6hsApeaL1T744APY29vj+++/12jckSNHEBAQAKlUqvE5 tWVmrnnEqGhQNb1fvABU1So1ns/SXNbk4xIJYKbFl7X29rbo+P7775GYmIjw8HAxIA8ODhaDck1a t7e37du349KlS+J9rjbXDINzIiPDVu1ERKRrVVVVSE9PR3JyMhITE3H48GHU19erNdbX11dcUR4V FQVXV1c9V0tERERERERE1LQxY8YAgBicA7c7HsokEmi9hPoeyqaCYTUsXboUNjY2ze5T3pKMjAyE hIRodd62kMmkar9tKlXrFxIoVQLUffvkspZPLJHcXo2uLsVdFzokJCSIf1c6m2XL/tfloGfPnlpt S9CVMTgnMjLatmonIiK6o7y8HKmpqUhKSkJycjKOHj0KhULR6jiJRILBgwcjJiYGMTExiIyMhJOT UztUTERERERERESkPQEAmtjOVBAEaLJuXNvW78uXL4eZmRnmzp2r1ficnByDBaR3v23NbQmryXaM YtYtaf79VKm59ey9hzU37t7zdNbQPDU1Fenp6eL9l19+GXI5o2BN8N0iMkJs1U5ERJq4desWUlJS kJSUhKSkJBw7dqzptln3kMlkGDJkiLg/eUREBOzt7bk3PRERERERERF1GiqlCtqtEW9iLi3GfP/9 9zAxMcGLL76o9XkvXbrU7p/HCAKgUKj7ilsPuqVSCaRqrhCXofXjVCpApeZlD+oe19Hdvdrc3t6+ UWcFUg+DcyIjo+0q8+auBCMi0pd7v5ln2Np+bt682SgoP3nypFr/DpiYmCAoKEhsux4eHg4bG5t2 qJiIiIiIiIiISPdUKhVq1dyOTh+uX7+OVatW4ciRI22aR6FQtPvK4rra1rsTqksqBazM27Y/+08/ /ST+WaX6337lXcXZs2exfft28f7s2bM79F7sHRWDcyIjw1btRER0r2vXriE5OVlsvX7mzBm1xpmZ mSE4OBjR0dGIjo5GWFgYLC0t9VwtEREREREREZH+TXl5WesH6dnFozHKAAAgAElEQVRzzz2HL7/8 ss3zNDQ0wMTERAcVqWfm5K06ne/M5tA2z3H06FEAwJT36to8V2e0bNkycWGMqamp1m3/uzoG50RG iK3aiYi6try8PHE1eVJSEi5evKjWOAsLC4SFhSE6OhpRUVEIDg6Gubm5+Dy7AhARERERERGRMegI HVi/+uorBAQEIDAwsM1zteeKc12/d+rMd/HiRWRkZCA9PR2HDh2CXC5HaGgoQkJCEBYWhp49ewIA li5d2uI88+bNw7BhwxAXF6eT2juK/Px8rF+/Xrz/9NNPw83NzYAVdV4MzomMDFeZExF1LYIg4PLl y+KK8qSkJOTm5qo11traGhEREWJQHhgYCFNTUz1XTERERERERETUteXn52P79u3YsWOHTuarr683 qs90/vzzT6Snp4thuZ2dHUJDQzF8+HC8+uqr6NGjh6FL7FA++eQTNDQ0ALi98GXRokUGrqjzYnBO ZGTYqp2IyLgJgoBz586JbdeTk5NRUFCg1lh7e/tGQbm/vz/kcjlXkhMRERERERERtaPPP/9cp6ue HR0dUW/Avdrb4tKlSzhx4gSys7ORnZ2NoqIiyGQyhIaGYsyYMXj//ffh5ORk6DI7rKKiInzxxRfi /fj4ePTr18+AFXVuDM6JjBBbtRNRR8egVn0qlQqnT59GSkqKGJYXFhaqNdbZ2RmRkZFiUO7j4wOZ TKbniomIiIiIiIiIqCVbt25FSkqKzuZzcHBAXl4eBg0apLM59eHy5ctiQH7n5urqCl9fX/j5+WH+ /Pnw9/eHhYWFoUvtND799FNUV1eL95csWWLAajo/BudERoarzImIOjelUons7GwkJycjJSUFqamp KC4uVmts9+7dERUVhaioKERHR2PAgAGQSqV6rpiIiIiIiIiIiNSVmJiIwYMHw97eXmdz9ujRQ+2O hO3lxo0bOHXqFFJTU8WQ3MXFBX5+fmJI7ufnBysrq3arqaKiAhUVFe12Pn0rKyvDqlWrxPuPPvoo hgwZYsCKOj8G50RGhq3aiYg6l4aGBhw7dgxJSUlISUlBWloaysrK1Brr4eGB6OhoREZGIiYmBn37 9uVqfiIiIiIiIiKiDiwhIQETJkzQ6ZyGDM5zcnJw/vx5nD9/HhcuXBD/bGlpiVGjRsHLy8sgIfm9 Ll++jJ9//hmJiYl45plnDFaHLq1evbrR54hcbd52DM6JjBBbtRMRdVy1tbU4cuQIUlJSkJKSgkOH DqGqqkqtsb169RLbrkdHR6Nnz55iUM7AnIiIiIiIiIio49uyZQs++eQTnc7Zo0cPZGdn63TOuwmC gHPnzomh+N0heY8ePeDt7Q1vb28EBwfjqaeegre3N2xsbPRWjzZ69+6N2NhYjBo1ytCl6ERFRQX+ +c9/iveHDRuGyMhIA1ZkHBicExkZrjInIupYqqqqkJmZiZSUFCQnJ+Pw4cOoq6tTa2y/fv3E1utR UVHw8PDQc7VERERERERERKQvx44dQ1BQkEZb62myWOLzzz/XqB5BEBrdr6mpaTIgv3z5Mvr16ycG 5CNHjsQLL7wAb29vmJiYaHROfVLnvdqxYweef/75Vo+7973paNasWdNoe8c33njDgNUYDwbnREZG 21btHf0fASLqPLr6yufy8nKkp6eLe5RnZWVBoVCoNXbgwIGNgnJXV9cu/34SERERERERERmLwsJC rfY2/3FV60GvpibP/QxWVlaIi4uDUqnE+fPnUVpa2iggf/LJJ9G3b1888MADOj+/vgRkLEeb4g4J 8EfIAp3Vow+VlZVYvny5eD8iIgKxsbEGrMh4MDgnMkJs1U5E1H6Ki4uRlpYmBuXZ2dlQqVStjpNK pRg8eDCioqIQGRmJiIgIODk5tUPFRERERERERERkCIWFhXBxcdF4nAQSmJnpLtKrq/vfIg93d3c8 9thj6Nu3L3r06KGzcxhSg6BEg6DUeJy51ARSdPxFLKtXr0ZRUZF4/8033+TiGx1hcE5kZNiqnYhI v65fv46UlBSkpqYiOTkZZ86cUWucXC5HQECAGJSHh4fDzs5Oz9USEREREREREVFHUVhYiG7dumk1 ViKRQCaVoq35qELxvwUfVVVVbZusA1MIKqg0WHouk6jfPt+QysvLsWzZMvF+WFgYHn74YQNWZFwY nBMZGW1btRMRUdNyc3ORmpqKlJQUpKSk4MKFC2qNMzMzQ3BwMCIjIxEVFYXg4GBYWVmJz/MqUCIi IiIiIiKiruXmzZsYOHCgocvoMgQY3xa1K1asQElJiXj/3Xff5eeMOsTgnMgIsVU7EZF2BEHAxYsX GwXleXl5ao21srJCSEiIGJQHBgbC3NwcAENyIiIiIiIiIiICZDIZPDw8tB6vVGN7QLpNCgmkEpmh y9Cp4uJifPzxx+L9mJgYDB8+3IAVGR8G50RGRttV5oIGLUuIiO64NxDubAGxSqXCn3/+KQblqamp uHHjhlpjbW1tER4eLrZe9/f3h4mJiZ4rJiIiIiIiIiKizqqqqqrR3tSaqK1t0HE1xksukUIuM23T HDk5OejZs6eOKtKNjz76COXl5eL99957r9N9HtvRMTgnMjJs1U5E1DyFQoHjx48jNTUVqampSEtL Q2lpqVpjnZycEBERgcjISERGRsLHxwdyOb+VIiIiIiIiIiIi9djZ2aGsrEzjcU/OXa2HaoxTVsgC ncwzZcoUODk5IT4+HvHx8bC2ttbJvNrKz8/HypUrxfujRo1CZGSkASsyTvy0l8gIsVU7EdFttbW1 yMrKEoPyQ4cOoaqqSq2xbm5uiIqKEsPy/v378wpOIiIiIiIiIiLSmq2trcbB+Z1usSUlJZg6dSoe fvhhvPzyy/oor9NrrbPuvHnzMGzYMMTFxak1X1ZWFjZv3oygoCCEhYUhPj4eY8aM0UWpGnvrrbdQ W1sr3n///fcNUoexY3BOZGS4ypyIOruCggL06NFDq7FVVVXIzMwUg/IjR46grq5OrbG9e/dGeHi4 uKK8d+/eDMqJiIiIiIiIiEhn7OzskJubq/G4n3/+GX//+9/xww8/wM/PTw+VUVMCAgIQEBCA999/ H3v37sWWLVswb948xMXFYeLEiQgNDW2XOk6ePInvvvtOvD958mQEBAS0y7m7GgbnREaGrdqJqDPb tGkTnn/+eYwfPx5r165t9fhbt24hPT0daWlpSE1NxfHjx6FUKtU614ABA8TV5OHh4XB3dxefY2BO RERERERERES65uzsjIKCAo3GzJkzB6ampsjOztZTVaSORx55BI888gjq6+uxZcsWLF++HDk5OWIr d29vb72de9GiRVCpVAAAExMTvPfee3o7V1fH4JzICGnTqr21FibU8XXr1s3QJRCppaSkpMnH586d ix07dqC+vh5Hjhxp8pjr168jPT1d3J/81KlTap1TKpXCz88PERERCA8PR3h4OJydnQEwJCciIiIi IiIiMlZvd9DPfd5+8021j3W5M+bTT/VTTBfiCCB71Sro4hIEn//eao8cwb9efVUHMzYv+L83AEBD A9b36aPX8+nK250wd2JwTmRkuMq8a5sqTDV0CUTN2vvsXhSuK2zyuZCQEOTl5aGmpgYAcOnSJQiC gJycHDEkT0tLw6VLl9Q6l4mJCQICAhAREYGIiAiEhobC1tZWZ6+FiIiIiIiIiIiIiJr3tkTS6cJz BudERoat2ulE0glDl0CktszMTIwcORISiaRR5wsTExP07dsXxcXFas1jYWGBkJAQhIWFITw8HMHB wbC0tNRX2URERERERERE1IksqagwdAmi6OhobNq0Ca6urvc9t379emzYsAHx8fH461//aoDqjNvC hQsRFRWFxx9/XK/nSUlJwbZt27Bt2zaMGzcO48ePh5eXFzw9PTWaZ+7cuVi3bp14/6233sKCBQt0 XK1+fGBjY+gStMLgnMgIadOqnYyLtcza0CUQNVKprLzvsY8//hirVq0CcP92EQ0NDS2G5ra2tmJI HhERAX9/f5iamuq2aCIiIiIiIiIiIh3r06cPLl68eF9wXl1djblz58LV1ZWheScXGRmJyMhILFu2 DNu3b8ff//53HD58GHv37kVQUJBacygUClRXV4v3AwMD8eKLL+qrZPovBudERoarzOkOUylDROoY 6lX19z02YcIEHD16FBVqXu3r4uKCsLAwsfX6gw8+CJlMJj7PfcqJiIiIiIiIiEgfbPSwcvbnn39u 9rlr1661+ZzqfuZ2hz5eY3M0ra2ze+qpp8Q/x8bGaj3P0aNH4ejoqNaxXe091iUG50RGRttW7feu 9iTjIJcaz//NZ87IhPs4d7g/7m7oUgzq0NOH0POpnnAb5WboUtSiUCnue8zDwwP19fVQKO5/7m7W 1tb48MMPER4ejj59+jAcJyIiIiIiIiIig5jxyUFDl6AeCfDNy8O0Gvrt1HDd1nIvAZj+rzT9nqOD enbet+1yHgHAupXT2+Vcxsp4EhUiErFVO91NCqmhS9AZCSRG9Xq01VneBxVUTT4eFhaGzMxMSCQS 1NbWor7+/hXpAFBZWYlp06bps0QiIiIiIiIiIiK1NCib/qyro5BKJJDJtF94IoEE8jaMb4lKBSiF jv3+6ZtMaqLX+VWCEkIXf491gcE5kZFhq3ZqijGs1JXc+WUEr6WtOsP70FIXi02bNkEikeDUqVPY v38/tm3bhqysLNjZ2aGiogIq1e1v8GxtbXHs2DH4+/u3V9lERERERERERETNqm9QGrqEJkklEpia yFo/sBVyqRRyqW4/d1QJQK2qY75v7UkikUIm18/2qoKggqqhRi9zdzUMzomMjLat2sn4SdCxg1Z1 GcvraIs7FxF0VALU2/ph0KBBGDRoEObNmwcAOHjwIHbv3o1ff/0VN2/eRH19PYNzIiIiIiIiIiLq UIx909Pb63V0+Nkjt4ltRB8LovgW6w6DcyIjxFbt1NGlTE2BS4QLbmXfQtmZMvi+5ouL31+ES7gL So6VoOJ8BSw9LTHwlYFwGOygk/ldIl1w9vOzKEwsRENlAxwGO2DQokGw6G7R6nw5/8nB5R8vo/5W PWz722LgKwNh298WAKCsUbY475H5R3Az9SYgASy6W8DzcU/0ebaP+L1nU7V2C++Gc1+eQ2FSIRSV CnR/qDsefOlByCxuXzVamVuJzDmZKDtTBjNnMwxcMBDOIc4av08dTWxsLGJjY7F06VIUFhbiwIED mDx5sqHLIiIiIiIiIiIiAnB7ZXdHo9Jxanq7I71u5pR1/N0m25UgqHQeckskfJN1icE5kZHRdpV5 S22VifTh6o6rGPKPIbD3sYdEKsHF7y8id0suAj4KgG1/W+RuzsWRl48gZnMMTB00b2Fz7/xZf8uC ql6FkM9DYGJnggvfXEDWoiyErwuHpIX2Q1W5VTiz8gxC1oTA7kE7lJ8rR8GeAjE4P/728RbnDfok CAAgqARUnK/AH0v+gIW7BXqM7NFsrUcXHEVDeQOC/hkEM2czXN9/HcVHi+ES6QIAKNhVgCEfDIF1 H2tc+fEKjr91HA/9+pBOLwQ1NBcXFzz55JOGLoOIiIiIiIiIiAiA7tqhd2T1Cu6RrS9KlQJKlcLQ ZVArGJwTGRm2aid1qNtKW5+8nvCCvZ89gP/V4xnnCYeA2yvMe0/rjfxf8nE98To8x3uK49St/e75 awprcOPgDcT+EgszZzMAQL8X+mH/iP2ouFwBmz42zc4jkUsgNZFCZi2DxFQCOx872PnYQYCA2sJa 9eeVAjb9bdBzUk8UJhfCbaRb07Ver0FhciGiN0fD0sMSAOAx3qPRa+/5l56wHXQ7uPec6IlzX5xD TVENzLuZq/Xe6ENHbh1PRERERERERETUJhJAJjPuz78EQYCSC+x0QqFQIDExET/99BOA2+v3BYH7 vHcGDM6JjBBbtZNaDPw9kIWrxX01WLpbNnrMwt0CtTdqGx+nZt13z1+TXwMA+H307/cdV1NQA5sH mg/OLdwsMPjdwTi78izqS+th09cGvf7SCzbeNmrNe33/dVz6/hKq8qqgrLn9zZGDn0Pj13lXrdUF 1ZBIJbDsYdnsazV1MBWfk5nevspVVasy3NfUuH9mICIiIiIiIiKiLu6bl4cZugS9m/6vNEOX0KkJ goCsrCxs3LgRW7ZsQWFhofjcupXTDVgZaYLBOZGR4Spz6jSaCFurC6ob3a/Jr4FLlEub57fobgGJ VILhvw6HiZ2JxlO5RLrAJdIFgkrAtb3XkPHXDMT+EtvqvPUl9Tj+xnH4f+gPp6FOkFvIceU/V3D9 t3v+G72rVks3SwgqAdX51eKKcyIiIiIiIiIiIjKMiooKQ5egd5q+xkmTJmHJkiXw9/fXU0WdR05O Dn766Sf8+OOPOH/+fLPHubu7Iy4uDnFxcQgMDIREwtVIHRGDcyIjw1btpClDtW0X/vvrbnlb8uAU 4gTb/ra4mnAVtYW1cBnmIh7b1Bh15jfrboZuUd2Q/W42+s/rD3MXc1ReqsSl7y9h8HuDITWRNjtP cWYxSo6WwH2sO8xdzSEoBSjrlBAEodV5FXUKCIIAubUcEhMJbp28hSsbr8DMyazR67iv1shuOPHe CQxaPEjc49zM6fbj9x5/9+/t/bVke3YiIiIiIiIiIiLqakpKSrB161Zs3LgR6enpzR7n4OCAuLg4 PPHEEwgLC4NU2vzn0NQxMDgnMkLatGoXuHdJl2bI8PxuHuM9cP7z86g4XwFLT0sM+WQITOxN7guZ tZnf5y0fXPrmEo6+fBT1JfWwfsAavZ/pDYmJpMU57YfYo/xsOY6+dBS1N2th5WX1/9m78/Co6rP/ 459zJhuEBEggYUdkR1QQAVkEtyoqVcsjilIVbK3WR5EKIlCroFKoVtRq0f6qsihWpe2DdQV3Adks KqiAsgiygxBIgGxzzu+PyeyTbZLJJCfvF9dcs5wz59wz0DrXfOa+vzpzxpkyG5iyZZd53JSWKepy Rxd99YevVJxbrLSuaco+L1s5G3LCzhl4//Rpp+v7Z77X53d9LvdJt7IvzFbXcV0jvg/xCs4JzQEA AAAAAADUFwUFBVq6dKn+8Y9/6N1331VRUVHE/VJSUnTZZZfp2muv1UUXXaSkpKQarhRVQXAOOAxd 5ohWTYau57x4TsRzpp6aqk63d4pYV7/n+0V8TkWP72roUuc7O6vznZ0jHr80RqKh9je0V/sb2kd8 XnnHbT+6vdqPDn5u4PaItTZyqds93dTtnm5hzwnd30gy9LNVP6vQa6kuhOYAAAAAAAAAnM6yLK1a tcq3bvnRo0cj7mcYhgYPHqzrrrtOV111ldLS0mq4UlQXgnPAYRjVjqqI9+QB27bjXgPKxto7AAAA AAAAQP114MABrVu3Tm+//bbOPPPMOvN9YU5Ojj799FPl5uZq2LBhZXaC79ixQ3PnztWrr76qXbt2 lbpf9+7ddd1112nkyJFq06ZNLMpGDSM4BxwomlHtgFe8x7aXd/78vflaMWJFxG0tL2upHn/oUanz VvfxnIxOcwAAAAAAAACHDh3S1q1b60xoLklNmjTR5s2blZCQUO749G+//VaPPfZYxG3Z2dkaOXKk rrvuOp1xxhmxKBVxRHAOOAxd5qgOlm3V+Dn7zu9boXMntUjS+Z+dX+r2ytZe3cdzKtMw410CAAAA AAAAgGoW7Vjx1157Ta+99lqln5ebmxvV+aToaw20fv36Kh1n//79mjlzZpXrQO1EcA44TLSj2hmP jVCWCIzhYYrQHAAAAAAAAHCqF267vEbOc/Ozb1X5GH1feKEaKone2ptvjuv5EVsE54ADMaod1YUf VKAujVsCAAAAAAAAEA1DLjO23wNW53fNhstVbceqFL4vdzyCc8BhGNUOAAAAAAAAAAAqI8E0leCK zeRJ27aVX1Rcrcd0paRU6/HKZdty5+fX7DlR4wjOAYeJdlQ7UBZb/JKuvjFEpzkAAAAAAABQn5gy FIsBlMUx6tSuyc5zu7h6g3/UTgTngAMxqh2xQHhefxCaAwAAAAAAAPWPLTtoGnl1fCNsxvK7RtsO HgEfq4DejE0nPmofgnPAYaLtMmctawAAAAAAAAAA6ifLtlVQ7I53GRVmFRbGuwQ4EME54DCMakes 8SML5zJiMYcJAAAAAAAAQK1X5LbiXUKF2W63bHfdCflRdxCcAw7EqHbEGmPbnYfx7AAAAAAAAED9 dPOzb8a7hApbe/PN8S4BDkZwDjgMXeYAAAAAAAAAAKAicnNzK/2ca665RlOnTlWvXr1iUFHpKlvr ZZddpmXLlkmSkpKS9NVXX6lNmzaxKA0OQXAOOAyj2lGT6Dyv++g0BwAAAAAAAOA0n376qS80l6Qx Y8YQmqNcBOeAA0Uzqp11qxENQlcAAAAAAAAAQG1i27amTZvmu5+cnKyJEyfGryDUGWa8CwBQvbKz W8S7BAAAAAAAAAAAgLh44403tHbtWt/9W2+9VS1btoxjRagrCM4Bh/GOaJcI0RE7Bn8c9wcAAAAA AAAAKmLPnj3atWtXvMuIqKioSA888IDvflpamu6+++44VoS6hFHtgANFM6odqCjDIGQFAAAAAAAA gProyy+/1Lfffqu//vWvGj58eLzLCfPiiy9qy5Ytvvt33323MjMz41gR6hI6zgGHocscAAAAAAAA AADEQq9evXTbbbfpySefjHcpEV177bUaO3asXC6XWrZsqdtvvz3eJaEOoeMccBjvqPbA64qwbTvG laGuY5w3AAAAAAAAANRNaWlp1Xq8p556qlqPl5ubG/ZYVWveu3evsrOzoz4/6h+Cc8CBGNWO6kZo DgAAAAAAAAB127i5p9bKpTifHLO11G1z55iKZcm2LY293YrdCVCnEJwDDlOZLnMAAAAAAAAAAFB/ JCQbqk19UsX55U/DTU5UzMLzkwWxOS7qJoJzwGGiHdUORFIbf30IAAAAAAAAAIie6TJi2sVdUZa7 4kvIulzVH54XF1fv8VD3EZwDDsSodlQHU2a8SwAAAAAAAAAAxIBd8cxasu3K7V8Bhln5FLy6awBC EZwDDhNtl7nNf3EQwDQIzQEAAAAAAADAiazi+OcBtlW5GugOR00gOAcchlHtqCqjNi1wAwAAAAAA AACoNkX5VrxLqLT8wnhXgPqC4BxwIEa1I1qR1jR/75z3Yn7en636WczPAQAAAAAAAAD12V/Gbot3 CZU29va6F/Sj7iI4BxyGLnNEq6xO8wceiDw2Z/r0abLtaVU7r2EEnfvErhPa8v+26Kc1P0mSMvtk quv4rkpunlyh7aGOfHFE2+Zv09ENR+Vq4FLWkCx1/t/OSkhNqJbtpbKltbev1ZEvjmjAggFK65Im Sfrwog9VnBc+V2jIf4YoJStFtmXr+79+r91v7ZaVbymzf6Z63NtDSRlJEU/z7Z++1a7/2xX0WNfx XdV+VHtJUuGRQm16fJN+WvOT7EJbaV3T1HVcV6V3T4/q/QQAAAAAAABQ9+Tm5lbbsa655hpNnTpV vXr1qrZjRpKbm6v9+/dr5syZmjt3riwrOETv0aOHnnjiCQ0YMCCmdaD+IDgHHIZR7YhGRcazT59e M+ff9a9danFBC512z2kqPl6sbx/5VuvvW69+f+tXoe2htr2wTR1u6KDGpzVW/v58fXXfV9r02Cad fv/p1bK9NDte2SFXssv3+ryv8cL3Lwzab+OjG5W7LVcNshp4zjd/m/a9v099n+qrpKZJ+nrG11p/ 33r1ndO31Peu3dXt1H1i94jbN/15k/IP5mvgvIFKSEvQ989+r3V3r9N5b50nwzQq/X4CAAAAAAAA QKzt27dPTz/9tP7f//t/OnnyZNC21NRUTZkyRbfffrsSExPjVCGciOAccKBoRrXbduSOYjhfbVjT PLCGbnd1891OTEtUmyva6Kv7v/LtU972UH2f8gfOiacmqu2VbfXDqz/49q/q9kiO7ziuHYt2qM/s Plo+annYa/Ryn3Rrz7t7dNqk03zbd/17lzrc2EHpndN9r3f5qOU6seOEUtunlnrO0urJ3ZKr9iPb q0ELTzDf/ur22rlopwoPFSolK6XS7ycAAAAAAAAAxIJt2/r888/1/PPPa9GiRSosDF/cfNSoUZo+ fbpatWoVhwrhdATngMPQZQ4nKThUoN1v7Vb2kOyotkdy+IvDSu+SHrPttmVrw4Mb1O2ubkpMK/vX jnuW7pGZaCr7Ak/9RUeLlH8wX427N/bt0+iURnKluJS7JbfU4HzP23u06/VdSspIUta5WepyWxcl NPL8Jz77/GztfX+vsoZkKSE1QTv/vVNNTm+ilOYpYceJ5v0EAAAAAAAAgKrYvXu3/vnPf+qll17S pk2bIu4zaNAgPfzwwzr77LNruDrUJwTngMMwqh0VVpsaikNq2f3mbm14aIMkKa1Tmvo80Sdon/K2 l2bHazt0eN1hDZg7IOL+Vd0uSdsWbFODVg2UfV62Cn4q8L++CPv/+H8/qvXw1jKTTElS8QnP2ucJ aQlB+yc0SlDx8eKIxzht8mk6bfJpst22cr/P9Yx2n75eZ/35LElSxzEdte6edfr4io8lSQ1aNPC8 X6b/GNG+nwAAAAAAAADqnxMnTujEiRNVOsb27dv15ptv6o033tDKlStL3a9///6aMmWKLrjgAhkG X1oitszydwFQ10Qzqh31i1GJP/Gop83wNrp01aW64K0L1LRXU63+9WpZ+VaFt0f6s/O1ndr6wlb1 e7qfUtukVvt2Q4aObz+uH//1o3pM6BH0/kXa99jGYzq2+Zja/aKd77HEVE+HujvPHbRvcV6xElIT ynx9pstU426N1f133XVg+QG5T3iOsfZ/1yqpaZIueOsCXfzxxTpl1ClafctqFR4qrNL7GY9/JwAA AAAAAADia82aNVq5cqUeeuihqI8xbdo0nXHGGZo6dWrE0DwxMVG/+MUvtHTpUr333nu68MILCc1R IwjOAYfJzm4R7xKA6mFIyc2S1XFMR53cd1Indp2o3PYAW21nL2cAACAASURBVOdv1dZ5W9V/Tn+l dw0fs17V7V7HNh1T/sF8fTDsA73T/x19eNmHkqQVN6zQpr8Ejxja+a+dyuybqYZtGvoeS2ycqJTm KTr67VHfY3k/5Mmd7/ateV4ZhTmFyvkmR6dcc4qSmyXL1cClU647RVaRpSMbjgTvXIn3EwAAAAAA AED91K9fP/Xo0UOTJ0+O+hh9+vSJ+HjPnj01c+ZMbd68WQsWLNCAAQMIzFGjGNUOOEy0o9oty4px Zaj7psX8DLZl68v7vlTHMR3V6JRGKjhcoC3Pb1FyZrJS26WWuz2S7575Tnve3aP+f+uv1Lbh+1R1 e6BWl7ZSq0tb+e4X/FSgDy/7UINeHBS0LnpxXrH2vrdXZ0w7I+wY7Ua007aXtimjd4aSMpK06clN yjgro9T1zddNWqdOv+qk1PapOr7juDY+sVHNBzZXQsMEqaHUoGUD7fjnDjVo3UAJDRK06z+7ZBVb Su+cHtX7CQAAAAAAAKDuSktLq5bjDB8+vFqO0717d11xxRUaMWKEevToUS3HBKJFcA44EKPaEYkt O+rnTp9e+q/6DGN61Mf18tVmesLnb/70jXK/z1VCWoKantlU/eb0k5HkqaGs7aGv0X3Sra3ztkqS Pr36U9/jZpKpi5ddXOXtFX1ddskfr93v7FZCaoKyhmSF1dxhTAcV5hVq9f96xqVn9s9Urxm9Sv37 a3NlG33zyDfK3ZKrpCZJyhqapU63dPLt3+exPtr01CYtu2aZrGJLqe1T1XtmbzVo06DS7ycAAAAA AACAum/Qw3PjXYIkacV9Y7VmzZp4lwH4EJwDDlOZLnPUH7YdfQB6yapLqrGSyALraz64uZoPbl7q PuVtD2SmmKXWb9t2lbeXJykjyff8wP3bXt1Wba9uG/k4htT1zq7qemfXCp2v2cBmajawWan1pZ6a qj6Ph48+iub9BAAAAAAAAOAMruSUuJ7fXVgQ1/Oj7kpOTlZBQfC/n5SU6vn3THAOOEy0o9rhXJYY ww8AAAAAAAAACGa44hATetcsJzhHlFq3bqVt27YHPdamVctqOTbBOeBAjGqHV7FVHO8SAAAAAAAA AAC1lGGUvkxnrFhuvrdG9Lp26iRJ2rN7jySpdatW6lzyWFURnAMOE22XOWOZnafQKox3CQAAAAAA AACAWsq23CIZQF1jmqa6d+mi7l26VPuxCc4Bh2FUOyQpz50X7xIAAAAAAAAAALVAYWGhvvjiC61Y scL3GGuMA+EIzgEHYlR7/bV07NJ4lwAAAAAAAAAAiKOTJ0/q888/1/Lly7V8+XKtWbNG+fn5vu0r 7hsbx+qA2ovgHHAYuszrtwPzDsS7BAAAAAAAAABADTp+/LhWrVqlZcuWacWKFVq3bp0KCyu2lOfo 0aP17LPPxrhCoG4gOAcchlHt9df27dvjcl7btvX6669r5syZOnAgOLhPSkrS0qVL1b59+7jUFg+G YQTdN02z3H2c/hgAAAAAAACA6pObm6uVK1dq2bJlWr58ub744gu53e5yn2cYhnr27KmBAwf6Li1a tKiBioG6geAccKBoRrXbth2rcuBgGzdu1LRp07R27dqwbRdddJHuu+8+tWvXzrH/vkJDYkJjAAAA AAAAANXtyJEj+uyzz3yj19evXy/Lssp9nsvlUq9evTR48GANHjxY55xzjpo0aVIDFQN1E8E54DB0 maMm5OTk6PHHH9fChQvDPqB16NBB999/v4YOHRqn6gAAAAAAAADUJ4GNO5GaeLzfYQY2vtTmJphD hw5pxYoVvtHr33zzTYWakxITE9WnTx8NHjxYgwYN0jnnnKNGjRrVQMWAMxCcAw7DqHbEktvt1qJF i/Too4/qyJEjQdsaNmyocePGaezYsUpMTIxThQAAAAAAAADqA8uyZFmWL1D2XEUOl4Obfwx5M3Nv eB56XdP27NmjFStWaPny5frss8+0adOmCj0vOTlZffv29XWU9+3bVw0bNoxxtYBzEZwDDhTNqHag PF9++aUeeOABbdiwIWzbFVdcoSlTpig7OzsOlQEAAAAAAABwOtu2fRfJE4a73ZYkOyg09zdm+0N0 z36SPxcPDc899w3D8F1i+Tp27NjhC8pXrFih7du3V+i5DRs2VP/+/TVo0CANGjRIZ599tlJSUmJW K1DfEJwDDkOXOarboUOH9Mgjj+if//xn2Lbu3btr2rRp6tu3bxwqAwAAAAAAAOBk/rDcO4LdH557 Os7dEULzSKPa3SW3jAjheXBoHssQfc6cOXryySe1Z8+eCu3fqFEjDRw4UIMGDdLgwYPVu3dvpn0C MURwDjhMtKPaK7I+CuqX4uJiLViwQE8++aTy8vKCtqWnp+vuu+/W9ddfL5fLVS/+/YR+QK7NayAB AAAAAAAAdVlgd3nwRfIG42536aPaQ7+utCy7JCS3Q7b5Q3LPbf/9jIyMWL7EiJo0aaKBAwdq4MCB Ovfcc3XGGWcoIYEoD6gp/K8NcCBGtaOqVq5cqWnTpmnLli1BjxuGoWuvvVYTJkyIywdHAAAAAAAA AM7mDcPLCs891+Gj2oNDcTvgmG5J3nXMpeDOc39jWWiX+cUfX1ztr2/peUt9t7OysjRo0CANHDhQ gwcPVo8ePWSaZrWfE0DFEJwDDsOodlTFnj17NHPmTL399tth23r37q0HHnhAp59+ehwqAwAAAAAA AOBknvHrnkC87OA8sOPcHSE0Dw3QPft6A3MpNDz3d5p76/DuZ8tWkVVUba8x0fSMWf/LX/6ic889 Vx07dmSyJVCLEJwDDhPtqHbUbwUFBXruuef0zDPP6OTJk0HbmjVrpnvvvVdXXXUVv3YEAAAAAAAA UO28XeaRgnPPY4Ghue17jqfjPHAp0vDQ3LuvpFLC89AAPbgb3bItFVqFVX6NKa4U3+2xY8dW+XgA qh/BOeBAjGpHZXz44Yd68MEH9eOPPwY97nK5dNNNN2ncuHFKS0uLU3UAAAAAAAAAnMofjkcOzkND c++lceMmOnbsqBo2bBiwxrkddmyvwFHtknxd3pFDcyOsC9wu+RMtUzQkAXUBwTngMNF2mXt/cYf6 44cfftCMGTP08ccfh20bOHCg/vCHP6hTp06S6t+/j9DOesYlAQAAAAAAANUrODAPD85LC81t21ar Vq20ffsPysrK9nWhe3Py0ABdkq8zPfB7vtI6zSMF56YRffBt2RbfLwJ1BME54DCMakd5Tpw4oTlz 5uiFF15QUVHw+jwtW7bU1KlTdckll/BhDgAAAAAAAEBMeMNyb1Aeeh0enFuybX+HeseOHbVv3z65 3W7f8QKvQwU2BgV2m3uvQ0N00/R/N5pgJiiBOA2oF/hfOuBAjGpHJLZt66233tKsWbO0f//+oG1J SUm65ZZbdOutt6pBgwZxqhAAAAAAAACA0/lDc6uUAD30dvj9/v37a9Gi13TZZZeFheb+7NwfonsC dv/a5aGheeBtwzBk2yWPyVCCQZQG1Bf8rx1wGLrMEcmmTZv04IMPau3atWHbLrroIk2ZMkXt2rWL Q2UAAAAAAAAA6ovSQnPP/dKC89AQ3dbAgQP10EMP6sCB/crMbFYSltu+61D+jvPAznL/dej65uvX r5ckLT1vaQ28KwBqC4JzwGEY1Y5AR48e1eOPP65//OMfYeuUd+jQQffdd5+GDBkSp+oAAAAAAAAA 1BeRQ/PgbvPQNc9LC85t29bo0b/UkiVLNWrUqJLHJG9oHjqx3bLskqDcs59hyN9VHhCYHz58WI8/ PluLFi0Kq79Lly568MGHdO65g2UYpkzTLAndPbdN0yi5NlkGE6ijCM4BB4pmVHtpa7+gbnK73Vq0 aJFmz56tnJycoG0NGzbUHXfcoZtuukmJiYn1/u8+9EOsaZpxqgQAAAAAAABwpuCR7GWF5uFj24ND dP/l2muv1U033agzz+ylLl06h4xqD/7O07KCR7X7O809+xYXW/rHP/6hp576i/Ly8oKem5aWprvv nqAbbrhBiYmJsixbpmnJslSyFrrntmRK8jQvEZ4DdRPBOeAwdJlj3bp1euihh/TNN9+Ebbvyyit1 zz33KCsrKw6VAQAAAAAAAKiPgrvHvUF56P3gbvPI3ee2L1CXbP35z4/ppptu1Ouvv6HAUe2hvUJu t1XqiPbVq9do1qyZ2rp1S9BzDMPQ1VdfrQkTJqpZs2YyTTNgqqcpw7Akmb7w3LYl2zZlWZ7aTDO8 aQdA7UZwDjgMo9rrr4MHD+rRRx/V4sWLw7b16NFD999/v84666w4VAYAAAAAAACgvgrsLg8MzP2d 5sHd5uHBuXd/f2juvTRu3ES33PIbzZw5Q5MmTVak0Nxbg6Sg0Hzfvn2aPXu23n//vbD9zzjjTN13 3306/fQzZJpGSRhuBYXnpmmW1KySx737yBeiE5wDdQvBOeBA0YxqR91VVFSkBQsW6Omnn9bx48eD tjVu3FgTJkzQyJEj5XK54lQhAAAAAAAAgPooeLy6FTEwDw3Ng0e1W2UG57Zta9iwS/XZZys0f/48 DRt2qZo1a6bQAN07ql2SCgsL9dJLL2revLnKz88PqjcjI0O/+93duvLKK+VyeYNxQ6YpWZbn+Z4g 3fsMU6Zplaybbsq2veup++sjPAfqDoJzwGHoMq9fli9froceekjbt28Petw0TY0aNUrjx49XkyZN 4lQdAAAAAAAAgPosdMR6aMd5YCDuD9EjB+jBwbl3NLrn/vnnX6Bx4+7Uvn379Lvf3R1Wh9vt7Tg3 dOTIEc2fPy8oNHe5XBo1apRuvfW3Sk9Pl6SSTnJLtm2UPNe7hrkp07SDxrZ71lT3jGf3r3lespX1 zoE6g+AccJhoR7Vbgf8lR623a9cuzZo1S++//37Ytj59+ui+++5T9+7dJfF3G8j0fHL14QMrAAAA AAAAEBv+Ee3+rvJIIXrgKHd/aB6587xbty5lnnPevLmaN2+u7/4DJdcDBvQv83lut1sLFy7UwoUL JUlffvlV0Fh3y7JKus694bl3VHtgiO8Zzy6FdtrTdQ7UFQTngAMxqt258vPz9fe//11///vfVVhY GLQtKytLkyZN0uWXX84HsRDdunWL+TlCu/4BAAAAAACA+io0OI40rj0wSPduC1wLPdKa55J01erb Kl5I/2clScM//lWFn/Lmec/LsqyA4NwsCc2965f71zP38Hece7rOjYivne9sgdqP4BxwGEa1O5Nt 21q6dKlmzZqlvXv3Bm1LSEjQ2LFj9dvf/lYNGzaMU4W13wMP2BEfnz59mmx7WpWOHfqh9/7779eC BQskecY8VTRUt21bV199tVavXq0lS5aoZ8+ekqTf//73mjdvnu94P/74Y9Dzpk6dqrlz5/q279q1 q8zz7N+/X/fff78+/fRTFRUVadiwYZo1a5bS0tIqVCcAAAAAAABQlkjBcXCXeWi3eXBgHhiiBwbo Xm7bXal6Kra/IZfh6Rj3rFPuHctuybL84bkkX4Be+g8EWOscqIvM8ncBUJd4R7RL8l2jbtuyZYtu vvlm3XXXXWGh+ZAhQ/Tmm29qwoQJhOYVMH16+CUWHnzwQf3www96/vnnK/W85557TikpKWGPz5gx Q7t379b8+fMjPu+Pf/yj9u7d6wvry/OrX/1KeXl5+uSTT7R8+XLt27dP48aNq1StAAAAAAAAQCSl healh8zB3eild50HL0l50l1Q7sUr311Y5qXAHTzd03u+wPDetj0d5aHhf+QOekV83QBqNzrOAQdi VLsz5Obm6umnn9ZLL70ktzv4F5Ft27bV1KlTdd555/FLRYfYunWr5s6dq/nz5+v888+P2Xn27dun tWvX6v3331dWVpYMw9CUKVN0+eWXa9++fWrRgh/cAAAAAAAAIHrlB+TldaHbAcG1vys9UvBs2ZYq Eke7Q0L3UAlGcJ+pp7Pc220u+cexS6YZuKa5d91zT6huGN5tnrXRGdcO1C0E54DDRDuqnV+71R6W ZWnx4sWaPXu2fvrpp6BtKSkpuu222zRmzBglJydL4u+uNHXpQ6jb7db48eN1//33q0mTJjE9l/ff S+j7Y9u2vv76a4JzAAAAAAAAVIm327rsbnPLF46Xtu55aGgeOKrdy5Ahs2Qt8rK4jNIHMFsRQnX/ uUyZprer3Due3ZBUke55V8T96tL3lkB9Q3AOOIx3VHvgNeqO9evX6+GHH9aGDRvCtl166aWaNGkS waYDzZkzR23bttWwYcN08ODBmJ6rZcuWOvPMMzVr1izNnj1btm1r1qxZMgxDubm5MT03AAAAAAAA nM07zjwwPA8Pj61SwvTgke2BQbo3QA+UZCZWuK4ks3JxWHhQ7+8ql+ySNc4jd9B71jVXSUgevB+A 2o3gHHAgRrXXPT/99JNmz56tf//732HbunTpovvuu099+/aNQ2WIte+//14LFizQkiVLauyczz// vKZOnapBgwYpKSlJ48eP1/Lly5WZmVljNQAAAAAAAMB5gsPy6hvb7l1r3MtluOQyXBWu66wLFlR4 39MlvTloQCVeNQCnIDgHHIYu87qluLhYCxcu1NNPP628vLygbenp6Ro3bpxGjRoll6viHwJRt2zY sEH79u3TmWeeGfT4JZdcoltvvVX3339/tZ+zbdu2evHFFyV5RrYvWbJEycnJ6t27d7WfCwAAAAAA APVHeFgeKTwPf6zsDnR/J7okLe7/bIXrObP8XQDEyLQ6OGWB4BxwGEa11x0rV67UjBkztHXr1qDH DcPQNddco7vuuktNmzaNU3VONS3eBYQZMWKERowY4Vvb6ODBg+rdu7eWLFminj17xuSczz77rHr2 7KnevXvriy++0JQpUzR+/HilpaVJkh555BH93//9n1auXClJ2rhxo4YMGaJly5ape/fukqRzzjlH I0aM0L333huTGgEAAAAAAFC3hHaa+0e0S+Hj2svrRrcCOs39Heeffbbatza6txs9dPy7ZOvbbzdq /Pg7Nb2ktscee0I9e/aUYRi+i2kaMgwz4Npz23Md+eJyBd53hdw35XK5IuwbvJ/L5WKdc6CWIjgH HCiaUe2sr1Jzdu/erUceeUTvvfde2LbevXvr97//vXr06CGJv5eKCv2gGemD5/TppX8YNYzppW6L xiuvvKLJkyf77rdr106S9OWXXyojI6PSx3v55Zd1zz33+O63atVKkvT1118rIyNDCxcu1MSJE33b W7ZsKUn69ttvI55v+PDhmjRpklasWKFWrVrp9ttv169//etK1wUAAAAAAAAEqmh4XvYo99LWQPev e+4Pzb37hj4neD10b/geGJxLpgzDkmTKNK2Sesxyx8kHrmEeun55+OtTyHvgXfuc4ByojQjOAYeh y7z2ys/P1/PPP6/nnntOBQUFQduaN2+uiRMnavjw4XxoioFNmzbJNM2wxyO91xXdr6y/p1GjRmnU qFGlHq8szZs3165du4Ieu/7663X99deXet7Ro0dr9OjRFa6vTZs2evnll0vdb9KkSZo0aZLvfvfu 3XXo0KGgfVatWsW/VQAAAAAAAPgEhselB8cV6TwvvRs9cN3zyAG65+J2WyG1RQrOA78bMyXZYRdP SF6RwD/yiPqyAnQAtQ/BOeAwjGqvfWzb1nvvvac//elP2rt3b9C2hIQE3XTTTbrtttuUmpoapwoB AAAAAAAAoGr8YXHpndaBt8sO1COH5uEhuuUb1+4f2x6549zttkrGsvuDc9M0fft7A27PxSiljtCu 8tD6Q19f8O2SrXSdA7UUwTngQNGMakdsbNmyRTNmzNDq1avDtg0ePFhTpkxRhw4d4lAZAAAAAAAA AFQPbzjsuS1FCoq9+4V3pkca5V7+GujBIXpggO65BPJ3phu+dcwtKzBc93Sch3aYV2YUe/hrVYT3 hHZzoDYjOAcchi7z2iE3N1dPP/20Xn75Zbnd7qBtbdu21ZQpUzR06FB+VQgAAAAAAADAMUK7q8O7 sCvamV5WeO7vMA+++Nc6Dw7F/Wucm6YhywrtNi8tKC8vNC/vtfp/EBC6H4DaieAccJhoR7WHfpBA dCzL0uLFi/X444/ryJEjQdtSUlJ066236sYbb1RycnLQhy5UXOia4fz4AAAAAAAAAIg/fzDseyRg W1ld2P79I3emh3enlxaoewP0hIQEtW3bVocPH1bTpk2VmJhY8h24t9u8tPXLQ4+viPWU9RqCt5X+ fvC9JlD7EJwDDsSo9vhYv369ZsyYoW+++SZs26WXXqqJEycqOzs7DpUBAAAAAAAAQKzZQbcjBcZl h+YltyIE5oMGD6x0NRO9N44fl+6dWNaupVq9ak2pXfOlvZbgXqnSQnQAtRHBOeAwjGqveYcOHdIT TzyhxYsXh23r0qWLpk6dqrPPPjsOlQEAAAAAAABA7AVP1owcoEcKnUvbJ/A43oeWbH1XhlkzXdq2 ZeuSjsMq3D0fzT4Aah+Cc8Bhoh3VjsorKirSwoUL9cwzz+j48eNB29LT03XnnXfqmmuukcvlilOF AAAAAAAAAFBzKtNRXda+wR3a/h2TkpPkSojt963uYrcKThZ4KwmoqfwXV5HXT9c5UHsRnAMOxKj2 2Pvss880c+ZMbd++PehxwzA0cuRI3XnnnWratGmcqgMAAAAAAACA+CkvHHa73crJyVFOTo6OHs1R Ts5RHTt2TEePHlVubq6OHTumvLw85eXl6fjx43o/4LmmacasWcmyLLmL3b77u3btUtOmTdWkSZOQ PekiB5yI4BxwmGi7zC3LikE1zrNr1y49+uij+uijj8K29e7dW5MnT1b37t0l8Z5WB9M0y7wPAAAA AAAAIL7cbrcOHjyo/fv3a9++/dq/f58OHjyogwcP6aefDumnnw7r8OHDOnLksI4cOaIjR3KUl5db pXOW1v3tH5FePWH2H/84Q0eP5igv77gyMpqWhOhNlZGRoYyMDGVmZiojI1PNmmUqMzNTzZo1V/Pm zZScnFwt5wdQswjOAYdhVHtsnDx5Us8995zmz5+vwsLCoG3NmzfXhAkTdOmll8owamaNHQAAAAAA AACItePHj2vnzp3auXOnfvzxR+3atUt79uzxXfbt26cDBw7I7XaXeZzk5GQ1bdpUjRs3VqtWrZSe 3ljp6WlKS0tXo0aN1KhRI6Wmpurw4SM6cOCA9uzZrR07dsjlMtWtW3fpjf/4juUudsutss9XXebM eVYulynDMHTs2DEdO+bpjM/JOVrSKZ+jnTt3KifnSMmPAo7o8OHDSkpKUmamN0xvpszMZsrKaq5m zZqpefPmysrKUvv27dWqVasaeR0AKobgHHAgRrVXH9u2tWTJEj322GPav39/0LbExETdeOONuuWW W9SwYcM4VQgAAAAAAAAA0SsqKtJ3332nb7/9Vhs3btR3332nLVu2aNu2bTp48GDE5zRo0EAtWrTQ KaeconPOOUfZ2dklAXGmMjObBXVnN2nSWImJSZ4x6G53ybUly3Jrw4avtXz5Mq1cuVKbNm1Ujx6n qXv37urXr6+6du2mJk2aeCZ7lgTn/rXHa4a3T8owTGVkZKhZs2ZyuVwl4+JNmWbwbc+1qfz8/JIg /bByco7q8OHDOnz4J23dulVr1qxRUlKS1qxZo59++kkdO3ZUp06d1LFjx6AL3zkDNY/gHHAYusyr z3fffadZs2bp888/D9s2ZMgQTZo0Se3atYtDZQAAAAAAAAAQnYMHD+qDDz7QsmXLtGbNGm3YsEEF Bf5A2jRNtW/fXqeffrpOOeUUtW/fXm3btlWbNm3UunVrtWzZUk2aNAmavmnbti8MDwzGPddWQEe6 5zmvvPKyXn/9dTVo0EA///kVGj9+vLp06RKwv/9Y3udc0nFYTb1FAQwZhhEQoBsl1/LV5b3t30dK TU1VWlqaOnToEBCsm77Q3XspKCjQ1q1btWXLFm3dulXvv/++/va3v2nr1q1KT0/XOeeco44dO2ro 0KE666yzavrFA/UOwTngMIxqr7qjR4/qr3/9q1577bWwdcrbtWune++9V+eee26cqgMAAAAAAACA yrEsS6+++qqeffZZLVu2zLcGeOfOnXXllVfqzDPP1GmnnaZu3bqpQ4cOSkpKqvQ5wlexDA+cd+z4 Qb/73XgNHDhQM2b8Ue3atQ8K2AODac9tzzE+W7HSt4/n4g65b8u2A2/beuWVhdq1a5cmTpwkbwBu moYMw5RpGkEBtiStX/+VPvzwA3366Sc6fvy4WrVqpUv+9owuvfRSderUOaA2T13+12wEvPbQbYEh u/8N8h4rOTlZPXr0UI8ePcLez3379mnnzp1atmyZpk2bpu+++07nnXeehg4dqqFDhzLmHYgBgnPA gaIZ1e79oFSfWZalf/3rX3rqqad09OjRoG0NGzbULbfcol/+8pdKSkri/YqB0PXhvR9YAQAAAAAA AETP7Xbr6quv1uLFi5WWlqYxY8Zo+PDhGjp0qDIzM6v1XIFhd8kjvtu7du3SuHF3au7ceWrcuLGv qzxSV3fgcbz3gy+mgr8+tGRZnscMwxOc27bt6/D2Hs8TnBslj5m+45mmqbPPPlv9+vXTxIn3aPXq 1Xr//fe0cOFLmjv3BXXu3EWXXHKJLrvscrVv3z4s2PfXHel9CA3Sw35hEFGLFi3UokUL9evXTxMm TFBeXp4+/vhjffLJJ5o9e7ZSU1N1/fXX6ze/+U1l/5oAlILgHHAYusyj88UXX2jmzJnavHlz2LbL L79cv/vd79S8efM4VAYAAAAAAAAA0XviiSe0ePFiXXbZZVq4cKGaNGlS7ecorwu7qKhQV111pdau /dw3ut2/nxFy2/9Y5NA8/OJpwrFk26YvNDcMT7Jumq4IxwrvOvcG6cnJKTrvvPN1wQUXKj//pD79 9FMtXbpEzzwzR08//ZR69uypyy8frssuu0xt2rT11e19H8oe516x0DySRo0aafjw4Ro+fLgkacuW LVq6dKn69u2rWbNm6cILL4z62AA8CM4Bh2FUe+UcpOZaaQAAIABJREFUOHBATzzxhN56662wbd27 d9fkyZPVq1evOFQGAAAAAAAAAFWTl5enhx9+WKeccooWLVqkhg0bxuxc/i5sKTQU//vfn9P06Q+G BcylBeTh+3i6xf0jz70XTzjunRDqDc293eaS5HKZpRzP9HWjBwbqgefzhtVXXHGFjh07po8++kBv v/22Hn30Ef3pT7N01llnafjwn+vnP79CrVq1DHkfjLDbgXVUVadOndSpUyddddVVmjJlij788EPN mDGjyscF6jPm4AIOFM2odqcbOHCgRowY4btfWFioF154QVdccUVYaN6kSRP94Q9/0Msvv0xoDgAA AAAAAKDOmj9/vnJycjRhwoSYhuaSggLv0E7y5cuXKT09zbc9crBc0Yvpu4R2jXsvLpdLKSnJKiws 9N2PtJ8/QDfCLqHnbdq0qUaOvEbz5y/QsmUrNG3adJmmqYceelD9+p2tkSOv1vz583Xw4KEI4blU 1Y7z0rRq1Urz58/XgAEDdPHFF1f78YH6hI5zwGHoMg936623qqCgQAcOHNDnn3+uEydO6JFHHtGP P/4YtJ9pmrr22mt1++23Kz09PU7VAgAAAAAAAED1mDlzpiSpZcuWNXK+SGHxRx99pA8//FApKSka MmRoBdYv945el2/kuvd4hiGZpiVvt7mn0dyWbVsyDO+Yds/zUlNTlZ9/0td5Hhjse4Jx03fbP6o9 tAM98iUrK0s33HCjxowZo4MHD+rtt9/Sf/7zhiZPvldTpkzWgAEDdMUVV+jyy4erQ4cOYePoY2H4 8OE69dRTlZqaqiFDhuidd96JyXkAJyM4Bxwm2lHtlmXFuLL4eO655/T111+ruLhYubm5GjdunI4f Px62X9++fXXPPfeoc+fOkpz7ftQW3g++XrH6sAgAAAAAAADUZzfffLM+/vjjoGmcsVJaF/mFF16g zp07a+LEe8ocz17W2uWB49kty5Tn60U7IDg3ZNuWLzS3bVtpaek6dizX911k+Hn9wbm/ez103XP/ 2HZ/F3pwuN6iRQv9+te36De/uVV79+7RW2+9rTfffENTpkzR5MmTZZqmNm7cpA4dTlGsvwZt3bq1 7rrrLs2bN0+HDx9WRkZGbE8IOAzBOeBAjGr3+Oqrr7RgwQLl5eX5HgsNzVu0aKEJEybowgsvJLwF AAAAAAAAUKtU13eWoY0s0fCuIx5tTUOHDqnS+T//fF3JLaskPPdee9c1N3yhuSRlZmYoJyenZI3z 0HXTVUpwboYF98Hd6GV3pLdp01a33/5b3XHHHTp06JAmT75Xn376qbp27VKl1x5JeX8fmZmZUR8T qK8IzgGHYVS735gxY0rdlpSUpDFjxmjs2LFKSUmpuaIAAAAAAAAAoBJefuKqmHcql+e6uxYH3X/x 5f+t0Zp+ed1fg0a4e7vNDcOWZdm+wNwT/Hq2ZWW1UE7OERUVFSs5OTloVHpwOO4PyQPD8tAQvbTn lXbJzs7WggULZJqmGjRooJd/n6jqesuum1EUdP+Jl/tV+UcWd123ukrPB5yA4BxwmGhHtTvNiBEj ZBhGxF/IJSQkaPr06Ro2bFgcKgMAAAAAAACAyklKdMmMU3qeX1gc8XGXy1Rioiv258/3hMSmacqy rJLw3L+WuTc89zzmH9/eunVrGYahffv26dRTO8g7Rj40PI8UnId2nPvHuIeObS87TA9d09w0paQq JnP5hZEfT0wyZJiV/zdiW7aKCuk0BySCc8CR6vuo9unTp2vv3r2ljpUpLi7W3LlzCc4BAAAAAAAA 1BkJCVUft14Z3gi2tKBW8oTnMVsC01eAPziXvOPELdm26esyN4zg0Ny2pQYNUtSmTRv98MM2derU ydchX9Z66uGd54Hrmpc/qj3SGuih749pSlHk2776y/r7SEio/IEJzQE/gnPAYaLtMrcsKwbV1Lx3 331XH3zwgfLz88vcb8eOHVq7dq369OlTQ5XVX6HrJ1XHekoAAAAAAABAfVSTTee2Lbnd5X9vHKua LFtyF7t994ODcwWNZ/dfJMm7XeratZs2b96sSy7xNlF51zcvPTgPDs0jdZybAY8HX0oL1qvjPbNt KeDtKFVljs2S5kAwgnPAYerzqPb9+/frgQceUFJSktLS0mTbtoqLi5Wfn6/U1FSlp6crIyNDWVlZ atGiBaE5AAAAAAAAgDrDXQubnyzLOyY99kzTkGSWGpz7H5O84XmvXr301ltvlYTugaPaw8Pz0OA8 MEAPDcXLW988dL9AFQ3Ao2G5ScKBqiA4Bxyovo5qz87O1h133KGMjAw1a9ZMGRkZyszMVEZGRrxL AwAAAAAAAICoFRW5VVQU7yqCWZbtW3+8JvjXNrdlGJ7zh4fm/m5zydaAAQP02GN/Vk5OjjIzMyUp qAs8POQ2g24Hd5gbId3lZQfmgeG6l22XPWq9KoqKbBUVEZwDVUFwDjhMtF3mdF/Hz3//+994lwAA AAAAAACglrp+/OJ4lxDmhuv/WuPnDAzObduQYVi+DvPQAN3r1FM7qkOHDvroow91zTXXRgjMJSk4 NA8NzkND8+Bx7pFGuQeH6KtWrZIkXT8jdj8yGH/9mpgdG6hPCM4Bh4l2VPtt9h9jXBlC/WfsAu2Z tyneZQAAAAAAAACopewqLkL9+uuv67XXXtPChQurqaLK1WRZVgUudtBt2/bctm076DHPeQPHsxsh o9q9Y9qDaxw+/Of6z39e16hR1wWF5YHhuee6/OA8ODAPPIYZdnnllVc0b948ZWZm6p133tGwYcMi vENVV97fx5w5c5STk6OpU6fG5PyAkxCcAw4Uzaj2Lz+l6zlerFq4NlG0PL/6LP0+AAAAAAAAgPoj 8ihzsySs9lxM05Lk/R7Rkm17bluWLc/Xi/6u8uDgPDw0Dw6RPbf/53/+R88++4y+/PJL9enTJ+KY 9tLWJg8MywNDc+/rCO04379/nxYsWKD58+dr5MiRmjNnjrp161YzbzaAKiM4Bxwm2lHtqa6GMagG pTnuPhHvEgAAAAAAAAAgpiKF5Z6g3Ci5mLIsyTAsXxOOZXlve0N0fyhuGHbQ2uaRQ3N/57kkNW+e pauvHqm//OVJvfjiiwGd5VJw53lwaF5acB7adW6ahlavXqMFCxbom2++1tixY/XNN98oJSWFxiKg jiE4Bxwm2lHtSWZijCuDV6EVu7VsAAAAAAAAAKA28Ybg3rDcsvxBemC3uW0H3g5crzx4HXPDCO04 D97PIzg8v+OOO3TxxT/TO++8q5//fLg8gbk/2PcG6KHrk/uD8tDR7Z7br722SC++uEBZWVkaM2aM Lr747yXPMX2d7QDqDoJzwIGiGdWeYLpiVU6ZPrnh3+o4+gy1GdYpLuevacWWO94lAAAAAAAAAECN 8o829z7iCdIty/SF55blD9LLCs7LDs2Dw3Ov5s2zdM89k/Twww9q4MCByspqrtDwPPLIdjPs9v79 +7Vw4Ut68cUXdfXVI/X000+rS5cuEdZIJzgH6hqCc8Bhoh3Vbih+I2MMGXE9f02x5Zy1zAEAAAAA AADUbrZt6+GHH9amTZu0efNmde3aNW61eMJk+brNAwP0wPDcH377g3PPePbSg/Pg/T33/bf9Ro8e rSVL3tWFF56vf/7zX+rRo4fKC8+9Yblt2/rss8/06quvaPPmzbrhhhu0fv0GJSUl+jrMPWPb/Wug 1wZHjx7V7NmzlZ+fr5tvvlktWrSId0lArUZwDjhMtKPazTj9h9y3kk0U5z+0bo++m/+FDm/Yr4QG iWo59BSd9r/9lZCaVO11VpUV+iktgF3Gttos9MMf6/UAAAAAAAAAtYdhGOrbt69++OGHuIbmgfV4 x7ZblhHwfWJot7jtG9vuH8+uCGubKyxA9zzmvx3M1JVX/kKrV6/WsmXL1bNnz4Ax7eHhuXcsu2EY OvXUDjp+/LgWLfqnLrrowqCgvLaG5pLUuHFjtWrVSkeOHCE0ByqA4BxwoGhGtddFm+euU+cbeinj tCyd3J+nNb9/X1/9ebn6PHBBvEsDAAAAAAAAgJiIJpit7HNi1ezjD889QbjnpiXb9gbqpkwzuJPc czFkGFbQePbwrnOpbdvWFapj5swZmjlzRqXrHzHiF0H38/MLAgL0mhvPXpf/DQC1GcE54DDRjmr3 Kj5ZpI3PrNGeT7arOK9QmWe21BmTBqthizRJ0qq739G+FTskQ2rYIk3tr+imrmP7eNrGJX30y0XK HtReh9fvU87Gg+r1+6FqMbCdNv5trfZ++oOK8grV+sKOOn38QLkaeP4vKG/nUS2//Q3lbDyglGYN dcbEwcrq37bcWgc9Ndx3O+3UDJ1yVXdtfWV91K8dAAAAAAAAAOqC8Tevjtmxn3ihf8yOLQV3nnsC c3+I7hnLHik494TnoaPaA9c/97rtqti9N4GeXdw/rp3m5708Wr4v5qvZx9e/FJPjArUdwTngMNGO avf677QPZRW6de4zVyqpcbI2Pf9frZ60ROfN+x8ZpqFzZl8qSbItW8e+/0lrpr6n1NbpanNJZ98x dr6xSf1mXaymPbNlmIZWTXxXRcfyNeDxy5TSrKF2f7BVB/+7Wy0Gt/fs//Zm9fvjxUrvmKEt/1iv /z7woS5956ZK/zf/0Lo9atylWeWeBAAAAAAAAAB1UHGRVe3HdCXUXMe0aZoBXeeeANxz33PbH6KX fpEUfm3ZKi6Obbd0QqLnfYr3eHbTZUjVuYSmZcly02mO+ovgHHCgaEa125JOHjiuvR9v1yVv3aCU ZqmSpB53nKO3L5qrY9uPKL1jhv8JpqH0rs106jU9tXfZD2odEJx3GNlTTc/wrJdyYl+e9i37QRf9 6zqltmksSWp/VQ/fOSWp47VnqMlpWZ7nXn2aNj67RicPHVdK89QK17/tta/107o9GjL3fyKuXlPT as8qNgAAAAAAAACcyLJtFRdV37ehLpdRY8G55A3P5RvTbttmUMe5v6M8UmAeuk/wsYuLLFkx+qLY ZUoJiS5JqhVrmptJLlVLCbbkzq/+H2MAdQnBOeAwUY9qt22d2H1UkrTk8hfDNp/Yc0zppzbVng+2 6bv5Xyjvxxy5TxZLkjLOaKHATyYNslN990/sOSbDNJTaKl1hn15KJDVN8W1zJXk+cLjzi0rdP9S2 RV/ru+f/q4FPD1dq67QKPy9mKvkpxbJq/4cRM+RXi/H+MAgAAAAAAADAu9Z31Y/j+bqv5r/zC1wX 3B+Ke0J027ZlGJ7HvJ3n/iBdEQL0YLZlKyZdVqb/fao135OaRpX/9mw6zQGCc8Bpoh3V7s4vVsMW aTJMQ8PeuVFJjVPC9ik4fFKf/+F99Z15sZr3ba2EBona+uoG7X5vS/COAR8WGrZMk23ZOr77qK/j vDp9P/8LbX3taw2ac4XSTm1a7ccHAAAAAAAAgNrKqIbAtDYwTTMgODdk21ZQh7k3QC8rNA8Nz03T Ce9MBbntqv1GwFWP3iugDATngANFM6rdsm2ltGik7HPba91DH+u0cQPUICtVuduO6Lv563T2wxep uKBYtm0roVGSjERTh7/er62vrFdKZkPff5RDr1NaNFL24Pb64uFPdMbkc5XSLFV7PtiqlMyGyh7c vtTn2Sr/x4Abn12jXe9+r8HPXqHUto3jPqKdjxYAAAAAAAAAaorLZcrlincV1cfffe7vOA+/hI5w l/yj2v3fECelOOiNKYeVXxTvEgDHIDgHHCbaUe2uBgmyZav3A+fru+f/q1W/e1sFh08o/dQMdbqp l4xEUw1aNlKPO87Rf//wvopyC9S4azO1PK+DjmzYr8Dfs9klf7x6Tztfm55Zo1V3va3ik0VqdeGp Om3cAN8+gfv7r6WyfiNXfLJI38/7QpL0wchXfI+biS5dvuxXlX79VeWM33UCAAAAAAAAqCtcDu0S Duw+Dw3Ng9c8994PvPZ04deX2Nxy1/5lQIG6hOAccJhoR7V7f42X0DBBPe7srx539o+4vePo09Vx 9OmlPn/oiyOC7ktSYqNEnX7PIJ1+z6Cw54TubyaZ+vmqW8KOESqhQULAfpFrqTnO/IAKAAAAAAAA oHZ64oXQ72+dxdt9Xn5oHj6m/dnFzn5vvD6+fmG8SwAch+AccKBoRrWHrv+CijGMqofmllW7fhVo mmaZ9wEAAAAAAADET336Ltc/vl2lhOie297tBQUFJbcjHSvongxDOnIkR+eff57Wr18fdL7q+N43 lurTvwGgJhGcAw4T7ah2K+4rhAc7uTdPH414NeK2Npd11hl/GFLDFYUz6TQHAAAAAAAAgBoRKUT3 3JYCw/OKHMfL5TJlGIZM06z1YTmA2CM4Bxwm2lHtte0XaiktUnXpZzeXuj3e9fIhCgAAAAAAAADi I7QrPPT74tK+Pw58jjcwD30cQP1FcA44UDSj2i3VrnHhtZkpRpcDAAAAAAAAQG0RGnwThAOIBukP 4DDZ2S2iep5tc6nIBQAAAAAAAADgDJ988ol27typzZs3x7sUALUAHeeAw0Q9qr2WrXFeGxkxWtPc suLX7e8dRVTafQAAAAAAAABwqs2bN+vkyZPauXOnunbtGu9yAMQZwTngQNGMahfBeTkY7QMAAAAA AAAAtVm0I9ovvvjiqJ5X2lrqAOomgnPAYSrTZR6I/7yXjsgcAAAAAAAAAOqGl5/pVSPnuf63X9bI eQDUHIJzwGGiHdVOdF4aYnMAAAAAAAAAqEtcrth+r+t283064EQE54ADRTOqnYky4aKc6gMAAAAA AAAAiCPTNJSUaMbk2PkF7pgcF0D8EZwDDhP9qHaS80BGDXaaW5ZVI+cxTbPM+wAAAAAAAADgFKZR /c1R7pr5KhdAnJCaAA7jHdEuyXcNAAAAAAAAAEB9Y9uSVXJxW1W70HoGOB8d54ADRTWqPVbF1DFM ZwcAAAAAAACAui+/kPZwAJVDcA44TLSj2gmMAQAAAAAAAABOUFREaA6g8gjOAYfxjmoPvAYAAAAA AAAAoD64/rdfxrsEAHUUwTngQNGMajfoOY8bt9td7cd0uVxB903TrPZzAAAAAAAAAEBtYtssSgog egTngMNEPaqd3BwAAAAAAAAAAAD1FC2IgMN4R7RL8l1XjMEl4gUAAAAAAAAAAABOR8c54EDRjWoH AAAAAAAAAAAA6ieCc8Bhoh3VTnQOAAAAAAAAAACA+orgHHAY76j2wOuKMAjO48ayrCo93zSDV91w uVxVOh4AAAAAAAAAAEB9Q3AOOFBUo9rJzQEAAAAAAAAAAFBPEZwDDhPtqHZTZvk7AQAAAAAAAAAA AA5EcA44TNSj2mk5BwAAAAAAAIAaM3r0jfEuAQAQgOAccKBoRrXfceSqWJWD0lzjuRQUnIh3JQAA AAAAAAAAALXOWWedXWPnIjgHHCbaUe1p6U1jUA0AAAAAAAAAAABQ+7GoMeAw3hHtknzXAAAAAAAA AAAAAEpHcA44UDSj2gEAAAAAAAAAAID6ilHtgMNEO6odAADEn2VZ2vz9Fu3es0cFBQXxLgcAAAAA AKBcycnJat26lbp26iTTpGcXdRf/egGHYVQ7AAB11+bvt2jb9u2E5gAAAAAAoM4oKCjQtm3b9d33 W+JdClAlBOeAAzGqHQCAumn37t3xLgEAAAAAACAqu/heA3UcwTngMHSZAwBQhxlGvCsAAAAAAACI isGYdtRx/AsGHIZR7QAA1F2tW7eKdwkAAAAAAABRadOqZbxLAKokId4FAKh+jGoHAKBu6tqpkyRp z+49ymedcwAAAAAAUAekJCerdatW6lzyvQZQVxGcAw6Tnd2CwBwAgDrKNE1179JF3bt0iXcpAAAA AAAAQL3CqHbAYRjVDgAAAAAAAAAAAFQOwTngQIxqBwAAAAAAAAAAACqOUe2Aw0Q7qn3woEExqAYA AAAAAAAAAACo/eg4BxwmmlHto0ffGMuSAAAAAAAAAAAAgFqNjnPAgSo6qr2wsFivv764JkoCAMCR kpL4OA0AAAAAAAA4Ad/0AQ5TmVHtDRokq1+/ATLNujV8YtWqFerb9xy5XK54l1LjLMvS6tWf6Wc/ G1bn/t5qE8uy9N5776p//4G8j9WkPv/vMhZ4P2s/y7K0Zs1KnXlm73iXAgAAAAAAAKAakBYADhPN qHYAAAAAAAAAAACgPiM4BxyooqPaAQAAAAAAAAD/v737DIviasMA/OxKR1Bh6WBDrESjUcSSLzGW iGJvUZMYK1bsYgsag73G3nuMsSso9m5UTIwoYMcSAaWDoruo7PeDsBFhd2eXhaU893VxycycmfOe M2fGHy/nDBERERPnRMUOZ5kTERERERERERERERERaYaJc6Jihku1ExEREREREREREREREWmGiXOi YohLtRMREREREREREREREREJx8Q5UTHDWea64zN8BIKOBCvdJgL0M05K8tgsyW3Xl76DfHD85Cl9 h6FTiYmJ+Lx5S6SkpOg7FCIiIiIiIiIiIiokmDgnKma4VDvpwrd9+2HfgYNKtwuT7r2+xeFgJk6J 9IV/vEBERERERERERETFgYG+AyAi3dPVUu1Hjh3Ds2fPAACGhoawKlcOHg0awMFeu4T8voMH4V6z Jqq6ueUpLqFu37mDrb/uwK2wcEhlMjg5OqJVi+bo2qkjjI2NCyQGKh62bP8V6zdtxhS/CWjdqmWe r1eSx2ZRaPvYiZMQcu1P+I0dA+82Xor9kY8eoc+AQTAxMcGJw4F6jDBTYYlzzfJl+V5HURg3RERE REREREREVLRxxjlRMaPrWebutWphUP/+6N2zJyQSCY4dP443b97otI78cPXaNQwbNQbOTk5YtewX BO3fi2lTJiMtLQ2XLl/Rd3j5Liw8HCPHjsMXLVrBo+n/0LVnL2zcshUymSzf6gyPiMDo8X74slVr NGjyOdp36YYZM2fj6T/P8q3OgpAhlyMoOBjeXl44GHQ4z9cryWOzKLXdtXJl7D+UPem8/1AgXCtX 1lNEuSsqceZFURo3REREREREREREVHRxxjlRMZO1VPuH/+qCkaEhGjZogPCICLyIjcWdu3fx9J9/ AAAWpUujWrVqqPfpp4rye/fvR3kXFzx/8QLxCQmwKlcO8fHxOHv+PM6ePw9bGxt0bN8eYeHhuBUW hjdSKSTW1mjcqBEk1tZ5ilUul2PBkl/Q1qs1hg32UeyvXKkiBvXvp9ieMGUqLl+5CpFIBDs7W3h7 eeH73r0gEokE1fPmzRus3bgJFy5ewqu0NNT+xB1jfEfA3s5O0PE9+/bj9717kZyUjKpubhg5fKhO ZuNfunwZo8ZNwDfdu2HMSF/Y2driWVQUjhw9hnMXLqBVixZ5ruNjF//4A6PH+6FH1y7wHTYEjg4O eBEbh+t//431GzdhxrQfdV5nQQm5dg2WFpYYM8oX3Xr1RuSjx6hcqaJW1yrJY7OwtL3vIB80atgQ t8LDcffeffiNHY3mzZrluE5jz4Y4fvIUbt+5gxrVq+PNmzc4efoMBvXri5Vr1wmON6u+0Ju38CAy Ek6Ojhg9Yjg+ca+lTTfmW5xpr19j/abNuPjHH3j1Kg1fffkFRgwZDBMTEwDA03/+wcix43Hn3j1Y W1lh1Ijh8Kj/GYDMpdrbtWmjmPXed5APmjRqhFth4bmWV3ePPiR03CQlJ2PpipX48/p1iCBCQ48G GDF0CCwtLAAACQmJmLtoEUJv3oKNRILOHTtkq0eTmIiIiIiIiIiIiKh4YuKcqBjS1VLtqrRu1QpA ZlIjITERJ0+fhqWFBaq4uirK3L13Dy2bN4etrS1EIlGOpdpTUlJwJSQE3m3awEYiQUJCAh48fJjn xPmTp0/x/PkLtG6peknteTMDAAAZGRl4GBkJ/xk/w9HBAS2bfyWonoA5c5Ge/hbLFi+EpaUlNm/d hsn+07F+9UqIRSKVx6OiorBizVosXbgA1aq64f6Dhzh5+oxOkpMBs+eiY/t2GDvSV7G/iqsrfIcN VWwPHz0GFy5egkgkgoO9PTp1aI+B/foKTk5+XOfMOfPQsX07jBs9SrG/vIszyrs4o2P7dop93Xt9 i8+bNsGN0JuIuHMb06ZMQVBwsMpYuvf6Fk2bNMb1Gzdw7959uLi4YNL4sfi0Th3FdR8/eYoBQ4Yi IuI2JBIJJo0fh0aeDTVuS24OBh1Gj65dYGhggM4dOuDQ4cMYNXyYVtcqyWOzsLQdAA4fPYaZ0/1R s0YNiMW5L74jEonQ3rst9h8MRI3q1XHsxEnU+cQddna2Gsd7IDAQM3+ajqpubjhwKBDjJ03Gzm1b UbZsGUFtUkVXcQbMnoPU1JeYP2smJNbWOH32HK7fuIHGnp4AgKPHT+DnaT+iUqVK2LVnLwJmz8HB PbuUvjNUlRdyj7IIHTf+M36GqYkJNq1dg4yMDMycMw8Bs+dg3qyZAIBpPwegbLmy2LltC16/fo3p ATOzna9JTERERERERERERFQ8cal2omJG10u1Z0l/+xYhf/4JQ0ND2Nn+l5ARiUSQWFvDvWZNPHn6 NNs5tWrWhJ2dndLEilgshlgshpGREUqVKgVbW1t4enjkOdbk5BQAgI2NRFB5sVgMtypV0KVjR1z6 47Kgc+Li4nD+4iX4jRsDB3t7mJuZYYjPIERHR+Px48dqjxsYGMDAwADm5mYwMjJCrZo1MNRnkNZt zvLo8WNEx8SgXZs2KsstX7wIodeu4vqVP7B4/lwEHj6M4GPH87XOLAcOBWLEsCG4dOY0WrdqKSiW 3fv2YfjgwThxJAhft2yBoSNHIykpSXE88PARjBo+DKePBaNd2zaYPG0a5HK5Vu35UHxCAu7du4+v vvwCANChnTfOnb+g9ZL3JXlsFoa2Z+nSsQPca9VSmjTP0q5tG5y/dAmpL1/iQGAQOnVor1W8Hdu1 Q906dWBuZobe3/SARCLB+YsXBbVJiLzG+SI2Fhf/uIxJE8ajYoUKKF26NNp7t1UkzQGgW5dOqFG9 OkyMjdGpfXskJScjPiFBaT3Kygu9R1mEjJsAXQuOAAAcaklEQVTomBjcCL2JMb6+kFhbw9bGBiOH D8PlqyFISEhEVHQ0Qm/dwtiRvihXtiycHB0xeMAAxfmaxkRERERERERERETFE2ecExUzul6qPSw8 HGHh4TAwMIBVuXL4ukULmJqaIvLRI9wIDUVySgrevXsHADmWtC1durTKa1tYWKB5s2a4EhICqVQK aysruNeqBWsrqzzFnDWLMy4uHrY2NkrLnTl3Htt2/IZ/nj2DVCoFAMHLJ0c/z+zXTt2/yXEs5vkL vCz9SuXxJo08MX3qFKxYsxYpKSlwrVwZ3Tp3RhXXvH2XOPHfZLKtrfJ2f0gsFqN6tWro2b07zp6/ gDatv9ZJnYeDgzHZf7piO/TaVcXv33Tvhk9r19Yolm6dO6P+Z/UAAP36fI/Aw4dx6uw5dO3UEQDQ +5secK+Vee96dO2K5atWIy5e9f0XIuhIMGLj4tDsa69s+0+fPQevr1tpfL2SPDYLQ9srV6oEANn+ +EeVcmXLwtPDA/MWLYZUKoVH/fq4fPVqtjJC4nV0cMi+7eiAuPh4QTEURJzPn7+AWCyGk6NDjmv/ V0c5xe/GxkYAAJksXePyCYmZyXZ19yiLkHETGxuHUqVKwd7+v/+DnJ0cM4/FxUImS4eJiQnKlS2r OO7k6Kj4Xei4ISIiIiIiIiIiouKNiXOiYkiXS7W716qVbdYhkPkt2FNnzqBl8+ZwcnSEoaEhboWH 4+HDhyqvldvM8wrly6NC+fKQy+V48PAhAoOC8G2vXjAw0P71VKF8edjb2+H4yZOoVbNGrmUSk5Iw PWAmAqb747O6dWFqaord+/bj1Jkzguqwt7ODWCTCoX17UMbSMsfxF7GxKo8DQJNGnmjSyBMZcjlO njqN4aNG48CeXTAxNhbe2I9YlctMVsXGxqn8Nu/xk6ewYfMWPHn6FG/evAGAbEuf57XOtl5eaOvl hSshIfAZNiJbeQf77KsiCInF2ckp27aTkxNexMb+F4PVB0k6k8z+k0q1mxWeJUMuR9CRYGzbuB4V K1RQ7P/z+nVs2LRFq8R5SR6bhaHtWTT5JEGnDu0wfNQYDPUZlOM8ofFGx8Rk346OQdNGjQTHkN9x 2tvbISMjA1HRMYqEc34Reo+yCBk3trY2eP/+PV7Exir+KOJZVHTmMRtbSGVSSKVSJCUnK5LnH94T TWMiIiIiIiIiIiKi4knjpdqHDs35IxJNyo/YiEgL+bVU+4fevX8PuVwOIyMjiMVivIiNxa2wMLXn mZmaIiExERkZGQCAZ1FRCPnzT6SmpiIjIwNyuVxx7bwQiUQYN2okgoKPYvW69XgWFQWpTIZHjx9j 7YaNOH32HNJl6ZDL5TA3N4ehoSHCb9/Grj17BddhZ2uLJo0bY9bc+ZkzOGUy3L57F5P9p+Pt27dq j1/76y+s3bARz6Ki8f7dO7zPeA9Zejrk//aNtipVrAhHBwccDg5WWiYhMRF+U6bCZ0B/nDp6BDdC rmD8mNF4//5dvtX5oQ9zekJjiYqOzr4dFSV41rC2roZcA4BsSXMAqFO7Nh4+eoTIR480vmZJHpuF oe3aqPPJJ7hw6gR6du+W45jQeA8GBuFG6E28fv0av+3ajbj4ePyvaVOt4smPOO1sbdHY0xNz5i/A k6dPkZaWhsDDR/DHlSs6jTGrLk3ukZBx4+jggDq1P8GiX5YhISERsXFx+GX5Cnh6eMDa2gpOjo74 xL0WFi9dhuTkFETHxGD1+g1ax0RERERERERERETFk1ZTOletStF1HESkI7peqj03FqVLw9PDA6fO nIFMJoNEIkGlChWyzQDOTZ3atXH+4kWER0RAYm2N9t7eSEhIwJFjx/A6LQ1lypRBi6++gqGhYZ5j bNigAZYvXogt23+Fz7ARkKWnw8nREV+3bI4mjTxhbGyMIYMG4qeAWXj58iWqVnXDF583RVhEhOA6 pk6cgM3btmPcxMlITEpC5UoV8V3Pnor4VR3/tE4d3H/wAOMnTUJcfAJcnJ0ww38qTE1N89RukUiE qZP8MHrcBJiZmaFTh/awtbFBVHQ0jhw9hmpV3eBeqxbkcjksSpeGoYEBboaFYfuO3yCRWGtd55SJ EzBmvB+MjY3RpVNHONjb4+WrV/jr+t8qz5XJZIJi2b13Hxp5NkSN6tWxZ99+vHgRi+b/fnc8vxwK CoKnh0eO/YYGBvis7qc4GBiE0b4jcjlTtZI6NgtL23XJ3t5OULztvdti7caNePAwEs5Ojpg3K0Cx BHlBEBKn/+SJWLNhI8ZMmAipVIpmX3yB4UN88iUeTe+RunEDADN+nIqlK1ejz8BBEIkAj/r14Tt0 iOIaP/04FfMWLkaP776HjUSCzh074PadO1rHRERERERERERERMWPyKmel3zovL3o7557MvzkyePo 3ft7xfbQobklzudALp+dj2ESFX/BwUGwsCynvuAHmjZpkqfEeGjo3/DwaASxWOPFJ/TqypVLaNDA E6VKldJ3KAUuIyMDV6/+gZYtW6u8b2Hh4Vi7YRNuhIZCKpOhvIsz2np5oVeP7jA2NsaW7b9iy7bt SH35EjWqV0Ntd3eE3rqF7Zs2AgC+7dsPnTt0QOeOHXLdzk14RATWb9qM6zdCkZaWBjtbW9SsUQPf 9+6l+JZy917fos93vdHW679vhquLpXuvb9GkSWNc//sG7t2/BxdnF0wcNxb16n6a6zVl6enwaPI5 AvftRXkXZ6X9eOLEUTRs2LjIjf/CqiQ/l6r0HeSDnt27o1WL5hqdx/4s/DIyMhASchl16tTVdyhE RERERERERESUBxvCymDlhC7CZpwHBwcpfm/XLvMnuybZyhCR5urVq6+T6+TXLHMqWtxr1cLSRQuU Hu/zbW/0+ba30uNZSWtl27mpVbMmFs+fp7LMrh3bNY4FAKpUroSRw4YKuqaxkRFCr11VEy0RERER EREREREREdF/BCXONZ0FS0T6UxBLtRMREREREREREREREREVJ1p945yICresZDmT5kRE+rVp7Rp9 h0BEREREREREREREAjBxTlTMcJY5FTe5Le9ORERERERERERERESkSwWSOM/IyMDd+w8QFR0NmUyW L3UYGxvDyckR1apUgVgszpc6iIoCLtVOREREREREREREREREpJkCyTDfvf8AkY8e5VvSHABkMhki Ix/h3v0H+VYHUVEhdKl2ExMTvHyZWhAh6ZSxsTFevXqp7zD0IjU1Rd8hFCtFcfwXViX5ucwP7M/C LzU1BaamZvoOg4iIiIiIiIiIiHSkQGacR0VFFUQ1AIBnUVGoXq1qgdVHVNhoMsvcwcERDx7cg6ur Gywty+RzZLqRmpqCd+/e4f79u6hSpWqRiVsXUlNT8PDhfX2HUawUtfFfWJXk5zI/sD8Lv6z3sYtL eX2HQkRERERERERERDpSMN84F4kKpBoAEHGZdirhNFmq3dKyDJydgSdPHuPNm9cFGKX2TExMUaFC Rcjl8iIVty6YmJjCxaU8IiMf6juUYkEkEsHZ2aXEjaP8UJKfy/zA/iz8st7HFhaW+g6FiIiIiIiI iIiIdKRAEudOTo6IjHxUEFXB2dGhQOohKsyELtUOZCbPi+psxqIad16ZmpoiKSkR1tYSfYdSZCUm JsDU1KxIj//Civ2pW+xPIiIiIiIiIiIiooJRIInzalWqAACio6IhzafvnJsYG8PJ0RFu/9ZFVFJp slQ7FU329g64dSsU7u61YWVlre9wipzExASEhd2Es7OLvkMhIiIiIiIiIiIiIqJCokAS52KxGDWq VkWNqvz2OFF+02Spdiqasmag3r4dwSWctWBqagZnZxcusUxERERERERERERERAoF841zIipQmizV TkUTlxgnIiIiIiIiIiIiIiLSHbG+AyAi3bKzs9d3CERERERERERERERERERFiqAZ502bNMnvOIhI R7hUOxEREREREREREREREZFm1CbOW7RoxcQbURHDpdqJiIiIiIiIiIiIiIiIhONS7UTFDJdqJyIi IiIiIiIiIiIiItIME+dExQxnmRMRERERERERERERERFpholzIiIiIiIiIiIiIiIiIiIq0Zg4JyIi IiIiIiIiIiIiIiKiEo2JcyIiIiIiIiIiIiIiIiIiKtGYOCciIiIiIiIiIiIiIiIiohKNiXMiIiIi IiIiIiIiIiIiIirR8jVx7jt2PIKPnVC6rQ+JSUlo5d0BKampeo2DCp/CMD5JmMEjRuHUmbP6DoOI iIiIiIiIiIiIiIiKiSI345zJzYL3Xb+BaOXdAYNHjBJ8jt8Uf7Ty7oD2XXvkY2SkKT4/RERERERE RERERERERDkZ6DsATS1dOF/fIag0bNQYdPBui1Ytmists3z1GhwKOgIAEIvFOHpof7bjnXr0RFra 6xzn7di8ERKJNW6GhWHnrj2IuHMXpiYmaOzZEP1/+B5mZmaCzs8il8sxbtIU3AoLx6qlS+BauZLS mGf+NA0NPqsnuA1zZ87A7Tt34TfVX+k1VUlPT4d3525Kj+dW54eE3AdNTfafDhdnZwwZNCDP18qP +ITUkd/Pz2T/6fjz+t/Z9tWvVxezZkxXeV5B9Mfde/ex4/ddCI+4DZlMBkdHB3z15Rfo2L4djI2M 8nRtbeJX9wxlZGRgw+atOH7yFKQyGT6rWxcjhw9BubJlAQh/zoXWl5ycglXr1uP63zeQ/vYtqrhW hk//fqjqVgUAkJiYhNXrN+DvG6F4++4dGns2xPDBgxTvnY+piz+v78GP5fW9p679RERERERERERE RERUvBW5xHlxMHywD4YP9sHVkGuYFjArx/H9v/+WbXvZqjV4/OSJIvmzY+cudO/SGdWrVUVcfDwC 5szHitVrMX7MKEHnK+o5GKh1wlBdG/LKyMgIx4MOKrZ/nj0X5ubmGOM7XOd1kW51at9OJ39coEvX /rqO6QGz0MG7LQb26wsbiTVinj/H6bPnceVqCL74vGmBx6TuGdq5aw/Onr+AuTNnoGyZsli4dBlm zZ2P+bNnAhD+nAutb/nqNUhITMSKXxahtLk5Nm/7FVN/moGdWzdDLBZjxuw5KG1ujjUrliIjIwPz Fi3BgiVL4T95Yq71qYs/r+9Bbcsre++paz8RERERERERERERERVvahPnr1+/xubtv+Ly1RCkvUrD /z5visED+sHExAQ//vQzrl77EyKRCLa2NvBq2RI9e3SDSCQSVHl8QgIWL1uBsPAI2Eis4d3GCyvX rMPuHdtQxtISg0eMQsMG9REecRv3HzzAaN/h2HfwELxatYLX1y0BZH7r2LNhA4RH3Ma9+w9gbVUO wwYPwmd16wLInCW5eNly3AwLh43EGu3btlUZk2LW4Y1QiERAg3r1MHjgAFhYlAYA9OrTD+NGj0S9 T+tktiE+Ab1+6Id9v+/AL8tX4v6Dh1iwZCkWLFmK6tWq5nmGr1QqxakzZ+E7dIhi35yAGYrfK5Qv jzatW2H/wUDB5wPAs2dROBAYhIDp/hgwZFieYtQHVfdp5tz5ud6HvI7Xj6kbewcOBWHvwYNITk6B m6srhvoMQBVXV6Xx5Tbe127YpHS8lTY3V/p8LvxlWa51+I4dn+35UTfe1bVRqDdSKTZt3YY/Ll9F 2us0uNesieFDfGBna6u0P1S9ewDgn6gojJ88VW1ccrkcS1euQuuWLTCof1/F/ooVKqBfn+8U2+r6 QtP7uXP3Xhw9fhyb163RqK+yBAUfRfeunVG5UuaMaJ/+/TBgyDA8exYFZ2enbGWVPeeaiHz8GB29 vWFrYwMAaNfWCwcCg5CYmASRWISI23ew8pfFsCpXDgDww3e9MXr8RCQkJsLayipP8aujafu0ee+p ar+yZD0RERERERERERERERUfahPncxcuxsuXrxAwzR/W1lY4f+EiQm/eQkOPBvh52o8AMpfkjXz0 GAFz5sHe3h5fffk/QZXPnDsfNhIJtq5fg9dv3mDWvAU5yhw7cRL+kyeierWqEIvF2HfwUI4yJ0+d wY+T/FCxQnnsPXAIcxcuxu/btkAkEiFg7jyUK1sWW9Zl1aE6kR0wZx5MTIyxetkSxazKuQsXIWC6 +iXHp/iNR3RMjE6XnD597jwMDQzweZNGSsvcvBWmdJn13M7PyMjAvMVLMHhgP5Quba6TOAuaqvuk 7D7kdbzmRtnYi4qOwdqNGzF/1ky4VXHFw8hHOHPuAqq4uqocJx+P97UbNqmsX9nzKXQsChnvqp4v oeYtXIz0t2+xYM5MWFpYYPtvv+OnmbOxYskipbGqevdoEtfTf57hxYtYtPiqmcoYVfXFs6hore6n tlJfvkR8QgKqubkp9pV3cYaxsTEePnqUI/Es5D2hzueNG+PshQto7NkQZmamCDpyFDVrVIe1tRUS EhMBIEffyuVyPIx8lCNxrmn86mjaPm3ee6raT0RERERERERERERExZ/K9Wdj4+Jw+WoIxo32RYXy Lihtbo42rb9WJK4UFxGLUcW1Mjq288blq1cFVRwdE4PwiNsYNngQypQpAwd7e/Tv832Ocu2926Jm jeoql8rt1KEdqlV1g7GxMdq39UJycgoSEhMRHfMcYeERGDFkMMqWLQNHB3v0/yFnHVlinj/HzbAw jBgyGNZWVrCRSDDMZyBC/vwLiYlJgtqla4eDj6JVy+YwNDTM9fiBwCDcDAvDwH59cz2e2/k7d++F na0tGnt65kvM+S2v90mb8aqMsrFnYFAKBgaGMDMzg5GREWpUr4aB/X5Qez0h4z2L0OdTGaH9qKyN yuw/FIhW3h0UP0ePn8Cly1cwxnc47O3sYGZmhoH9fkB0zHM8fvJU67YJjSslNQUAVM4aVtcX2tzP b7p10Xq2+evXmd/qNjfPnuDNXGXgTY7y6t4TQnzTvSsMDQzR64d+6Ni9J/64chWjRwyHSCSCxNoa blVcsXn7r0hMSkJCYiK2bt8BkUikiDUv8aujafu0ee+paj8RERERERERERERERV/Kmecv3gRC7FY DAd7+1yPn794CTt378GzqGhIpVIAQK2aNQRVHJ+QAFMTE5SxtFTsy60eWxuJ2muVLVNG8bvRv9+u TU9PR3xCAkxMTFC27H/HHe0dlF4nLj4epUqVgp2d7X/lHRwUx6ysyqmNRZfu3X+ABw8jMcVvfK7H DwQG4deduzA34Gc4OuTsu9zOf/L0HwQdCcaqpYvzLW4hTp05i7kL/4sha+lxIbS9T3kZr8ooG3uO Dg6YPGEc1m3chJTUVFSuWBGdOrRTLFutjJDxnkXd86mO0H5U1kZlPv7GeVh4BACg5/c5/7jjRWws KlWskHO/gLYJjauMZWa5+PgE2Ehy7191fVGtqptW91NbZmZmAIC0tLRs+1+lpcHMzDTbPnXvCaH8 pvwIB3t77Ny6GaZmpgg+ehyjx/th3arlsLaygv+kiVixZi36Dx4KQ0ND9OzeDX+H3oTlB+9wbeJX R9P2afveU9d+IiIiIiIiIiIiIiIq3lQmzu3sbJGRkYGY588VSaQsScnJmDVvAfwn+6FunTowMTHB /kOBOHv+gqCKJdbWeCOVIiU1VZE8j3n+PEe5vMz2k1hLIJVKkZycokie51ZHFhuJBO/fv0dsXJzi O7fRMTGKY0Bmgu7D5FxySnK2a4hF6mcKCxV4JBh169TO0fcAsHP3Hhw4FIQFswNQoXx5wec/ePgQ 8QkJ6NY7+8z7Ib6j0LVTx2zfgM5PzZt9iebNvtTqXCH36eP7kNfxqg1Pjwbw9GgAuVyO02fPYYzf ZPy+bTOMjY2VjpOPx7uq8abq+QTUj0Uh/agLtrY2EIlE2L1jGywtLHIt83Gs6tqmifIuzrCzs8Wp s2dRo3q1XMsI6Qtt7qe2LC0sILG2xt379xUxP/3nGWQyGVw/Starek8IlZKaijt372HwwP6KP5jo 3LE9Nm3bjojbd/B5k8aws7PFDP+pinOuhFyDkZERqld1y3E9TeJXR9P2afPe69Gti9r2ExERERER ERERERFR8aYy22NrY4OGHg2wYMlSPP3nGdLSXuPIseO4GnIN6bJ0yOVymJuZw8DAALfv3sW+Azm/ P66Mo4MDalavjhWr1yIlJQUxz59jw5ateW5Q9jrsUatmDSxfvUZpHYuWLofflMzvOTvY2+MT91pY tmoNEhOTEBcfjxVr1qFB/c8UyRTXypVw7MRJvEpLw4vYWKzftCXb9aysyiHy8WO8f/8+1zqESkt7 jbPnL6CtV+scxzZt3Y6gI0excO4spUlzZec3b/YljgcdVPzs3LYZALBq6ZICS5rnlZD79PF9yOt4 1dT1v29g45ZtiI6Jwbt375CRkYH0dBky5PJc41NG1XhT9XwKqUNIP+qCrY0NGjVsiPmLf8GzqGjI ZDLcvX8f0wNm4+3bt7nGqq5tmhCJRPAdOgRHj5/Ehs1bERWdGcOTp0+xaet2nLtwUW1faHM/d+7e ix8G+mjdb95erbF7735EPnqExKQkrNmwEbXd3bN9H1zVe0ITZSwtYWdni0NBR5CUnAypVIoDh4Lw /v07uFbOTHTvPXAQN0Jv4o1UihuhN7Fi9Vr07N5NMbtcm/jV0bR92r73hLSfiIiIiIiIiIiIiIiK N5UzzgFg4tgx2Lh1Gyb9OA1SmRT/a9oEX/XvBxMTEwzo2wez5i3Ay1ev4FbFFU0bN0LEnTuCK58y cTyWLFuB7wf4QGJtjdatWuDuvfswNFAblvA6/MZj8b912Eis0b5tW9y9d19l+dXrNsBnuC8gEqF+ vboYPLC/4viAvn0wf/Ev6Pl9XzjY26NdWy9cvxGqON69S2csWrocBwMPw62KK5YunJ+jjuBjJ7B4 2XLFdivvDgCA3Tu2KWbfnzxzBuZmZmjs2TDbuW+kUvy2azcAoO+gIYr9hoaGOLx/j2Jb2fm6IqQN +UndfcrtPuR1vGqi9ifueBAZicn+PyEhIQFOTk6YOnECTE1MlMaXG3XjTdnzKbQOdf2oK35jR2H7 b79jyrSfkJScjIoVyuObbl0V36DOLVZVbdNUg8/qYeGcWfh15+/wHTse6bJ0ODo6oHmzL+HZ0AOA 6r7Q1f38kLpn6JvuXfEqLQ0TJv8ImUyGz+rVxbiJvtmuoclzrq6+n/2nYt3Gzeg/eBjevXsHF2cn TJ3op5i53bRxIyxduRo3b96CRCJBl04d0LGdt9L61MWfl/egMnl576lrPxERERERERERERERFW8i p3pe8qHz9qK/e4q+Y0HIn39hzoJF2LfzV32HQh/4rt9A+A4bggaf1dPovNt37sJvqj8O7fk9nyIj IiIiIiIiIiIiIiIiItLehrAyWDmhi/oZ5/np3IWLEIvFqF+vLmKeP8f6TVvQ7H+f6zMkUmLKtJ9Q uVIlrF62RFB5vyn++Ds0FCb/zsglIiIiIiIiIiIiIiIiIiqs9Jo4r/tpHSxbuRqLl62AiYkxmjZu hP4/9NFnSJSLbRvXaXzO3Jkz8iESIiIiIiIiIiIiIiIiIiLd02vi3NLCAlP8xuszBCIiIiIiIiIi IiIiIiIiKuHE+g6AiIiIiIiIiIiIiIiIiIhIn5g4JyIiIiIiIiIiIiIiIiKiEo2JcyIiIiIiIiIi IiIiIiIiKtGYOCciIiIiIiIiIiIiIiIiohJNDACy1y/1HQcREREREREREREREREREVGBysqVGwDA nSvBWCVqCyNTc70GRUREREREREREREREREREVBDS36ThzpXDAAARADjV85LrNSIiIiIiIiIiIiIi IiIiIiI9iLoeLPo/BIoLTeA43CsAAAAASUVORK5CYII= --_004_d5a6b9b21efe4656b9a9a8000d92510feurocontrolint_--
bug-gnu-emacs@HIDDEN
:bug#55636
; Package emacs
.
Full text available.Received: (at 55636) by debbugs.gnu.org; 26 May 2022 14:24:18 +0000 From debbugs-submit-bounces <at> debbugs.gnu.org Thu May 26 10:24:18 2022 Received: from localhost ([127.0.0.1]:59680 helo=debbugs.gnu.org) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <debbugs-submit-bounces <at> debbugs.gnu.org>) id 1nuEPP-0006Dy-0M for submit <at> debbugs.gnu.org; Thu, 26 May 2022 10:24:18 -0400 Received: from esa1.eurocontrol.c3s2.iphmx.com ([68.232.133.181]:15467) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <prvs=138c8b667=stef.van-vlierberghe@HIDDEN>) id 1nuDsy-0004sN-RB for 55636 <at> debbugs.gnu.org; Thu, 26 May 2022 09:50:46 -0400 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=eurocontrol.int; s=ectl2; t=1653573044; x=1654177844; h=from:to:cc:subject:date:message-id:references: in-reply-to:content-transfer-encoding:mime-version; bh=zlIiQWPEZpmSFbzyhsckvRCz7stQtcUcjtSd0mg/u3U=; b=Eil77RksMDidwOc5zhoXSwVwK7oaFH5n+cbeAN/VqB9vs+M+XQXFOTDj OHz22BdnsASnZm+Taib8GyWS4C31vNIG5WHLJH0lzgJs88h2ZcNGm921Y qrgeGyRDSkWrJNE5B+LLeeBltQiSSDXxqIJChv73uatHc8qYrldHe7Tkj jAzdG6I3YdrV5hXEeKZK1Aaw3z8LBNHzDTeVG47IbeVo8flZAzAJMCRKe tqDYS0FveJkGtLAulZltWuWAewVLsrUX+wHPM26tjfvEyqc0jEUG0rmbC wgTRe+uV4joGUZzZOpzDNK234uvGAgOAZjHKGsSFV0cSe9+qw2izOe6+J A==; X-SignedOrEncrypted: False Received: from unknown (HELO drsmtpl01.eurocontrol.int) ([153.98.68.246]) by esa1.eurocontrol.c3s2.iphmx.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 26 May 2022 15:50:38 +0200 Received: from SSPEX112.sky.corp.eurocontrol.int (sspex112.sky.corp.eurocontrol.int [172.19.3.3]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (Client CN "mailservices.eurocontrol.int", Issuer "EUROCONTROL Certificate Authority 2016" (not verified)) by drsmtpl01.eurocontrol.int (Postfix) with ESMTPS id C52CC240045; Thu, 26 May 2022 15:50:33 +0200 (CEST) Received: from SSPEX111.sky.corp.eurocontrol.int (172.19.3.2) by SSPEX112.sky.corp.eurocontrol.int (172.19.3.3) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.1.2375.28; Thu, 26 May 2022 15:50:33 +0200 Received: from SSPEX111.sky.corp.eurocontrol.int ([fe80::1979:586a:8b46:667e]) by SSPEX111.sky.corp.eurocontrol.int ([fe80::1979:586a:8b46:667e%8]) with mapi id 15.01.2375.028; Thu, 26 May 2022 15:50:32 +0200 From: VAN VLIERBERGHE Stef <stef.van-vlierberghe@HIDDEN> To: Eli Zaretskii <eliz@HIDDEN> Subject: RE: bug#55636: 27.2; etags performance fix when working with very big TAGS files Thread-Topic: bug#55636: 27.2; etags performance fix when working with very big TAGS files Thread-Index: AQHYcFEPCJxxPZ3ekE6YMRimvse8M60v1dhogAA4PKCAAI5l64AAkRmw Date: Thu, 26 May 2022 13:50:32 +0000 Message-ID: <9719dc6296ae4fafb5ccba1c0dab51ea@HIDDEN> References: <80qa6b58uq3.fsf@HIDDEN> <83r14hpm6s.fsf@HIDDEN> <c64340bed8d64a96946bb8d3351f096e@HIDDEN> <83k0a8q3ua.fsf@HIDDEN> In-Reply-To: <83k0a8q3ua.fsf@HIDDEN> Accept-Language: en-US, en-BE Content-Language: en-US X-MS-Has-Attach: X-MS-TNEF-Correlator: x-originating-ip: [172.19.15.88] Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: quoted-printable MIME-Version: 1.0 X-Spam-Score: -2.3 (--) X-Debbugs-Envelope-To: 55636 X-Mailman-Approved-At: Thu, 26 May 2022 10:24:13 -0400 Cc: "55636 <at> debbugs.gnu.org" <55636 <at> debbugs.gnu.org>, "DE BACKER Jurgen \(EXT\)" <jurgen.de-backer.ext@HIDDEN>, WAROQUIERS Philippe <philippe.waroquiers@HIDDEN> X-BeenThere: debbugs-submit <at> debbugs.gnu.org X-Mailman-Version: 2.1.18 Precedence: list List-Id: <debbugs-submit.debbugs.gnu.org> List-Unsubscribe: <https://debbugs.gnu.org/cgi-bin/mailman/options/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=unsubscribe> List-Archive: <https://debbugs.gnu.org/cgi-bin/mailman/private/debbugs-submit/> List-Post: <mailto:debbugs-submit <at> debbugs.gnu.org> List-Help: <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=help> List-Subscribe: <https://debbugs.gnu.org/cgi-bin/mailman/listinfo/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=subscribe> Errors-To: debbugs-submit-bounces <at> debbugs.gnu.org Sender: "Debbugs-submit" <debbugs-submit-bounces <at> debbugs.gnu.org> X-Spam-Score: -3.3 (---) You are right, I tried an strace and only see the tags files being read. I also can't get the 10 sec behaviour any more, maybe some other factors we= re involved that made the emacs tag file processing slow. What I did at the time to analyze was to enable debugger on Ctrl-G and then= I notices emacs was busy here : Debugger entered--Lisp error: (quit) expand-file-name(#("/cm/ot/TOOL/GTK!27.0.0.1/build_G!27.IP.L7/sources/...= " 0 88 (charset iso-8859-1))) mapcar(expand-file-name (#("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.I= P.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bu= ild_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!2= 7.IP.L7/build_G!27.IP.L7/..." 0 81 (charset iso-8859-1)) #("/cm/build9/cm/o= t/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 80 (charset iso-8859-1)) #("/cm/b= uild9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)= ) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 = (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/= ..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G= !27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.= L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOO= L/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9= /cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("= /cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-88= 59-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (char= set iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." = 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.I= P.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bu= ild_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!2= 7.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/o= t/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/b= uild9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)= ) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 83 (charset i= so-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 83 = (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/= ..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G= !27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.= L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOO= L/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9= /cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("= /cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-88= 59-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (char= set iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." = 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.I= P.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bu= ild_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!2= 7.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/o= t/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/b= uild9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)= ) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset i= so-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 = (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/= ..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G= !27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.= L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOO= L/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9= /cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("= /cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-88= 59-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (char= set iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." = 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/build_G!27.I= P.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!27.IP.L7/bu= ild_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/ot/TOOL/G!2= 7.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/build9/cm/o= t/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)) #("/cm/b= uild9/cm/ot/TOOL/G!27.IP.L7/build_G!27.IP.L7/..." 0 82 (charset iso-8859-1)= ) ...)) tags-table-including("/tmp/vvl.Tstatus.out" t) visit-tags-table-buffer() find-tag-noselect("-tv_summary.adb" nil nil) From that I concluded the expand-file-name was the cause. Hope this helps and all the best, Stef -----Original Message----- From: Eli Zaretskii <eliz@HIDDEN> Sent: 26 May 2022 07:07 To: VAN VLIERBERGHE Stef <stef.van-vlierberghe@HIDDEN> Cc: DE BACKER Jurgen (EXT) <jurgen.de-backer.ext@HIDDEN>; 55636@de= bbugs.gnu.org; WAROQUIERS Philippe <philippe.waroquiers@HIDDEN> Subject: Re: bug#55636: 27.2; etags performance fix when working with very = big TAGS files > From: VAN VLIERBERGHE Stef <stef.van-vlierberghe@HIDDEN> > CC: "55636 <at> debbugs.gnu.org" <55636 <at> debbugs.gnu.org>, WAROQUIERS Philippe > <philippe.waroquiers@HIDDEN> > Date: Wed, 25 May 2022 20:42:16 +0000 > > For us the 10 sec is reduced to below 1 sec, loading the tags file is no = longer noticed after this change. > > I assume the reason is a huge amount of files all accessed over NFS, and = expand-file-name does a lot of system calls that translate into network pac= kets. Actually, expand-file-name is a purely syntactical function that is suppose= d not to hit the filesystem at all, at l;east on Posix systems. So I wonder why it seems to happen in your case. Any chances that you coul= d show a trace of system calls for those 10 sec? Of course, making a simple change that you suggested is a no-brainer, so we= might as well do it without further ado, but I'm just curious and think ma= ybe we will learn something useful if we dig a bit deeper into your use cas= e. > An alternative approach is to add some switch that allows a customization= that simply never calls the expand-file-name, we generate tags files that = already contain absolute paths so don't need any of this logic and disablin= g it would also be ok for us. That'd be less clean, I think: if we can do something automatically, it's b= etter to do that instead of placing the burden on the user. Again, I'm not asking these questions because I see some problem in your pr= oposed change. If we arrive at the conclusion that there's no reason to in= vestigate more, we can just install that change, as it cannot possibly hurt= . Thanks. ____ This message and any files transmitted with it are legally privileged and i= ntended for the sole use of the individual(s) or entity to whom they are ad= dressed. If you are not the intended recipient, please notify the sender by= reply and delete the message and any attachments from your system. Any una= uthorised use or disclosure of the content of this message is strictly proh= ibited and may be unlawful. Nothing in this e-mail message amounts to a contractual or legal commitment= on the part of EUROCONTROL, unless it is confirmed by appropriately signed= hard copy. Any views expressed in this message are those of the sender.
bug-gnu-emacs@HIDDEN
:bug#55636
; Package emacs
.
Full text available.Lars Ingebrigtsen <larsi@HIDDEN>
to control <at> debbugs.gnu.org
.
Full text available.Received: (at 55636) by debbugs.gnu.org; 26 May 2022 05:07:50 +0000 From debbugs-submit-bounces <at> debbugs.gnu.org Thu May 26 01:07:50 2022 Received: from localhost ([127.0.0.1]:56848 helo=debbugs.gnu.org) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <debbugs-submit-bounces <at> debbugs.gnu.org>) id 1nu5iu-00052j-8g for submit <at> debbugs.gnu.org; Thu, 26 May 2022 01:07:50 -0400 Received: from eggs.gnu.org ([209.51.188.92]:46600) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <eliz@HIDDEN>) id 1nu5im-00052L-Vg for 55636 <at> debbugs.gnu.org; Thu, 26 May 2022 01:07:47 -0400 Received: from fencepost.gnu.org ([2001:470:142:3::e]:56088) by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from <eliz@HIDDEN>) id 1nu5if-0007mU-PZ; Thu, 26 May 2022 01:07:33 -0400 DKIM-Signature: v=1; a=rsa-sha256; q=dns/txt; c=relaxed/relaxed; d=gnu.org; s=fencepost-gnu-org; h=References:Subject:In-Reply-To:To:From:Date: mime-version; bh=OmPuQ2RuUKN1OGT+RTAnUX05tb9j5fIFeecUy2pxwx4=; b=B69FFWdZowy4 yy3EgGUNwKxP9fT24gFS062qIi9RW6MwYgGX8LA6MY/mMOVRROtKj0UDYCwF9lUT0HjKXWXVqHkdU rBK6B2hsURx7jyxqcW44yeyrh8l1dIxv765xJbUbysQE6VHIQY5wwLq0iXgqjKW2zopZ6nkwKCbu7 0iIn5DQ//QUeZRseO5Wv+iBSKTAtsGnRRsMTH950xmQLX/KOgXQdFvAPyXfnqXhAxba4NlqkFcJ3G kjVLU4mC09ro422uUbYE4qFLbMTNt5DnTwJU8DxD3NRiW1tscB+KB32P+64WbEbGPlJQ3KK0RAfUe UkRogXkLM/EhNAa7DzzuvA==; Received: from [87.69.77.57] (port=3345 helo=home-c4e4a596f7) by fencepost.gnu.org with esmtpsa (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from <eliz@HIDDEN>) id 1nu5if-0001UT-81; Thu, 26 May 2022 01:07:33 -0400 Date: Thu, 26 May 2022 08:07:25 +0300 Message-Id: <83k0a8q3ua.fsf@HIDDEN> From: Eli Zaretskii <eliz@HIDDEN> To: VAN VLIERBERGHE Stef <stef.van-vlierberghe@HIDDEN> In-Reply-To: <c64340bed8d64a96946bb8d3351f096e@HIDDEN> (message from VAN VLIERBERGHE Stef on Wed, 25 May 2022 20:42:16 +0000) Subject: Re: bug#55636: 27.2; etags performance fix when working with very big TAGS files References: <80qa6b58uq3.fsf@HIDDEN> <83r14hpm6s.fsf@HIDDEN> <c64340bed8d64a96946bb8d3351f096e@HIDDEN> X-Spam-Score: -2.3 (--) X-Debbugs-Envelope-To: 55636 Cc: 55636 <at> debbugs.gnu.org, jurgen.de-backer.ext@HIDDEN, philippe.waroquiers@HIDDEN X-BeenThere: debbugs-submit <at> debbugs.gnu.org X-Mailman-Version: 2.1.18 Precedence: list List-Id: <debbugs-submit.debbugs.gnu.org> List-Unsubscribe: <https://debbugs.gnu.org/cgi-bin/mailman/options/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=unsubscribe> List-Archive: <https://debbugs.gnu.org/cgi-bin/mailman/private/debbugs-submit/> List-Post: <mailto:debbugs-submit <at> debbugs.gnu.org> List-Help: <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=help> List-Subscribe: <https://debbugs.gnu.org/cgi-bin/mailman/listinfo/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=subscribe> Errors-To: debbugs-submit-bounces <at> debbugs.gnu.org Sender: "Debbugs-submit" <debbugs-submit-bounces <at> debbugs.gnu.org> X-Spam-Score: -3.3 (---) > From: VAN VLIERBERGHE Stef <stef.van-vlierberghe@HIDDEN> > CC: "55636 <at> debbugs.gnu.org" <55636 <at> debbugs.gnu.org>, WAROQUIERS Philippe > <philippe.waroquiers@HIDDEN> > Date: Wed, 25 May 2022 20:42:16 +0000 > > For us the 10 sec is reduced to below 1 sec, loading the tags file is no longer noticed after this change. > > I assume the reason is a huge amount of files all accessed over NFS, and expand-file-name does a lot of system calls that translate into network packets. Actually, expand-file-name is a purely syntactical function that is supposed not to hit the filesystem at all, at l;east on Posix systems. So I wonder why it seems to happen in your case. Any chances that you could show a trace of system calls for those 10 sec? Of course, making a simple change that you suggested is a no-brainer, so we might as well do it without further ado, but I'm just curious and think maybe we will learn something useful if we dig a bit deeper into your use case. > An alternative approach is to add some switch that allows a customization that simply never calls the expand-file-name, we generate tags files that already contain absolute paths so don't need any of this logic and disabling it would also be ok for us. That'd be less clean, I think: if we can do something automatically, it's better to do that instead of placing the burden on the user. Again, I'm not asking these questions because I see some problem in your proposed change. If we arrive at the conclusion that there's no reason to investigate more, we can just install that change, as it cannot possibly hurt. Thanks.
bug-gnu-emacs@HIDDEN
:bug#55636
; Package emacs
.
Full text available.Received: (at 55636) by debbugs.gnu.org; 25 May 2022 22:23:11 +0000 From debbugs-submit-bounces <at> debbugs.gnu.org Wed May 25 18:23:11 2022 Received: from localhost ([127.0.0.1]:56564 helo=debbugs.gnu.org) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <debbugs-submit-bounces <at> debbugs.gnu.org>) id 1ntzP8-0001dD-Bo for submit <at> debbugs.gnu.org; Wed, 25 May 2022 18:23:11 -0400 Received: from esa1.eurocontrol.c3s2.iphmx.com ([68.232.133.181]:34501) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <prvs=137c53f54=stef.van-vlierberghe@HIDDEN>) id 1ntxpv-00054i-1u for 55636 <at> debbugs.gnu.org; Wed, 25 May 2022 16:42:34 -0400 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=eurocontrol.int; s=ectl2; t=1653511350; x=1654116150; h=from:to:cc:subject:date:message-id:references: in-reply-to:content-transfer-encoding:mime-version; bh=N8qRq5c4xH/AkcqrrIkBwrzFNcGtEjjYvUTzY58Y2Rw=; b=j/elBgjB19GwmrVSrlGyV12I8KlDSPjK+qEL31htRfbZiPe0zWhxi6Io yAReNW2xsLcOWtLGK5PxWCbXkYubtxXet5zHZuDEvS724MhNja3lNYdlo 8Jeyeb5XQCvumA6v7b03VY3+k/8o/jMWwd6yZRZOA58v7MPIHk+jZ2XCz 5LYIvB/1D3mI/PUafs1koER3a1i2UDWLfbKcN2D8cw8oSTBPkwWjdNv+I EX0ouykuSGapLW3XZA1jQApd+JJt5I/zAkPQ1B1i3lfOd6i7cZy8k7Hbe AJpG9CnMTUIOsR0H87FiPivwxy+jXD9PgZATIcjmjET33KEl5INvbW37i g==; X-SignedOrEncrypted: False Received: from unknown (HELO drsmtpl02.eurocontrol.int) ([153.98.68.247]) by esa1.eurocontrol.c3s2.iphmx.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 25 May 2022 22:42:24 +0200 Received: from SSPEX111.sky.corp.eurocontrol.int (sspex111.sky.corp.eurocontrol.int [172.19.3.2]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (Client CN "mailservices.eurocontrol.int", Issuer "EUROCONTROL Certificate Authority 2016" (not verified)) by drsmtpl02.eurocontrol.int (Postfix) with ESMTPS id ADD2160003; Wed, 25 May 2022 22:42:17 +0200 (CEST) Received: from SSPEX111.sky.corp.eurocontrol.int (172.19.3.2) by SSPEX111.sky.corp.eurocontrol.int (172.19.3.2) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.1.2375.28; Wed, 25 May 2022 22:42:17 +0200 Received: from SSPEX111.sky.corp.eurocontrol.int ([fe80::1979:586a:8b46:667e]) by SSPEX111.sky.corp.eurocontrol.int ([fe80::1979:586a:8b46:667e%8]) with mapi id 15.01.2375.028; Wed, 25 May 2022 22:42:17 +0200 From: VAN VLIERBERGHE Stef <stef.van-vlierberghe@HIDDEN> To: Eli Zaretskii <eliz@HIDDEN>, "DE BACKER Jurgen (EXT)" <jurgen.de-backer.ext@HIDDEN> Subject: RE: bug#55636: 27.2; etags performance fix when working with very big TAGS files Thread-Topic: bug#55636: 27.2; etags performance fix when working with very big TAGS files Thread-Index: AQHYcFEPCJxxPZ3ekE6YMRimvse8M60v1dhogAA4PKA= Date: Wed, 25 May 2022 20:42:16 +0000 Message-ID: <c64340bed8d64a96946bb8d3351f096e@HIDDEN> References: <80qa6b58uq3.fsf@HIDDEN> <83r14hpm6s.fsf@HIDDEN> In-Reply-To: <83r14hpm6s.fsf@HIDDEN> Accept-Language: en-US, en-BE Content-Language: en-US X-MS-Has-Attach: X-MS-TNEF-Correlator: x-originating-ip: [172.19.15.88] Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: quoted-printable MIME-Version: 1.0 X-Spam-Score: -2.3 (--) X-Debbugs-Envelope-To: 55636 X-Mailman-Approved-At: Wed, 25 May 2022 18:22:57 -0400 Cc: "55636 <at> debbugs.gnu.org" <55636 <at> debbugs.gnu.org>, WAROQUIERS Philippe <philippe.waroquiers@HIDDEN> X-BeenThere: debbugs-submit <at> debbugs.gnu.org X-Mailman-Version: 2.1.18 Precedence: list List-Id: <debbugs-submit.debbugs.gnu.org> List-Unsubscribe: <https://debbugs.gnu.org/cgi-bin/mailman/options/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=unsubscribe> List-Archive: <https://debbugs.gnu.org/cgi-bin/mailman/private/debbugs-submit/> List-Post: <mailto:debbugs-submit <at> debbugs.gnu.org> List-Help: <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=help> List-Subscribe: <https://debbugs.gnu.org/cgi-bin/mailman/listinfo/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=subscribe> Errors-To: debbugs-submit-bounces <at> debbugs.gnu.org Sender: "Debbugs-submit" <debbugs-submit-bounces <at> debbugs.gnu.org> X-Spam-Score: -1.0 (-) Hi Eli, For us the 10 sec is reduced to below 1 sec, loading the tags file is no lo= nger noticed after this change. I assume the reason is a huge amount of files all accessed over NFS, and ex= pand-file-name does a lot of system calls that translate into network packe= ts. An alternative approach is to add some switch that allows a customization t= hat simply never calls the expand-file-name, we generate tags files that al= ready contain absolute paths so don't need any of this logic and disabling = it would also be ok for us. All the best, Stef -----Original Message----- From: Eli Zaretskii <eliz@HIDDEN> Sent: 25 May 2022 19:16 To: DE BACKER Jurgen (EXT) <jurgen.de-backer.ext@HIDDEN> Cc: 55636 <at> debbugs.gnu.org; VAN VLIERBERGHE Stef <stef.van-vlierberghe@euroc= ontrol.int>; WAROQUIERS Philippe <philippe.waroquiers@HIDDEN> Subject: Re: bug#55636: 27.2; etags performance fix when working with very = big TAGS files > Cc: jurgen.de-backer.ext@HIDDEN, > stef.van-vlierberghe@HIDDEN, > philippe.waroquiers@HIDDEN > Date: Wed, 25 May 2022 16:04:04 +0000 > From: Jurgen De Backer via "Bug reports for GNU Emacs, the Swiss > army knife of text editors" <bug-gnu-emacs@HIDDEN> > > We implemented a fix for making etags searching faster in our custom > emacs build. > In our project, sometimes a search could take more than 10 seconds. > The fix is to expand filenames only if they are relative: > > (defun expand-if-relative (a-file) > (if (file-name-absolute-p a-file) > a-file > (expand-file-name a-file) > ) > ) > > and then use this function in the mapcar statement inside (defun > tags-table-including ...), replacing expand-file-name: > .... > (if (member this-file (mapcar #'expand-if-relative > (tags-table-files))) > ;; Found it. > (setq found tables) > ) > .... Thanks. How much speedup does this bring in your use cases? From 10 sec d= own to how long? > Looking at expand-file-name doc, it does 2 things: > * make file name absolute > * and canonicalize it (removes the xxxx/.. dir components, > the . dir components, the double slashes). It actually does more, like resolve the ~/ etc. > We are wondering if the standard C function in emacs could do a fast > "do nothing" when the file name is absolute and has nothing to > cannonicalize. I think testing for "nothing to canonicalize" is as complex as canonicalizi= ng the file name. ____ This message and any files transmitted with it are legally privileged and i= ntended for the sole use of the individual(s) or entity to whom they are ad= dressed. If you are not the intended recipient, please notify the sender by= reply and delete the message and any attachments from your system. Any una= uthorised use or disclosure of the content of this message is strictly proh= ibited and may be unlawful. Nothing in this e-mail message amounts to a contractual or legal commitment= on the part of EUROCONTROL, unless it is confirmed by appropriately signed= hard copy. Any views expressed in this message are those of the sender.
bug-gnu-emacs@HIDDEN
:bug#55636
; Package emacs
.
Full text available.Received: (at 55636) by debbugs.gnu.org; 25 May 2022 17:16:46 +0000 From debbugs-submit-bounces <at> debbugs.gnu.org Wed May 25 13:16:45 2022 Received: from localhost ([127.0.0.1]:56373 helo=debbugs.gnu.org) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <debbugs-submit-bounces <at> debbugs.gnu.org>) id 1ntucn-0005WP-NK for submit <at> debbugs.gnu.org; Wed, 25 May 2022 13:16:45 -0400 Received: from eggs.gnu.org ([209.51.188.92]:58760) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <eliz@HIDDEN>) id 1ntucm-0005WA-HW for 55636 <at> debbugs.gnu.org; Wed, 25 May 2022 13:16:45 -0400 Received: from fencepost.gnu.org ([2001:470:142:3::e]:46562) by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from <eliz@HIDDEN>) id 1ntuce-0008OC-6E; Wed, 25 May 2022 13:16:36 -0400 DKIM-Signature: v=1; a=rsa-sha256; q=dns/txt; c=relaxed/relaxed; d=gnu.org; s=fencepost-gnu-org; h=References:Subject:In-Reply-To:To:From:Date: mime-version; bh=w48O3I8EH16Fyhq9aHd1STCM0VP4qMjqiTWs8ZVysC0=; b=ntyUkQwXn/wn v4GVrb5ZAtZMteghUXtOVJvPxI6qI15+MmelFJuADwH3vTH4CLlnqqwwYbiM3kc8MF6EfeoyQCRVm RGswABJSz8jlvQbfLelM38P4sebGRySdLTTXqx8P0LeHeHfrvR1ofiZz8lm/bR0wZ6bgXFkNIoS60 a163DI92+yoWgvhSBMg5XqbjYwlHd9Sm/wAg3hc5Pc8Ry/uwToFCb5GJsyrmugzEA/Dt761IIWkRT dUQ3M785twT4fQfrImanIM7fndHQJ0HSivG6O+VkDIrLVyeA0soLb9MNlYu6kzmHEpPKSWk1zkFVD /9aLZ+SxWWVQ8KiZ1AOWrA==; Received: from [87.69.77.57] (port=3454 helo=home-c4e4a596f7) by fencepost.gnu.org with esmtpsa (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from <eliz@HIDDEN>) id 1ntucd-0003HT-HN; Wed, 25 May 2022 13:16:35 -0400 Date: Wed, 25 May 2022 20:16:27 +0300 Message-Id: <83r14hpm6s.fsf@HIDDEN> From: Eli Zaretskii <eliz@HIDDEN> To: Jurgen De Backer <jurgen.de-backer.ext@HIDDEN> In-Reply-To: <80qa6b58uq3.fsf@HIDDEN> (bug-gnu-emacs@HIDDEN) Subject: Re: bug#55636: 27.2; etags performance fix when working with very big TAGS files References: <80qa6b58uq3.fsf@HIDDEN> X-Spam-Score: -2.3 (--) X-Debbugs-Envelope-To: 55636 Cc: 55636 <at> debbugs.gnu.org, stef.van-vlierberghe@HIDDEN, philippe.waroquiers@HIDDEN X-BeenThere: debbugs-submit <at> debbugs.gnu.org X-Mailman-Version: 2.1.18 Precedence: list List-Id: <debbugs-submit.debbugs.gnu.org> List-Unsubscribe: <https://debbugs.gnu.org/cgi-bin/mailman/options/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=unsubscribe> List-Archive: <https://debbugs.gnu.org/cgi-bin/mailman/private/debbugs-submit/> List-Post: <mailto:debbugs-submit <at> debbugs.gnu.org> List-Help: <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=help> List-Subscribe: <https://debbugs.gnu.org/cgi-bin/mailman/listinfo/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=subscribe> Errors-To: debbugs-submit-bounces <at> debbugs.gnu.org Sender: "Debbugs-submit" <debbugs-submit-bounces <at> debbugs.gnu.org> X-Spam-Score: -3.3 (---) > Cc: jurgen.de-backer.ext@HIDDEN, stef.van-vlierberghe@HIDDEN, > philippe.waroquiers@HIDDEN > Date: Wed, 25 May 2022 16:04:04 +0000 > From: Jurgen De Backer via "Bug reports for GNU Emacs, > the Swiss army knife of text editors" <bug-gnu-emacs@HIDDEN> > > We implemented a fix for making etags searching faster in our custom > emacs build. > In our project, sometimes a search could take more than 10 seconds. > The fix is to expand filenames only if they are relative: > > (defun expand-if-relative (a-file) > (if (file-name-absolute-p a-file) > a-file > (expand-file-name a-file) > ) > ) > > and then use this function in the mapcar statement inside (defun > tags-table-including ...), replacing expand-file-name: > .... > (if (member this-file (mapcar #'expand-if-relative > (tags-table-files))) > ;; Found it. > (setq found tables) > ) > .... Thanks. How much speedup does this bring in your use cases? From 10 sec down to how long? > Looking at expand-file-name doc, it does 2 things: > * make file name absolute > * and canonicalize it (removes the xxxx/.. dir components, > the . dir components, the double slashes). It actually does more, like resolve the ~/ etc. > We are wondering if the standard C function in emacs could do > a fast "do nothing" when the file name is absolute and has > nothing to cannonicalize. I think testing for "nothing to canonicalize" is as complex as canonicalizing the file name.
bug-gnu-emacs@HIDDEN
:bug#55636
; Package emacs
.
Full text available.Received: (at submit) by debbugs.gnu.org; 25 May 2022 16:04:45 +0000 From debbugs-submit-bounces <at> debbugs.gnu.org Wed May 25 12:04:45 2022 Received: from localhost ([127.0.0.1]:56300 helo=debbugs.gnu.org) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <debbugs-submit-bounces <at> debbugs.gnu.org>) id 1nttV5-0003SE-DF for submit <at> debbugs.gnu.org; Wed, 25 May 2022 12:04:44 -0400 Received: from lists.gnu.org ([209.51.188.17]:43546) by debbugs.gnu.org with esmtp (Exim 4.84_2) (envelope-from <prvs=137f94b62=jurgen.de-backer.ext@HIDDEN>) id 1nttV1-0003S3-RD for submit <at> debbugs.gnu.org; Wed, 25 May 2022 12:04:41 -0400 Received: from eggs.gnu.org ([2001:470:142:3::10]:37138) by lists.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from <prvs=137f94b62=jurgen.de-backer.ext@HIDDEN>) id 1nttUy-0001xp-3e for bug-gnu-emacs@HIDDEN; Wed, 25 May 2022 12:04:39 -0400 Received: from esa2.eurocontrol.c3s2.iphmx.com ([68.232.139.104]:44209) by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from <prvs=137f94b62=jurgen.de-backer.ext@HIDDEN>) id 1nttUf-0004LE-Ny for bug-gnu-emacs@HIDDEN; Wed, 25 May 2022 12:04:23 -0400 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=eurocontrol.int; s=ectl2; t=1653494657; x=1654099457; h=from:to:subject:cc:date:message-id:mime-version: content-transfer-encoding; bh=BnfIriuCAhpF/eKvnmxlKhSPlp7BsKQrIwB9kGkEElI=; b=hm7vBYH7oKRqJgeSiOSud04jDwI4Lue9uXEd4wfUtnTCw2EnFgrBfQ3G gBQPjeLpg+HIMMZR+dwW2fyZEmCirTkmywPQnVk1hN6YwCdSCHBXNfs77 gL6YzGW0YjCzPxWaRfXdPmVaU8SZrAasfDWvewnUAJgq2eSYG550Qg7uJ JcM6r5EydCJHYWHN5pBXzdX6lqDGRwPUwmWGdf7ylnOjoJgbO75+Dexmd qT9NZJB7qi/jRy0fzIS7GWNJxNZtiSGoSoe31qJfKyEJ1423/eDgsDr/d aZWShX3bqEGJhO+kL4hzmyJTZyP85Ze64aeEUchLgy1lDsRtpmulfOlOn A==; X-SignedOrEncrypted: False Received: from unknown (HELO drsmtpl01.eurocontrol.int) ([153.98.68.246]) by esa2.eurocontrol.c3s2.iphmx.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 25 May 2022 18:04:09 +0200 Received: from SSPEX116.sky.corp.eurocontrol.int (sspex116.sky.corp.eurocontrol.int [172.19.3.7]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (Client CN "mailservices.eurocontrol.int", Issuer "EUROCONTROL Certificate Authority 2016" (not verified)) by drsmtpl01.eurocontrol.int (Postfix) with ESMTPS id 2F05C24003F for <bug-gnu-emacs@HIDDEN>; Wed, 25 May 2022 18:04:05 +0200 (CEST) Received: from SSPEX113.sky.corp.eurocontrol.int (172.19.3.4) by SSPEX116.sky.corp.eurocontrol.int (172.19.3.7) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.1.2375.28; Wed, 25 May 2022 18:04:04 +0200 Received: from dhinfd01.eurocontrol.int (10.5.64.1) by SSPEX113.sky.corp.eurocontrol.int (10.4.34.9) with Microsoft SMTP Server id 15.1.2375.28 via Frontend Transport; Wed, 25 May 2022 18:04:04 +0200 Received: from dhws059.eurocontrol.int (dhws059.cfmu.corp.eurocontrol.int [172.19.141.122]) by dhinfd01.eurocontrol.int (Postfix) with ESMTP id 8061C1B83; Wed, 25 May 2022 16:04:04 +0000 (UTC) Received: by dhws059.eurocontrol.int (Postfix, from userid 36261) id 5F66A42F; Wed, 25 May 2022 16:04:04 +0000 (UTC) From: Jurgen De Backer <jurgen.de-backer.ext@HIDDEN> To: <bug-gnu-emacs@HIDDEN> Subject: 27.2; etags performance fix when working with very big TAGS files Date: Wed, 25 May 2022 16:04:04 +0000 Message-ID: <80qa6b58uq3.fsf@HIDDEN> MIME-Version: 1.0 Content-Type: text/plain Content-Transfer-Encoding: quoted-printable Received-SPF: pass client-ip=68.232.139.104; envelope-from=prvs=137f94b62=jurgen.de-backer.ext@HIDDEN; helo=esa2.eurocontrol.c3s2.iphmx.com X-Spam_score_int: -44 X-Spam_score: -4.5 X-Spam_bar: ---- X-Spam_report: (-4.5 / 5.0 requ) BAYES_00=-1.9, DKIMWL_WL_HIGH=-0.082, DKIM_SIGNED=0.1, DKIM_VALID=-0.1, DKIM_VALID_AU=-0.1, DKIM_VALID_EF=-0.1, RCVD_IN_DNSWL_MED=-2.3, RCVD_IN_MSPIKE_H2=-0.001, SPF_HELO_PASS=-0.001, SPF_PASS=-0.001, T_SCC_BODY_TEXT_LINE=-0.01 autolearn=ham autolearn_force=no X-Spam_action: no action X-Spam-Score: -1.4 (-) X-Debbugs-Envelope-To: submit Cc: jurgen.de-backer.ext@HIDDEN, stef.van-vlierberghe@HIDDEN, philippe.waroquiers@HIDDEN X-BeenThere: debbugs-submit <at> debbugs.gnu.org X-Mailman-Version: 2.1.18 Precedence: list List-Id: <debbugs-submit.debbugs.gnu.org> List-Unsubscribe: <https://debbugs.gnu.org/cgi-bin/mailman/options/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=unsubscribe> List-Archive: <https://debbugs.gnu.org/cgi-bin/mailman/private/debbugs-submit/> List-Post: <mailto:debbugs-submit <at> debbugs.gnu.org> List-Help: <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=help> List-Subscribe: <https://debbugs.gnu.org/cgi-bin/mailman/listinfo/debbugs-submit>, <mailto:debbugs-submit-request <at> debbugs.gnu.org?subject=subscribe> Errors-To: debbugs-submit-bounces <at> debbugs.gnu.org Sender: "Debbugs-submit" <debbugs-submit-bounces <at> debbugs.gnu.org> X-Spam-Score: -2.4 (--) Hi, We implemented a fix for making etags searching faster in our custom emacs build. In our project, sometimes a search could take more than 10 seconds. The fix is to expand filenames only if they are relative: (defun expand-if-relative (a-file) (if (file-name-absolute-p a-file) a-file (expand-file-name a-file) ) ) and then use this function in the mapcar statement inside (defun tags-table-including ...), replacing expand-file-name: .... (if (member this-file (mapcar #'expand-if-relative (tags-table-files))) ;; Found it. (setq found tables) ) .... Looking at expand-file-name doc, it does 2 things: * make file name absolute * and canonicalize it (removes the xxxx/.. dir components, the . dir components, the double slashes). We are wondering if the standard C function in emacs could do a fast "do nothing" when the file name is absolute and has nothing to cannonicalize. It could be useful to add this check in the emacs implementation of expand-file-name. Many thanks, Jurgen De Backer In GNU Emacs 27.2 (build 1, x86_64-pc-linux-gnu, GTK+ Version 3.22.30) of 2022-05-23 built on dhdevd14 Windowing system distributor 'Moba/X', version 11.0.12004000 System Description: Red Hat Enterprise Linux Server 7.9 (Maipo) Recent messages: Adding to TAGS-list: /cm/ot/TACT/TACT_CONFIG!27.0.0.33/build_G!27.IP.L7/TAG= S.extra, to: (/cm/ot/TACT/TACT_CONFIG!27.0.0.33/build_G!27.IP.L7/TAGS /cm/o= t/TACT/TACT_CONFIG!27.0.0.33/build_G!27.IP.L7/TAGS.extra) Adding to TAGS-list: /cm/ot/CMA/MASTER.1/build_G!27.IP.L7/TAGS, to: (/cm/ot= /CMA/MASTER.1/build_G!27.IP.L7/TAGS) Adding to TAGS-list: /cm/ot/CMA/MASTER.1/build_G!27.IP.L7/TAGS.extra, to: (= /cm/ot/CMA/MASTER.1/build_G!27.IP.L7/TAGS /cm/ot/CMA/MASTER.1/build_G!27.IP= .L7/TAGS.extra) Loading gpc...done isearch-forwardisearch-backwardisearch-forward-regexpisearch-backward-regex= pquery-replacequery-replace-regexpreplace-regexpreplace-string Setup ispell to use hunspell Loading version_emacs_startup...done Loading ada_mode_6...done Loading /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26= .3/site-lisp/emacs_startup.el (source)...done For information about GNU Emacs and the GNU system, type C-h C-a. Configured using: 'configure --prefix=3D/cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated --exec-prefix=3D/cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/libex= ec/emacs-27.2 --mandir=3D/cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/man --with-x-toolkit=3Dgtk3 --with-modules --with-xft 'CFLAGS=3D-I/cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/include ' 'LDFLAGS=3D-Wl,-rpath,/cfmu/local/data/libimagemagic -L/cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/lib'' Configured features: XPM JPEG TIFF GIF PNG SOUND GPM DBUS GSETTINGS GLIB NOTIFY INOTIFY ACL LIBSELINUX GNUTLS LIBXML2 FREETYPE HARFBUZZ XFT ZLIB TOOLKIT_SCROLL_BARS GTK3 X11 XDBE XIM MODULES THREADS PDUMPER Important settings: value of $EMACSDATA: /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated= /share/emacs/27.2/etc value of $EMACSDOC: /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/= share/emacs/27.2/etc value of $EMACSLOADPATH: /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gener= ated/share/emacs/26.3/site-lisp:/cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/= generated/share/emacs/site-lisp:/cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/= generated/share/emacs/27.2/lisp value of $EMACSPATH: /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated= /libexec/emacs-27.2/libexec/emacs/27.2/x86_64-pc-linux-gnu: value of $LANG: C locale-coding-system: nil Major mode: Lisp Interaction Minor modes in effect: which-function-mode: t show-paren-mode: t tooltip-mode: t global-eldoc-mode: t eldoc-mode: t electric-indent-mode: t mouse-wheel-mode: t tool-bar-mode: t menu-bar-mode: t file-name-shadow-mode: t global-font-lock-mode: t font-lock-mode: t auto-composition-mode: t auto-encryption-mode: t auto-compression-mode: t column-number-mode: t line-number-mode: t transient-mark-mode: t Load-path shadows: /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/sh-script hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/s= hare/emacs/27.2/lisp/progmodes/sh-script /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-groovy hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/ob-groovy /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-lint hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/ge= nerated/share/emacs/27.2/lisp/org/org-lint /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ox-texinfo hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/= generated/share/emacs/27.2/lisp/org/ox-texinfo /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ox-beamer hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/ox-beamer /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-sqlite hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/ob-sqlite /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-makefile hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7= /generated/share/emacs/27.2/lisp/org/ob-makefile /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-latex hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/ge= nerated/share/emacs/27.2/lisp/org/ob-latex /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-tangle hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/ob-tangle /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-entities hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L= 7/generated/share/emacs/27.2/lisp/org/org-entities /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-clojure hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/= generated/share/emacs/27.2/lisp/org/ob-clojure /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-table hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/ge= nerated/share/emacs/27.2/lisp/org/ob-table /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-capture hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7= /generated/share/emacs/27.2/lisp/org/org-capture /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-indent hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/= generated/share/emacs/27.2/lisp/org/org-indent /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-feed hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/ge= nerated/share/emacs/27.2/lisp/org/org-feed /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-plot hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/ge= nerated/share/emacs/27.2/lisp/org/org-plot /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-list hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/ge= nerated/share/emacs/27.2/lisp/org/org-list /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-keys hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/ge= nerated/share/emacs/27.2/lisp/org/org-keys /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-emacs-lisp hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.= L7/generated/share/emacs/27.2/lisp/org/ob-emacs-lisp /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ox-latex hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/ge= nerated/share/emacs/27.2/lisp/org/ox-latex /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-duration hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L= 7/generated/share/emacs/27.2/lisp/org/org-duration /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-faces hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/org-faces /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-table hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/org-table /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-agenda hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/= generated/share/emacs/27.2/lisp/org/org-agenda /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-macro hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/org-macro /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-protocol hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L= 7/generated/share/emacs/27.2/lisp/org/org-protocol /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-plantuml hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7= /generated/share/emacs/27.2/lisp/org/ob-plantuml /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-screen hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/ob-screen /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-compat hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/= generated/share/emacs/27.2/lisp/org/org-compat /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-processing hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.= L7/generated/share/emacs/27.2/lisp/org/ob-processing /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-octave hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/ob-octave /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-crypt hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/org-crypt /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-timer hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/org-timer /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-ctags hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/org-ctags /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-maxima hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/ob-maxima /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-lilypond hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7= /generated/share/emacs/27.2/lisp/org/ob-lilypond /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-element hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7= /generated/share/emacs/27.2/lisp/org/org-element /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-matlab hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/ob-matlab /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-gnuplot hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/= generated/share/emacs/27.2/lisp/org/ob-gnuplot /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-forth hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/ge= nerated/share/emacs/27.2/lisp/org/ob-forth /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-archive hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7= /generated/share/emacs/27.2/lisp/org/org-archive /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-datetree hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L= 7/generated/share/emacs/27.2/lisp/org/org-datetree /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-mobile hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/= generated/share/emacs/27.2/lisp/org/org-mobile /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-ledger hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/ob-ledger /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ol-eshell hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/ol-eshell /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-asymptote hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L= 7/generated/share/emacs/27.2/lisp/org/ob-asymptote /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-macs hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/ge= nerated/share/emacs/27.2/lisp/org/org-macs /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-attach-git hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP= .L7/generated/share/emacs/27.2/lisp/org/org-attach-git /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-lisp hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gen= erated/share/emacs/27.2/lisp/org/ob-lisp /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-lob hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ob-lob /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-R hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/genera= ted/share/emacs/27.2/lisp/org/ob-R /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generate= d/share/emacs/27.2/lisp/org/ob /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-vala hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gen= erated/share/emacs/27.2/lisp/org/ob-vala /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ox-odt hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ox-odt /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-footnote hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L= 7/generated/share/emacs/27.2/lisp/org/org-footnote /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ox-icalendar hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L= 7/generated/share/emacs/27.2/lisp/org/ox-icalendar /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-lua hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ob-lua /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ol hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generate= d/share/emacs/27.2/lisp/org/ol /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-habit hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/org-habit /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-css hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ob-css /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-core hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gen= erated/share/emacs/27.2/lisp/org/ob-core /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-exp hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ob-exp /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-comint hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/ob-comint /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-ocaml hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/ge= nerated/share/emacs/27.2/lisp/org/ob-ocaml /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-id hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/org-id /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-abc hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ob-abc /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ox-org hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ox-org /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ol-info hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gen= erated/share/emacs/27.2/lisp/org/ol-info /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-sass hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gen= erated/share/emacs/27.2/lisp/org/ob-sass /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-shell hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/ge= nerated/share/emacs/27.2/lisp/org/ob-shell /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-scheme hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/ob-scheme /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-haskell hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/= generated/share/emacs/27.2/lisp/org/ob-haskell /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ol-bibtex hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/ol-bibtex /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ol-rmail hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/ge= nerated/share/emacs/27.2/lisp/org/ol-rmail /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-java hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gen= erated/share/emacs/27.2/lisp/org/ob-java /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ox-md hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gener= ated/share/emacs/27.2/lisp/org/ox-md /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-sql hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ob-sql /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-src hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gen= erated/share/emacs/27.2/lisp/org/org-src /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-mscgen hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/ob-mscgen /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-C hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/genera= ted/share/emacs/27.2/lisp/org/ob-C /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-eval hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gen= erated/share/emacs/27.2/lisp/org/ob-eval /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-eshell hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/ob-eshell /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ol-eww hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ol-eww /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ol-gnus hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gen= erated/share/emacs/27.2/lisp/org/ol-gnus /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-awk hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ob-awk /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-goto hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/ge= nerated/share/emacs/27.2/lisp/org/org-goto /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ol-mhe hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ol-mhe /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-inlinetask hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP= .L7/generated/share/emacs/27.2/lisp/org/org-inlinetask /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-ruby hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gen= erated/share/emacs/27.2/lisp/org/ob-ruby /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-org hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ob-org /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ox-publish hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/= generated/share/emacs/27.2/lisp/org/ox-publish /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ol-bbdb hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gen= erated/share/emacs/27.2/lisp/org/ol-bbdb /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-num hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gen= erated/share/emacs/27.2/lisp/org/org-num /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-calc hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gen= erated/share/emacs/27.2/lisp/org/ob-calc /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ol-irc hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ol-irc /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-shen hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gen= erated/share/emacs/27.2/lisp/org/ob-shen /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-colview hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7= /generated/share/emacs/27.2/lisp/org/org-colview /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-attach hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/= generated/share/emacs/27.2/lisp/org/org-attach /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-ditaa hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/ge= nerated/share/emacs/27.2/lisp/org/ob-ditaa /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-dot hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ob-dot /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-hledger hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/= generated/share/emacs/27.2/lisp/org/ob-hledger /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-J hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/genera= ted/share/emacs/27.2/lisp/org/ob-J /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ol-w3m hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ol-w3m /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-python hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/ob-python /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-io hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gener= ated/share/emacs/27.2/lisp/org/ob-io /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-ref hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ob-ref /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-clock hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/org-clock /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-fortran hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/= generated/share/emacs/27.2/lisp/org/ob-fortran /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-mouse hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/org-mouse /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ol-docview hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/= generated/share/emacs/27.2/lisp/org/ol-docview /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-install hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7= /generated/share/emacs/27.2/lisp/org/org-install /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-loaddefs hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L= 7/generated/share/emacs/27.2/lisp/org/org-loaddefs /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-picolisp hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7= /generated/share/emacs/27.2/lisp/org/ob-picolisp /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ox-ascii hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/ge= nerated/share/emacs/27.2/lisp/org/ox-ascii /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-version hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7= /generated/share/emacs/27.2/lisp/org/org-version /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ox-man hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ox-man /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-sed hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ob-sed /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-js hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gener= ated/share/emacs/27.2/lisp/org/ob-js /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ox hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generate= d/share/emacs/27.2/lisp/org/ox /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-pcomplete hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.= L7/generated/share/emacs/27.2/lisp/org/org-pcomplete /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ox-html hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gen= erated/share/emacs/27.2/lisp/org/ox-html /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-stan hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gen= erated/share/emacs/27.2/lisp/org/ob-stan /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org-tempo hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/g= enerated/share/emacs/27.2/lisp/org/org-tempo /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/org hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generat= ed/share/emacs/27.2/lisp/org/org /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-coq hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gene= rated/share/emacs/27.2/lisp/org/ob-coq /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-perl hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gen= erated/share/emacs/27.2/lisp/org/ob-perl /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/generated/share/emacs/26.3/site-= lisp/org-9.3.1/ob-ebnf hides /cm/ot/TOOL/GNU!27.0.0.12/build_G!27.IP.L7/gen= erated/share/emacs/27.2/lisp/org/ob-ebnf Features: (shadow sort mail-extr emacsbug message rmc puny rfc822 mml mml-sec epa derived epg epg-config gnus-util rmail rmail-loaddefs text-property-search mm-decode mm-bodies mm-encode mail-parse rfc2231 mailabbrev gmm-utils mailheader sendmail rfc2047 rfc2045 ietf-drums mm-util mail-prsvr mail-utils gpc dired dired-loaddefs mule-util etags fileloop generator which-func ido paren ada-imenu imenu ada-skel ada-skeletons skeleton ada-compiler ada-gnat-compile ada-gnat-xref gnat-core ada-wisi ada-process wisi-process-parse ada-indent-user-options ada-fix-error ada-mode wisi xref project wisi-fringe wisi-parse-common semantic/lex semantic/fw mode-local find-file compile align highlight-beyond-fill-column which-key vlf-setup vlf vlf-base vlf-tune org ob ob-tangle ob-ref ob-lob ob-table ob-exp org-macro org-footnote org-src ob-comint org-pcomplete pcomplete org-list org-faces org-entities time-date noutline outline easy-mmode org-version ob-emacs-lisp ob-core ob-eval org-table ol org-keys org-compat advice org-macs org-loaddefs format-spec find-func cal-menu calendar cal-loaddefs memory-usage ffap thingatpt comint ansi-color ring jka-compr finder-inf package easymenu browse-url url-handlers url-parse auth-source cl-seq eieio eieio-core cl-macs eieio-loaddefs password-cache json subr-x map url-vars seq byte-opt gv bytecomp byte-compile cconv cl-loaddefs cl-lib tooltip eldoc electric uniquify ediff-hook vc-hooks lisp-float-type mwheel term/x-win x-win term/common-win x-dnd tool-bar dnd fontset image regexp-opt fringe tabulated-list replace newcomment text-mode elisp-mode lisp-mode prog-mode register page tab-bar menu-bar rfn-eshadow isearch timer select scroll-bar mouse jit-lock font-lock syntax facemenu font-core term/tty-colors frame minibuffer cl-generic cham georgian utf-8-lang misc-lang vietnamese tibetan thai tai-viet lao korean japanese eucjp-ms cp51932 hebrew greek romanian slovak czech european ethiopic indian cyrillic chinese composite charscript charprop case-table epa-hook jka-cmpr-hook help simple abbrev obarray cl-preloaded nadvice loaddefs button faces cus-face macroexp files text-properties overlay sha1 md5 base64 format env code-pages mule custom widget hashtable-print-readable backquote threads dbusbind inotify dynamic-setting system-font-setting font-render-setting move-toolbar gtk x-toolkit x multi-tty make-network-process emacs) Memory information: ((conses 16 140306 18084) (symbols 48 16485 1) (strings 32 51083 2051) (string-bytes 1 1801019) (vectors 16 23936) (vector-slots 8 278494 10296) (floats 8 109 60) (intervals 56 906 91) (buffers 1000 11) (heap 1024 18287 1390)) ____ This message and any files transmitted with it are legally privileged and i= ntended for the sole use of the individual(s) or entity to whom they are ad= dressed. If you are not the intended recipient, please notify the sender by= reply and delete the message and any attachments from your system. Any una= uthorised use or disclosure of the content of this message is strictly proh= ibited and may be unlawful. Nothing in this e-mail message amounts to a contractual or legal commitment= on the part of EUROCONTROL, unless it is confirmed by appropriately signed= hard copy. Any views expressed in this message are those of the sender.
Jurgen De Backer <jurgen.de-backer.ext@HIDDEN>
:bug-gnu-emacs@HIDDEN
.
Full text available.bug-gnu-emacs@HIDDEN
:bug#55636
; Package emacs
.
Full text available.
GNU bug tracking system
Copyright (C) 1999 Darren O. Benham,
1997 nCipher Corporation Ltd,
1994-97 Ian Jackson.